ActA UNIV. SAPIENTIAE, INFORMATICA, 1, 2 (2009) 135-148

&

On confluent drawings: visualizing graphs
using an ortho-confluent system

Irina Honciuc Cornelius Croitoru
Al. 1. Cuza University of lasi Al. 1. Cuza University of lasi
Computer Science Faculty Computer Science Faculty
email: irina.honciuc@info.uaic.ro email: croitoru@info.uaic.ro
Abstract. Confluent drawing is a technique that allows visualizing

non-planar graphs in a crossing-free manner. Its central idea is very sim-
ple: subsets of graph’s edges are merged into confluence points and drawn
as smooth curved lines, similar to train tracks. This approach eliminates
edge crossings and offers an aesthetically pleasant representation for the
initial graph. This article presents the ortho-confluence technique, which
introduces the idea of local orthogonal system relative to a graph’s node.
The concept of ortho-confluence was successfully implemented in our ap-
plication named ConfluentViz, and the results are presented in the final
part of this article.

1 Introduction

In 2003, Dickerson, Eppstein, Goodrich and Meng introduced confluent draw-
ing, and with it a heuristic that is able to generate confluent drawings for
some graphs [4]. The problem of finding a proper representation without edge
crossings for a non planar graph is not very straight forward. But there are
heuristics that determine whether a non-planar graph can be efficiently drawn
in a confluent way.

A particular approach in confluent drawings is ortho-confluence. This rep-
resents a way of drawing a graph in a confluent manner, such that some edges

AMS 2000 subject classifications: 68R10
CR Categories and Descriptors: G.2.2. [Graph Theory]: Graph algorithms
Key words and phrases: graph theory, graph visualization, confluence, ortho-confluence

135

http://www.uaic.ro
http://www.infoiasi.ro
mailto:irina.honciuc@info.uaic.ro
http://www.infoiasi.ro/bin/Structure/croitoru?language=en
http://www.uaic.ro
http://www.infoiasi.ro
file:croitoru@info.uaic.ro

136 1. Honciue, C. Croitoru

of the initial graph are merged with a horizontal or vertical track correspond-
ing to a local cartesian coordinate system that has its origin in another node
called parent. The parent of a node in a confluent representation is, in general,
the parent node given by the BFS order. Depending on the graph structure,
a parent node in the confluent representation can also be a node that has a
very large degree or a node that is connected with other nodes by a long edge.
This article offers a close look on ortho-confluence technique as it is success-
fully implemented in the ConfluentViz application. This is a graph editor tool
that enables the user to create and manage ortho-confluent representations
for various graph categories: trees, forests, graphs containing circuits, graphs
containing large cliques (bicliques).

The first sections of this paper present the context of the topic and the
existing work including some important results. The following sections are
related to the ortho-confluence concept. Furthermore, the implementation
results and issues are explained in detail. At the end of our paper, we present
some conclusions and further work.

2 Motivation and problem description

Graph visualization is a vast area of research [1, 11, 12, 13, 14]. Developing
an intelligent tool that produces visual representations for different graph cat-
egories is a challenging process; it implies finding a suitable algorithm that
takes a graph as an input and outputs an equivalent representation. This final
representation must satisfy some aesthetic criteria in order to be relevant. It
is highly desired to have less crossing edges, a good positioning for the vertices
and edges, optimal angles, all these on a minimum of drawing area. Perhaps
the most important criteria is edge crossings minimization, because crossed
edges make the relations in the representation difficult to identify. The ideal
output would be the one with no edge crossings at all.

Graphs that can be represented in a standard way on a plane surface with
no edge crossings are called planar graphs [15]. There are efficient algorithms
that produce representations with no edge crossings for planar graphs [1].
Unfortunately, most of the graphs that appear in real life models are not
planar. Thus, most of these graphs cannot be represented in a standard way
without edge crossings. There are algorithms for minimizing edge crossings
in non planar graphs, but the general problem of representing a non-planar
graph in a standard way that minimizes edge crossings is NP-hard [7].

However, representing non planar graphs nicely is a common problem in

Visualizing graphs using an ortho-confluent system 137

many domains. For example, in software visualization there are diagrams for
representing application architecture, class diagrams, method calls, data flow
processes, object interactions. In these diagrams the components, the entities
or the objects are drawn as simple shapes: circles, squares, triangles, etc.

