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Abstract. In this paper, we find the necessary and sufficient condi-

tions, inclusion relations for Poisson distribution series K(m,z) = z +
o0

> [T:ii;;!e*mzTL to be in the subclasses S(k,A) and C(k,A) of analytic
ne

functions with negative coefficients. Further, we obtain necessary and

sufficient conditions for the integral operator G(m,z) = gwdt to

be in the above classes.

1 Introduction and definitions

Let A denote the class of the normalized functions of the form
o0
flz) =z+ ) anz", (1)
n=2

which are analytic in the open unit disk &/ = {z € C : |z| < 1}. Further, let T
be a subclass of A consisting of functions of the form,

flz) =z— ) lanlz", z€lU. (2)
n=2
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A function f of the form (2) is in S(k,A) if it satisfies the condition

zf'(z) 1
(1=A)f(z)+Azf!(z)

zf!(z)
TN T

<k, 0<k<1,0<A<]l,zel)

and f € C(k,A) if and only if zf’ € S(k,A). The class S(k,A) was introduced
by Frasin et al. [3].

We note that S(k,0) = S(k) and C(k,0) = C(k), where the classes S(k) and
C(k) were introduced and studied by Padmanabhan [9] (see also, [5], [8]).

A function f € A is said to be in the class RT(A,B),t € C\{0}, -1 < B <
A < 1, if it satisfies the inequality

f(z) =1

A B _Blrg_1| - *€“

This class was introduced by Dixit and Pal [2].
A variable x is said to be Poisson distributed if it takes the values 0,1, 2, 3,...
with probabilities e™™, me;!m, mz%, mse;—lm,... respectively, where m is

called the parameter. Thus

T,—Mm
p(xzr):mj L T=0,1,2,3,....

Very recently, Porwal [10] (see also, [6, 7]) introduce a power series whose
coefficients are probabilities of Poisson distribution

0 n—1

m
IC(TTI,Z) :Z‘F;m_])!e

AR zelU,
where m > 0. By ratio test the radius of convergence of above series is infinity.
In [10], Porwal also defined the series

n—1

F(m,z) =2z— K(m,z) :z—Z m

—m,_n
zme z, zeU.

Using the Hadamard product, Porwal and Kumar [12] introduced a new
linear operator Z(m,z) : A — A defined by

mn-

1
I e Manz", zelU,

Z(m,z)f =K(m,z) «f(z) =z +
nZz (n—1
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where * denote the convolution or Hadamard product of two series.
Motivated by several earlier results on connections between various sub-
classes of analytic and univalent functions by using hypergeometric functions
(see [1, 4, 13, 14]) and by the recent investigations of Porwal ([10, 12, 11]),
in the present paper we determine the necessary and sufficient conditions for
F(m,z) to be in our new classes S(k,A) and C(k,A) and connections of these
subclasses with RY(A, B). Finally, we give conditions for the integral operator

Gg(m,z) = g@dt to be in the classes S(k,A) and C(k,A).
To establish our main results, we will require the following Lemmas.

Lemma 1 [3] A function f of the form (2) is in S(k,A) if and only if it
satisfies

D (T =A) +Kk(T+A) = (1 =A) (1T —K)lan| < 2k (3)
n=2

where 0 <k <1 and 0 < A < 1. The result is sharp.

Lemma 2 [3] A function f of the form (2) is in C(k,A) if and only if it
satisfies

D nn((T=A) + k(1 +A) = (1 =A)(1 = k)] |an| < 2k (4)

n=2

where 0 <k <1 and 0 < A < 1. The result is sharp.
Lemma 3 [2] If f € R™(A,B) is of the form, then

Tl

|an‘§(A_B)F, neN-—{1}.

The result is sharp.

2 The necessary and sufficient conditions

Theorem 1 Ifm>0,0<k <1 and 0 <A <1, then F(m,z) is in S(k,A)
if and only if
(T=A)+Xk(1+A)me™ < 2k. (5)

Proof. Since
nnn—] Cmn
Flm,z) =z— nE_z me z (6)
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according to (3) of Lemma 1, we must show that

oo n—1
Z[n((1—7\)+k(1+A))+(1—A)(k—1)]%m§2kem. (7)

n=2

Writing n = (n—1) + 1, we have

S (1= A) k(T +A) + (1 =AYk — 1))

n=2

ad m
=) [n =N K1 +A)) + 2K

n=2

n—1 o n—1

m m
(m—2)! +2kn§ 1)

= ((T—=A)+Kk(T+A)me™+ 2k(e™—1).

=[(1=N+k(T+A)] >
n=2

But this last expression is bounded above by 2ke™ if and only if (5) holds. O

Theorem 2 If m>0,0< k<1 and 0 <A <1, then F(m,z) is in C(k,A)
if and only if

(T=A)+ k(T +A)m%e™+ 2(1 + 2k + kA — A)me™ < 2k. (9)

Proof. In view of Lemma 2, it suffices to show that

Zn MK EA) + (1= A= )t < 2ke
Now
Tin[n(ﬂ —A) +k(1T+A)+(1T=A)(k—1)] (21:])' »
i FR(THA) +n(1=A)(k—1)] (?111)'

n=2

Writingn =(n—1)+Tandn? = (m—1)(n—2)+3(n—1)+1, in (10) we see
that

3 (1 =N+ k(1 +A) + (1= A)(k— 1)
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0o mnfl
n; ((1—>\)+k(1+7\))(n_”!
+Z —A) KT+ A)+(1T=A)(k—1)] +Zz —

o0

0 n—1 —
= (=N +k1+A) Y (1’1“_ o 20
n=2 ’

= mn!
2 -
Py
n=2

=((1=A) +k(1+A)m%e™+2(1 + 2k + kA — A)me™ + 2k (e™ —1).

n=2

But this last expression is bounded above by 2ke™ if and only if (9) holds. O

By specializing the parameter A = 0 in Theorems 1 and 2 , we have the
following corollaries.

