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Abstract. Let G be an Abelian group with a metric d and E be a
normed space. For any f : G → E we define the Drygas difference of the
function f by the formula

Λf(x, y) := 2f(x) + f(y) + f(−y) − f(x+ y) − f(x− y)

for all x, y ∈ G. In this article, we prove that if Λf is Lipschitz, then there
exists a Drygas function D : G→ E such that f−D is Lipschitz with the
same constant. Moreover, some results concerning the approximation of
the Drygas functional equation in the Lipschitz norms are presented.

1 Introduction

The stability theory of functional equations began with the well-known Ulam’s
Problem [21], concerning the stability of homomorphisms in metric groups:

Problem. Let (G1, ∗), (G2, ?) be two groups and d : G2 × G2 → [0,∞) be a
metric. Given ε > 0, does there exist δ > 0 such that if a function f : G1 → G2
satisfies the inequality

d(f(x ∗ y), f(x) ? f(y)) ≤ δ
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for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ε

for all x ∈ G1?
Ulam’s problem was partially solved by Hyers [14] in 1941 in the context

of Banach spaces with δ = ε. Aoki [1], Z. Gajda [11] and Th.M. Rassias
[17] provided a generalization of the result of Hyers for additive and linear
mappings, respectively, by allowing the Cauchy difference to be unbounded.
Since then many authors have studied the question of stability of various
functional equations (see [9, 15] for the survey of stability results).

Let G and Y be an Abelian group and a Banach space respectively. We say
that a function f : G→ Y satisfies the Drygas equation if

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ G, (1)

and every solution of the Drygas equation is called a Drygas function. The
above equation was introduced in [4] to obtain a characterization of the quasi-
inner-product spaces. The general solution of (1), obtained by Ebanks et al. in
[5] (see also[18]). The stability in the Hyers–Ulam sense of the Drygas equation
has been investigated, for example, in [6, 7, 10, 16, 19, 22].

In Lipschitz spaces the stability type problems for some functional equations
was studied by a number of mathematicians (see, e.g., [3, 8, 20])

In the present paper, we establish the stability problem of (1) in Lipschitz
spaces.

2 Preliminaries

In this section we are going to introduce some basic definitions and notations
needed for further considerations.

Definition 1 [2] Let R be the set of real numbers, E a vector space and S(E)
a family of subsets of E. We say that this family is linearly invariant if

(1) x+ αV ∈ S(E) for x ∈ E, α ∈ R and V ∈ S(E),

(2) V +W ∈ S(E) for V,W ∈ S(E).

Definition 2 Let G be a set, E a vector space and S(E) any linearly invariant
family. By B(G,S(E)) we denote the family

B
(
G,S(E)

)
:= {f : G→ E; Im f ⊂ V for some V ∈ S(E)} .
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It is easy to verify that B(G,S(E)) is a vector space. For any f : G → E,
a ∈ G, where G is a group, we put

fa(x) := f(x+ a), x ∈ G.

Definition 3 [13, 20] Let G be a group, E a vector space, and let S(E) be
a linearly invariant family of subsets of E. We say that B(G,S(E)) admits
a left invariant mean (LIM for short) if there exists a linear operator M :
B(G,S(E)) → E such that

(i) if Im f ⊂ V for some V ∈ S(E), then M[f] ∈ V,

(ii) if f ∈ B(G,S(E)) and a ∈ G, then M[fa] =M[f].

Analogously we can define so-called right invariant mean. For more infor-
mation about spaces which admit LIM see, e.g., [2, 12, 13].

Example 1 Let G be a finite group, let E be a vector space, and let S(E) be
any linearly invariant family of convex subsets of E. Let f ∈ B(G,S(E)) be
arbitrary. We define

M[f] :=
1

|G|

∑
g∈G

f(g).

One can easily check that M is a LIM on B(G,S(E)), where |G| = cardinality
of G.

Definition 4 Let G be a group, E a vector space and let S(E) be a linearly
invariant family. We say that d : G×G→ S(E) is translation invariant if

d(x+ a, y+ a) = d(a+ x, a+ y) = d(x, y), for all x, y, a ∈ G.

The function f : G→ E is d-Lipschitz if for all x, y ∈ G,

f(x) − f(y) ∈ d(x, y).