An important advantage of confluent representations is that in such di-
agrams we can easily identify source and destination nodes for the edges
that share a common portion. These common structures could indicate in
a method-call diagram separate methods that can be joined together for ef-
ficiency. Similarly, structures in which many sources communicate all with
many destinations could indicate the need for refactoring or could offer new
perspectives for changing the software design.

The navigation rules in a web application are represented in Fig. 1 in a
standard way and in a confluent manner.

(a) in a standard way (b) in a confluent way

Figure 1: Two representations of a web site navigation rules

Other applications for graph visualization also include different airline maps,
subway maps, social networks, genealogy. We want to obtain this kind of
representations automatically. Thus, we need efficient algorithms to generate
software diagrams or maps that preserve the relations in the model and at the
same time the output is pleasant for the human eye.

3 Existing work

M. Dickenson, D. Eppstein, M. Goodrich, and J. Meng introduced [4] the con-
cept of confluent representations as a way of visualizing non planar diagrams
in a planar way and presented algorithms that output confluent representa-
tions for both directed and undirected graphs, mainly for graphs that appear

138 1. Honciue, C. Croitoru

frequently in software visualizations.

The concept is quite simple: some edges are merged together forming “tracks”
so that their intersections become overlapping paths. The resulting graphs are
easier to comprehend, yet keeping a high degree of connectivity information.
Some airline companies already use these confluent representations for dis-
playing route maps. Also, similar diagrams are present in surface topology.

It is well-known that every non-planar graph contains a subgraph homeo-
morphic to the complete graph of five vertices, Ks, or the complete bipartite
graph between two sets of three nodes, K33 [15]. On the other hand, every Ky
or Ky, m admits a confluent representation as it is indicated in Fig. 2.

Figure 2: Confluent representations for K3 3 and Ks

A curve is locally-monotone if it contains no self intersections and no sharp
turns. Confluent representations are a way of drawing graphs on a plane
surface by merging edges into paths that are unions of locally-monotone curves.
An undirected graph G is confluent if and only if there exists a drawing A such
that:

e There is a one-to-one mapping between the vertices in G and A, so that,
for each vertex v € V(G), there is a corresponding vertex v’ € A, which
has a unique point placement in the plane. In other words, there is a
bijective function between the vertices in G and A.

e There is an edge (vi,v;) € E(G) if and only if there is a locally-monotone
curve e’ connecting v; and v]f in A.

e A is planar. That is, while locally-monotone curves in A can share
overlapping portions, no two of them can cross.

In a confluent representation A, a confluence point is defined as the point
in plane, where two or more locally-monotone curves are merged together.

Directed confluent representations are defined similarly, except that in such
drawings the locally-monotone curves are directed and the tracks formed by
union curves must be oriented consistently.

Visualizing graphs using an ortho-confluent system 139

There are two important visual elements that are used in confluent repre-
sentations: traffic circles and switches. A switch is a common point for two
or more curves or a point in which these curves change direction. A traffic
circle could be defined as a confluent representation of a clique so that all the
locally-monotone curves share a common portion with a circular track. This
way, the clique property is preserved, that is any node is reachable from any
other node (Fig. 3). Traffic circles partially solve the crossing edges prob-
lem, offering a simplified view of the representation and also a suggestive way
of representing multiple connections between nodes. For example, many im-
portant cities reduced the traffic problems by eliminating cross intersections,
replacing them with traffic circles.

Figure 3: A switch and a traffic circle (representing Ks)

Although testing the planarity of a graph can be done in linear time, the
problem of deciding whether a graph has a confluent representation is quite
difficult. The main idea of the algorithm that outputs a confluent represen-
tation for a graph G is to find all the clique and biclique subgraphs of G and
replace them with traffic circles. This algorithm applies especially on sparse
graphs. It has been shown that the time complexity of this algorithm is O(mn).

Another important result is that there are large classes of non-planar graphs
that can be drawn in a planar way using the confluent approach. These classes
are:

e interval graphs;

e complements of trees;

e cographs;

e complements of n-cycles.