Corollary 1 If m >0 and 0 < k < 1, then F(m,z) is in S(k) if and only if
(T+k)me™ < 2k. (11)

Corollary 2 If m >0 and 0 < k < 1, then F(m,z) is in C(k) if and only if
(1+Kk)mZe™ + 2(1 + 2k)me™ < 2k. (12)

3 Inclusion properties
Theorem 3 Let m >0, 0 <k <1 and 0 <A< 1. If fe RYA,B), then
Z(m,z)f is in S(k,A) if and only if

(A —B)|T [((1 —AN)+k(1+A)1—e™)

+—“ _Aigk_”m —e ™1+m))| < 2k. (13)

Proof. In view of Lemma 1, it suffices to show that

o0

n—1
3 (T =A) + k(T +A) + (1= A) (k- 1)]% lanl < 2ke™.
o n—1)!
Since f € RY(A, B), then by Lemma 3, we get
A—B)t
lan| < w (14)

n
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Thus, we have

mn71

Z (1+A))+ (]_}\)(k_])]m

n=2
mn—]

<(A—B) |T|Z[“(“ =N kM) + (=N (k=T

> mn! 1T=ANk—-1) & m"
= (A—B)I1| [((1—7\)+k(1+7\));(n_m+ — nz“!]
= (A—B) [((1—7\)+k(1+7\))(em—1)—|—“_Mn(lk_”(em—1—m)].

But this last expression is bounded above by 2ke™ if and only if (13) holds. O

Theorem 4 Let m >0, 0 <k <1 and 0 <A< 1. If fe RYA,B), then
F(m, z)f is in C(k,A) if and only if

(A=B) T I((T=A) + k(1 +A)m +2k(1 —e ™)) < 2k. (15)

Proof. In view of Lemma 2, it suffices to show that

0 n—1

(1 =A) + k(1 +A) + (1 =A)(k=1)] 2>
5 (n—1)!

lan| < 2ke™.
n=

Using (14), we have
n—1

;n[nm SN KA+ (=)= D] anl

- m" (A —B)|1|

Z N+ 4+0) + (1 =N (k= Ny =

_ (A—B)\TIZ[TL(U =N K1 +A) + (1 =Mk =D,

mn—]

(A—B) |T|Z +k(1+7\))+2k](n_])!
0 mn_1 o0 mn—]
= (A= B[ | ((1=A)+K(T+A) ) P 42k ) o

n=2 n=2
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=(A=B)IT((1—=A) + k(T +A))me™+ 2k(e™ —1)].

But this last expression is bounded above by 2ke™ if and only if (15) holds. OJ

By taking A = 0 in Theorems 3 and 4, we obtain the following corollaries.

Corollary 3 Let m >0 and 0 < k < 1. If f € RY(A,B), then Z(m,z)f is in
S(k) if and only if

A=B)d|(1+K(1—e™) + (k—1)

I—e™1+m)| <2k  (16)

Corollary 4 Let m >0 and 0 <k < 1. If f &€ RY(A,B), then Z(m,z)f is in
C(k) if and only if

(A—=B) T [(1+k)m +2k(1 —e ™)] < 2k. (17)

4 An integral operator

In this section, we obtain the necessary and sufficient conditions for the integral
operator G(m,z) defined by

G(m,z) :r Fmb) 4 (18)

0 t
to be in the class C(k,A).

Theorem 5 If m > 0,0 <k <1 and 0 <A < 1, then the integral operator
G(m,z) defined by (18) is in C(k,A) if and only if (5) is satisfied.

Proof. Since
00 e—mmn—1
Ggmyz)=z— ) ———z
n!

n
n=2

then by Lemma 2, we need only to show that

m

> am((1=A) +k(1+A) + (1 =A)(k—1)]
n=2

or, equivalently

3 (1 =N+ k(T +A) + (1= A)(k— 1)) < 2ke™
n=2 n
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From (8) it follows that

0 m
n;[n(u —A)+k(1+2A)+ (1 _M(k_”](n—n!

= ((T=A)+k(1T+A)me™+ 2k(e™ —1)

and this last expression is bounded above by 2ke™ if and only if (5) holds. O

The proof of Theorem 6 (below) is much similar to that of Theorem 5 and
so the details are omitted.

Theorem 6 If m > 0,0 <k <1 and 0 <A < 1, then the integral operator
G(m,z) defined by (18) is in S(k,A) if and only if

(T—=A)(k—1)
m

(T=A) +k(1+A))T—e ™) + (1—e™—me ™) < 2k.

By taking A = 0 in Theorems 5 and 6, we obtain the following corollaries.

Corollary 5 If m > 0 and 0 < k < 1, then the integral operator defined by
(18) is in C(k) if and only if (11) is satisfied.

Corollary 6 If m > 0 and 0 < k < 1,then the integral operator defined by
(18) is in S(k) if and only if

(k=1
m

(T+Kk)(T—e™)+ (1T—e ™ —me ™) < 2k.
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