Definition 5 Let G be a group with a metric d and E a normed space.

a/ We say that w : R+ → R+ is the module of continuity of f : G→ E if for
every δ ∈ R+

d(x, y) ≤ δ⇒ ‖f(x) − f(y)‖ ≤ w(δ) x, y ∈ G.
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b/ A function f : G→ E called a Lipschitz function if there exists an L ∈ R+

such that
‖f(x) − f(y)‖ ≤ Ld(x, y), x, y ∈ G.

The smallest constant L with this property is denoted by lip(f). By Lip(G,E)
we mean the space of all bounded Lipschitz functions with the norm

‖f‖Lip := ‖f‖sup + lip(f).

Moreover, by Lip0(G,E) we denote the space of all Lipschitz functions f : G→
E with the norm defined by the formula

‖f‖Lip0 := ‖f(0)‖+ lip(f).

Finally, we introduce the following remarks.

Remark 1 (i) If E is a vector space and S(E) is a linearly invariant family,
then for every x ∈ E, the set {x} ∈ S(E).
(ii) The family B(G,S(E)) contains all constant functions.

Remark 2 Let (G,+) be a group and E a vector space. Assume that S(E) is
a linearly invariant family such that B(G,S(E)) satisfies the condition LIM or
RIM. If f : G → E is constant, then M[f] = Im f (i.e., if f(x) = c for x ∈ G,
where c ∈ E, then M[f] = c).

Remark 3 Let G be a group with metric d and let E be a normed space. Let
L ∈ R+, and

d(x, y) := Ld(x, y)B(0, 1),

where B(0, 1) is the closed ball with the center at 0 and the radius 1. Then
the function f : G → E is Lipschitz with the constant L if and only if it is
d-Lipschitz.

3 Lipschitz approximation of Eq. (1)

In this section, we can prove one of the main results of this paper.

Theorem 1 Let G be an Abelian group and E a vector space. Assume that
S(E) is a linearly invariant family such that B(G,S(E)) admits LIM. Let f :
G → E be an arbitrary function. If Λf(·, y) : G → E is d-Lipschitz for every
y ∈ G, then there exists a Drygas function D : G→ E such that f −D is 1

2d-

Lipschitz. Moreover, if Im(Λf) ⊂ V for some V ∈ S(E), then Im(f−D) ⊂ 1
2V.
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Proof. For every a ∈ G we define Fa : G→ E by

Fa(y) :=
1

2
f(a+ y) +

1

2
f(a− y) −

1

2
f(y) −

1

2
f(−y), y ∈ G.

We will prove that Fa belongs to B(G,S(E)). In fact, we have for y, a ∈ G,

Fa(y) =
1

2
Λf(0, y) −

1

2
Λf(a, y) + f(a) − f(0).

So, Fa ∈ B(G,S(E)) for a ∈ G.
According to the assumptions, there exists a linear operatorM : B(G,S(E)) →

E such that

(i) Im(g) ⊂ V ⇒M[g] ∈ V,

(ii) if g ∈ B(G,S(E)) and ga : G→ E for a ∈ G is defined by

ga(x) := g(a+ x), x ∈ G,

then ga ∈ B(G,S(E)) and M[ga] =M[g].

Consider the function D : G→ E given by

D(x) :=M[Fx], for x ∈ G.

We will verify that f−D is 1
2d-Lipschitz.

In view of our assumptions it follows that 1
2Λf(·, y) is 1

2d-Lipschitz for every
y ∈ G, which means that

1

2
Λf(x, y) −

1

2
Λf(z, y) ∈ 1

2
d(x, z) (2)

for all x, z ∈ G. Let l : G→ E be the function

l(x) := f(x) −M[Fx] = f(x) −D(x), x ∈ G,

and for any x ∈ G, Rx : G→ E be defined by

Rx(y) := f(x), y ∈ G.

Therefore, applying Remarks 1 and 2, one gets for all x ∈ G,

l(x) = f(x) −M[Fx] =M[Rx − Fx]

=M
[
f(x) +

1

2
f(·) + 1

2
f(−·) − 1

2
f(x+ ·) − 1

2
f(x− ·)

]
=M

[
1

2
Λf(x, ·)

]
.

(3)
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Immediately from (2) and (3) we obtain

l(x) − l(z) =M

[
1

2
Λf(x, ·) − 1

2
Λf(z, ·)

]
, x, z ∈ G. (4)

For any x, z ∈ G, we define A(x,z) : G→ E by

A(x,z)(y) :=
1

2
Λf(x, y) −

1

2
Λf(z, y), y ∈ G.