For example, a complement of a tree or an interval graph admits a confluent
representation even though they are non planar graphs. The proof for each
confluence theorem for the graph classes above is done especially by construc-
tion. Still, it has been demonstrated that there are some graphs that cannot

140 1. Honciue, C. Croitoru

be drawn in a confluent way [4]. Among these we have the 4-dimensional cube,
a certain subgraph of the Petersen graph and the Petersen graph itself. The
subgraph obtained by eliminating a node from the Petersen graph is the small-
est non-confluent graph we know. Also, if we divide each edge of a graph by
adding a new node, the resulted graph is non-confluent. Similarly, by adding a
node on each edge of a non-planar graph and connecting it to both endpoints
of that edge, the result is also non-confluent. In general, all the chordal graphs
are not confluent.

In 2005, David Eppstein, Michael Goodrich and Jeremy Yu Meng introduced
delta-confluent drawings [6]. Delta-confluent graphs are a generalization of
tree-confluent graphs. These classes of graphs and distance-hereditary graphs,
a well-known class of graphs, coincide. The idea of tree-confluent graphs was
published by Hui, Schaefer and Stefankovi¢ [10]. A graph is tree-confluent if
and only if it is represented by a train track system which is topologically a
tree. It is also shown in their paper that the class of tree-confluent graphs is
equivalent to the class of chordal bipartite class.

e A A-junction is a structure where three paths are united in three distinct
points. Each of these points is called a junction port.

e A A-junction is a structure where two of the three paths in a A-junction
are disconnected. The two paths that are disconnected are called tails
and the remaining one is called head.

Figure 4: A A-junction (left) and a A-junction (right)

A A-confluent drawing is a confluent drawing in which each junction is either
a A-junction or a A-junction and if we replace every junction in the drawing
with a new vertex, the result is a tree.

4 Ortho-confluence

We can define ortho-confluence similarly to confluent representations. We say
that a graph G is ortho-confluent if and only if there is a representation A

Visualizing graphs using an ortho-confluent system 141

such that:

e There is a one-to-one mapping among the vertices in G and A, so that,
for each vertex v € V(G), there is a corresponding vertex v’ € A, which
has a unique point placement in the plane. In other words, there is a
bijective function between the vertices in G and A.

e There is an edge (vi,v;) € E(G) if and only if there is a locally-monotone
curve e’ connecting v{ and v]f in A.

e A is planar. That is, while locally-monotone curves in A can share
overlapping portions, no two of them can cross.

e The confluence points from any subset of curves in A must be positioned
on either a vertical or a horizontal axe.

The graph classes that can be drawn both simply confluently and ortho-
confluently are those in which the confluence points can be positioned on
a grid. The distance between grid lines is the smallest distance between con-
fluence points for the represented graph. Graph classes such as n-cycles com-
plements, path complements, tree complements and interval graphs can all be
represented ortho-confluently. Also, A-confluent graphs can be represented in
an ortho-confluent manner. In general, any non-planar graph that admits a
confluent representation can also be drawn ortho-confluently by applying some
minor modifications:

e Traffic circles, A-junctions, A-junctions and other predefined confluence
structures should be treated as nodes on a grid when representing them.

e The tangents in the endpoints of each smooth curve should form a 90
degrees angle.

However, there are some important elements that define an ortho-confluent
representation. We can consider nodes in an ortho-confluent representation
as being parent nodes and son nodes. The parent nodes are traversed by
two tracks: a vertical track and a horizontal track that together form a local
coordinate system. These tracks separate the drawing surface in four distinct
quadrangles. Depending on the positioning of the son node in one of these
four quadrates, there are 8 cases in which the son node can be confluently
connected with its parent (Fig. 5(a)). In order to represent the tracks we used
Bézier curves like in Fig. 5(b) (the control points are chosen at three quarters
from the son-track distance).

142 1. Honciue, C. Croitoru

Confluence point

(a) confluently attaching son to par- (b) horizontal confluence (left) and verti-
ent cal confluence (right)

Figure 5: The ortho-confluent system

Having a graph that does not contain large cliques, the algorithm that
outputs an ortho-confluent representation has the following steps:

1. Find a parent node. This node is one of the two endpoints of the longest
edge in the graph.

2. Apply a BFS on the graph and maintain an order list (the node’s order
given by the BFS) and a parent list (containing for each node his parent
in BFS).

3. Confluently attach each node to his parent, in the order given at step 2.

4. Maintain two lists — processed and confluencePoints — that contain, for
each node in the graph, whether it was included in the ortho-confluent
representation and its confluence point with the vertical or the horizontal
track of the parent.

5 Implementation issues

At the moment, there is no commercial graph editor to offer the possibility
of representing graphs in a confluent layout. The application we developed in
order to illustrate ortho-confluence representation is called ConfluentViz. The
main purpose of this tool is to enable users to edit graphs and also to generate
aesthetically pleasant representations for different graph classes: trees, graphs
that contain circuits, graphs that contain large cliques and bicliques.

Visualizing graphs using an ortho-confluent system 143

The application is developed in C# programming language and uses a free,
open source system for designing diagrams and 2D user interface applica-
tions — Piccolo.NET. This has monolithic [3] class architecture: it primarily
uses compile-time inheritance to extend functionality instead of using run-
time composition to extend functionality. It offers the possibility of designing
applications that require Zoomable User Interface (ZUI) and animations. It
is developed for the .NET framework 2.0 and it is based on the classes and
methods collection in GDI+ (Graphics Device Interface) for representing geo-
metric shapes in .NET. We extended this system obtaining a graph editor with
confluent layout creation support. The main functionalities of ConfluentViz
are:

graph editing;

ortho-confluent representation;

XML storage for graphs;

obtaining JPEG or PostScript images from the actual representations.

The graph classes that can be represented confluently using ConfluentViz are:
trees, forests, graphs containing circuits, graphs containing large cliques or
bicliques. Moreover, this application offers the possibility to create a confluent
layout automatically, after editing the graphs, or in an assisted manner.

An example of an ortho-confluent representation for an ordinary graph is
presented below in Fig. 6. The second graph is a valid confluent representa-
tion of the first one, because the connections between nodes (represented by
straight lines in the first case and smooth curves in the second case) are pre-
served. We can see that we can reach nodes 6 and 3 from node 5, by traversing
the horizontal track that connects parent node with son nodes. The same is
for nodes 4, 6 and 3. Similarly, node 5 cannot be reached from node 4 because
the track that connects them is not a smooth one. All the curves are locally
monotone, that is they do not have sharp turn backs or crossings.

@=:f7‘@_ o ®

S \ .
—— H:;_ L .
s /
- S B\ .’
. a/ [I ©)
=0 voe o
(a) the standard representation (b) the ortho-confluent representation

Figure 6: A graph represented in a standard way and in an ortho-confluent
way

144 1. Honciue, C. Croitoru

Algorithm 1 offers an ortho-confluent representation for trees and forests
and it also uses BFS. We can mention that trees are planar graphs, thus they
admit a confluent representation. The complexity of the algorithm is O(n),
where n is the number of nodes in the graph, and this is because we use BSF
and adjacency lists. An example of an ortho-confluent representation for a tree
is given in Fig. 7. We obtained good results using this algorithm especially on
trees that have large degree nodes: the incident edges are better distinguished
when they are represented as Bézier curves and merged together in confluence
points.

Algorithm 1 ConfluentComponentTree(g)

1. rootIndex <- MaxDegreeNode(g) //keep the max. degree vertex
bfs <- BreadthFirstSearch(g, rootIndex)

orderBFS<- bfs.order // keep the order of the nodes in BFS
parentsBFS<-bfs.parents // keep the parent of each node in
the BFS

Sw N

5 foreach i=0,VerticesCount

6. parentIndex <- orderBFS[i]

7. node <- editor.nodeLayer [orderBFS[i]];

8 if (parentIndex >= 0) then

9. parent <- editor.nodelayer [parentIndex];
10. Merge (parent, node);

11. endif

12. end foreach

(a) the standard representation (b) the ortho-confluent represen-
tation

Figure 7: A tree represented in a standard way and in an ortho-confluent way

Cliques are complete subgraphs of a graph. In order to obtain a confluent
representation for cliques we have to:

Visualizing graphs using an ortho-confluent system 145

1. place each vertex of the clique on the support circle, so that we obtain
a regular polygon,

2. in the middle of this support circle represent a traffic circle,

3. determine the confluence points coordinates (the intersection of the lines
that unite the middle of each polygon edge and the center of the support
circle with the traffic circle),

4. draw the tracks (connect each node with the closest confluence point
determined at step 3).