By (2) we have ImA(x,z) ⊂ 1
2d(x, z), which together with (4) implies

l(x) − l(z) =M[A(x,z)] ∈
1

2
d(x, z),

for all y, z ∈ G. This proves that

(f(x) −D(x)) − (f(z) −D(z)) ∈ 1
2
d(x, z), for all x, z ∈ G,

i.e., f−D is 1
2d-Lipschitz.

Now we will verify that D is a Drygas function. We have the equalities

D(x+ z) +D(x− z) =M[Fx+z(y)] +M[Fx−z(y)]

=M
[1
2
f(x+ z+ y) +

1

2
f(x+ z− y) −

1

2
f(y) −

1

2
f(−y)

]
=M

[1
2
f(x− z+ y) +

1

2
f(x− z− y) −

1

2
f(y) −

1

2
f(−y)

]
and

2D(x) +D(z) +D(−z) = 2M[Fx(y)] +M[Fz(y)] +M[F−z(y)]

= 2M
[1
2
f(x+ y) +

1

2
f(x− y) −

1

2
f(y) −

1

2
f(−y)

]
+M

[1
2
f(z+ y) +

1

2
f(z− y) −

1

2
f(y) −

1

2
f(−y)

]
+M

[1
2
f(−z+ y) +

1

2
f(−z− y) −

1

2
f(y) −

1

2
f(−y)

]
= M

[1
2
f(x+ y+ z) +

1

2
f(x− y+ z) −

1

2
f(y+ z) −

1

2
f(−y+ z)

]
+M

[1
2
f(x+ y− z) +

1

2
f(x− y− z) −

1

2
f(y− z) −

1

2
f(−y− z)

]
+M

[1
2
f(z+ y) +

1

2
f(z− y) −

1

2
f(y) −

1

2
f(−y)

]
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+M
[1
2
f(−z+ y) +

1

2
f(−z− y) −

1

2
f(y) −

1

2
f(−y)

]
= D(x+ z) +D(x− z).

It follows that D is a Drygas function.
To finish the proof assume that Im(Λf) ⊂ V for some V ∈ S(E). Then we

have Im
(
1
2Λf

)
⊂ 1

2V. In view of (3) we get f(x) − D(x) = M
[
1
2Λf(x, ·)

]
∈

1
2V for all x ∈ G. Thus Im(f − D) ⊂ 1

2V, which completes the proof of the
theorem. �

Corollary 1 Let G be an Abelian group and (E, ‖.‖) a normed space. Assume
that S(E) is a family of closed balls such that B(G,S(E)) admits LIM. Let
f : G→ E and g : G→ R+ satisfy the inequality

‖Λf(x, y) −Λf(z, y)‖ ≤ g(x− z) (5)

for all x, y, z ∈ G. Then there exists a Drygas function D : G→ E such that

‖(f−D)(x) − (f−D)(y)‖ ≤ (1/2)g(x− y) (6)

for all x, y ∈ G, where (f−D)(x) ≡ f(x) −D(x).

Proof. We put
d(x, y) := g(x− y)B(0, 1), x, y ∈ G

where B(0, 1) is the closed unit ball with center at zero. By (5) we obtain

Λf(x, y) −Λf(z, y) ∈ d(x, z), x, y, z ∈ G,

which means that Λf(·, y) is a d-Lipschitz. Therefore, from Theorem 1 there
exists a Drygas function D : G → E such that f − D is (1/2)d-Lipschitz. By
the definition of d we get the desired result. �

4 Approximation with Lipschitz norm

We shall introduce the following definition (see also [20]).

Definition 6 A group (G,+, d, d̃ ) is said to be a metric pair if

(1) (G,+, d) is an Abelian metric group,

(2) d̃ : (G×G)× (G×G) → R+ is a metric in G×G,
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(3) d̃((a, x), (a, y)) = d̃((x, a), (y, a)) = d(x, y) for x, y, a ∈ G.

The following lemma is needed to establish the next results.