In Fig. 8(b) we can see a traffic circle in the middle that replaces a part of
the crossing edges. This traffic circle in not an actual node in the graph, it
is a structure that has a visual role, facilitating the confluent representation.
Bicliques are other structures that can be represented confluently. Similar
to clique’s case, their usual representation can have many edge crossings that
make the relation in the drawing hard to identify. In order to obtain a confluent
representation for bicliques we have to follow the next set of steps:

—_

. identify the 2 partition sets of the biclique subgraph using BFS,

2. determine the largest partition set and the node that has the highest y
coordinate in this partition,

3. align the centers of the nodes in the largest partition vertically,
4. determine the middle nodes of the two partitions,

5. align the middle nodes horizontally,

6. align the nodes vertically in the smallest partition,

7. connect each vertex in the two partition sets with the middle of the line
that unites the nodes determined at step 4.

An example of a biclique that was represented in a confluent manner using
the above set of steps is given in Fig. 9.

146 1. Honciue, C. Croitoru

(a) the standard representa- (b) the ortho-
tion confluent representa-
tion

Figure 8: K5 represented in a standard way and in an ortho-confluent way

(a) the standard repre- (b) the ortho-confluent
sentation representation

Figure 9: K4 4 represented in a standard way and in an ortho-confluent way

Having an algorithm that outputs a confluent representation for structures
like cliques and bicliques, we can easily obtain a confluent representation for
a non-planar graph that contains large cliques or bicliques.

6 Further work

At the moment, ConfluentViz application does not use a planarity test. This
would be a nice feature to have if we want to implement a general algorithm
that outputs a confluent representation for any non-planar graph, similarly to
HeuristicDrawUndirected algorithm presented previously.

Related to ortho-confluence, we saw that this is a particular type of conflu-

Visualizing graphs using an ortho-confluent system 147

ent representation that introduces the notion of local orthogonal coordinate
system. It would be interesting to determine which type of confluent repre-
sentation produces better results for different graph classes. Moreover, having
a very large graph, with a very complicated structure, we could use together
different confluent techniques to produce a confluent representation.

There are also other types of graphs on which we can successfully apply
confluent techniques. For example, directed hypergraphs [8] are a general-
ization for directed graphs and they can model binary relations among the
subsets of a given set. These types of relations are common in different ar-
eas in Computer Science such as: data base systems, expert systems, paral-
lel programming, scheduling, routing in dynamic networks, data mining and
bioinformatics. The edges of the directed graph are called hyperarcs and they
connect distinct subsets of nodes. A solution for visualizing the hypergraphs
could be confluent representation. In this case, the arcs that form a hyperarc
are merged together in a confluence point (grouping origin and destination of
a hyperarc).

7 Conclusion

In this article, we presented a new method of visualizing different graph cat-
egories called confluent representation. This can be very useful in software
visualization, topology, airline maps and subway maps or in designing site
navigation rules. We introduced ortho-confluence and we identified some effi-
cient algorithms that output aesthetic drawings for different classes of graphs.
The results obtained with ConfluentViz application satisfy the main aesthetic
criteria for graph visualization.

References

[1] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Graph drawing: algo-
rithms for the visualization of graphs, Prentice Hall, 1998. = 136

[2] B. B. Bederson, Piccolo.NET: a scalable structured graphics toolkit,
Microsoft Faculty Summit, August 2, 2004.

[3] B.B. Bederson, J. Grosjean, J. Meyer, Toolkit Design for Interactive Struc-
tured Graphics, IEEE Transactions on Software Engineering, 30, 8 (2004)
535-546. = 143

http://www.dia.uniroma3.it/~compunet/www/view/person.php?id=gdb
http://www.it.usyd.edu.au/~peter/
http://www.cs.brown.edu/~rt/
http://www.utdallas.edu/~tollis/
http://www.prenticehall.com/
http://www.cs.umd.edu/~bederson/
http://research.microsoft.com/en-us/events/fs2004/default.aspx
http://www.cs.umd.edu/~bederson/
http://www2.computer.org/portal/web/csdl/transactions/tse#1

148 1. Honciue, C. Croitoru

[4] M. T. Dickerson, D. Eppstein, M. T. Goodrich, J. Y. Meng, Confluent
drawings: visualizing non-planar diagrams in a planar way, Proc. 11th Int.
Symp. Graph Drawing (GD 2003), Lecture Notes in Computer Science,
2912, 2003, pp. 1-12. = 135, 137, 140

[5] D. Eppstein, M. T. Goodrich, J. Y. Meng, Confluent layered drawings,
Proc. 12th Int. Symp. Graph Drawing (GD 2004), Lecture Notes in Com-
puter Science (ed. J. Pach), 3383, 2004, pp. 184-194.

[6] D. Eppstein, M. T. Goodrich, J. Y. Meng, Delta-confluent drawings, Proc.
13th Int. Symp. Graph Drawing (GD 2005), Lecture Notes in Computer
Science (eds. P. Healy, N. S. Nikolov), 3843, 2006, pp. 165-176. = 140

[7] M. R. Garey, D. S. Johnson, Crossing number is NP-complete. SIAM J.
Algebraic Discrete Methods, 4, 3 (1983) 312-316. = 136

[8] A. L. P. Guedes, L. Markenzon, Directed Hypergraph Planarity, Technical
Report RT-DINF 003/2001, Departamento de Informtica — UFPR, Decem-
ber 2001. = 147

[9] M. Hirsch, H. Meijer, D. Rappaport, Biclique edge cover graphs and
confluent drawings, Proc. 14th Int. Symp. Graph Drawing (GD 2006),
Lecture Notes in Computer Science, 4372, 2007, pp. 405-416. =

[10] P. Hui, M. Schaefer, D. Stefankovi¢, Train tracks and confluent draw-
ings, Proc. 12th Int. Symp. Graph Drawing (GD 2004), Lecture Notes in
Computer Science (ed. J. Pach), 3383, 2004, pp. 318-328. = 140

[11] M. Jiinger, P. Mutzel, Graph drawing software, Springer-Verlag, 2003. =
136

[12] M. Kaufmann, D. Wagner, Drawing graphs — methods and models,
Lecture Notes in Computer Science Tutorial, 2025, Springer-Verlag, 2001.
= 136

[13] T. Nishizeki, S. Rahman, Planar graph drawing, World Scientific, 2004.
= 136

[14] K. Sugiyama, Graph drawing and applications for software and knowledge
engineers, World Scientific, 2002. = 136

[15] W. T. Tutte, C. St. J. A. Nash-Williams, Graph theory, Cambridge Uni-

versity Press, 2001. = 136, 138) ,
Received: April 4, 2009

http://www.ics.uci.edu/~eppstein/
http://www.ics.uci.edu/~goodrich/
http://www.springerlink.com/computer-science/
http://www.ics.uci.edu/~eppstein/
http://www.ics.uci.edu/~goodrich/
http://www.springerlink.com/computer-science/
http://www.cims.nyu.edu/~pach/
http://www.ics.uci.edu/~eppstein/
http://www.ics.uci.edu/~goodrich/
http://www.springerlink.com/computer-science/
http://cm.bell-labs.com/cm/ms/former/mrg/
http://www.research.att.com/~dsj/
http://www.ufpr.br/portal/
http://www.springerlink.com/computer-science/
http://people.cs.uchicago.edu/~stefanko/
http://www.springerlink.com/computer-science/
http://www.cims.nyu.edu/~pach/
http://www.springerlink.com/home/main.mpx
http://www.springerlink.com/computer-science/
http://www.springerlink.com/home/main.mpx
http://www.nishizeki.ecei.tohoku.ac.jp/nszk/nishi/nishi.html
http://www.buet.ac.bd/cse/faculty/facdetail.php?id=saidurrahman
http://www.worldscientific.com/
http://www.jaist.ac.jp/~sugi/
http://www.worldscientific.com/
http://en.wikipedia.org/wiki/W._T._Tutte
http://www.gap-system.org/~history/Biographies/Nash-Williams.html
http://www.cambridge.org/emea/default.asp

	1 Introduction
	2 Motivation and problem description
	3 Existing work
	4 Ortho-confluence
	5 Implementation issues
	6 Further work
	7 Conclusion