Lemma 1 Let (G,+, d, d̃ ) be a metric pair and (E, ‖ · ‖) a normed space.
Assume that S(E) is a family of closed balls such that B(G,S(E)) admits LIM.
Let f : G → E be a function and w : R+ → R+ be the module of continuity of
the function Λf : G×G→ E. Then there exists a Drygas function D : G→ E

such that the function (1/2)w is the module of continuity of f−D. Moreover,
if Λf ∈ B(G×G,S(E)), then

‖f−D‖sup ≤ (1/2)‖Λf‖sup. (7)

Proof. Define d : G×G→ S(E) by the formula

d(x, y) :=

(
inf

t≥d(x,y)
w(t)

)
B(0, 1),

where B(0, 1) is the closed unit ball with center at zero. Since w is the module
of continuity of Λf(·, y) for y ∈ G, we have

‖Λf(x, y) −Λf(z, y)‖ ≤ inf
t≥d̃((x,y),(z,y))

w(t), x, y, z ∈ G. (8)

This implies that

‖Λf(x, y) −Λf(z, y)‖ ≤ inf
t≥d(x,z)

w(t), x, y, z ∈ G, (9)

i.e.,
Λf(x, y) −Λf(z, y) ∈ d(x, z), for x, y, z ∈ G.

This shows that Qf(·, y) is d-Lipschitz.
Now, in view of Theorem 1, there exists a Drygas function D : G→ E such

that f−D is (1/2)d-Lipschitz and consequently

(f(x) −D(x)) − (f(y) −D(y)) ∈ (1/2)d(x, y), x, y ∈ G.

This is equivalent to the condition

‖(f(x) −D(x)) − (f(y) −D(y))‖ ≤ inf
t≥d(x,y)

(1/2)w(t), x, y ∈ G.

This shows that (1/2)w is the module of continuity of f−D.
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Finally, assume that Λf ∈ B(G × G,S(E)). Thus the following set is well
defined:

W := B (0, ‖Λf‖sup) with Im(Λf) ⊂W.

Thus from Theorem 1, we get

Im(f−D) ⊂ (1/2)W

which implies the inequality (7) and completes the proof. �

In the remaining part of the paper, we investigate two results about the sta-
bility of the generalized quadratic functional equation in the Lipschitz norms.

Theorem 2 Let (G,+, d, d̃ ) be a metric pair and (E, ‖ · ‖) a normed space.
Assume that S(E) is a family of closed balls such that B(G,S(E)) admits LIM.

(i) Let f : G→ E be a function satisfying the condition Λf ∈ Lip(G×G,E).
Then there exists a Drygas function D : G→ E such that

‖f−D‖Lip ≤ (1/2)‖Λf‖Lip. (10)

(ii) Let f : G→ E be a function satisfying the condition Λf ∈ Lip0(G×G,E).
Then there exists a Drygas function D : G→ E such that

‖f−D‖Lip0 ≤ (1/2)‖Λf‖Lip0 . (11)

Proof. (i) Consider w : R+ → R+ by the formula

w(x) := lip(Λf)x, for x ∈ R+.

Since Λf ∈ Lip(G×G,E), we obtain

‖Λf(x, y) −Λf(t, z)‖ ≤ lip(Λf)d̃((x, y), (t, z))

= w
(
d̃((x, y), (t, z))

)
, x, y, t, z ∈ G,

which means that w is the module of continuity of Λf. Thus, by Lemma 1,
there exists a Drygas function D : G → E such that (1/2)w is the module of
continuity of f−D. Thus we have the inequality

‖(f(x) −D(x)) − (f(y) −D(y))‖ ≤ (1/2)w(d(x, y))

= (1/2)lip(Λf)d(x, y), x, y ∈ G.
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This inequality implies that f−D is a Lipschitz function and

lip(f−D) ≤ 1
2

lip(Λf). (12)

Taking into account thatΛf ∈ Lip(G×G,E), we have alsoΛf ∈ B(G×G,S(E)).
Therefore by Lemma 1 we obtain

‖f−D‖sup ≤
1

2
‖Λf‖sup, (13)

that is, f −D ∈ Lip(G,E). Finally, from (12) and (13), we obtain the desired
result.

(ii) By the same reasoning as in the proof of (i) we can prove that there
exists a Drygas function D : G→ E such that f−D is Lipschitz and

lip(f−D) ≤ 1
2

lip(Λf).

Since D(0) = 0, we obtain

‖f(0) −D(0)‖ = ‖f(0)‖ = (1/2)‖Λf(0, 0)‖.

Thus

‖f−D‖Lip0 = ‖f(0) −D(0)‖+ lip(f−D)

≤ 1
2
‖Λf(0, 0)‖+ 1

2
lip(Λf)

=
1

2
‖Λf‖Lip0 ,

which completes the proof. �
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