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Abstract. New sufficient conditions involving the properties of analytic
functions to belong to the class of Carathéodory functions are inves-
tigated. Certain univalence and starlikeness conditions are deduced as
special cases of main results.

1 Introduction

Let H be the class of analytic functions in the open unit disk D := {z ∈
C : |z| < 1}. Let A denote the class of all the functions f ∈ H that satisfy
the normalization f(0) = 0, f ′(0) = 1. Let S denote the subclass of A con-
sisting of univalent functions. The function f ∈ A satisfying the conditions
Re{zf ′(z)/f(z)} > 0, Re{1 + zf ′′(z)/f ′(z)} > 0 belong to the familiar classes of
starlike and convex functions denoted by S∗ and C respectively. Let f and g
be analytic in D, then we say that f is subordinate to g in D (written f ≺ g)
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if there exists a Schwarz function w(z),analytic in D with w(0) = 0 such that
f(z) = g(w(z)), (z ∈ D). In particular, if the function g is univalent in D,
then the subordination is equivalent to f(0) = g(0) or f(D) ⊂ g(D). Let us
denote by Q the set of functions q that are analytic and injective on D̄\E(q),
where E(q) = {ζ ∈ ∂D : limz→ζ q(z) = ∞}, and are such that q ′(ζ) 6= 0 for
ζ ∈ ∂D\E(q). Further, the subclass of Q for which q(0) = a be denoted by
Q(a). Let P(α) be a class of functions of the form p(z) = 1 +

∑∞
n=1 pnz

n,

which are analytic in D, we say that p(z) ∈ P(α) if Re{p(z)} > α. We note
that for P(0) := P is the class of Carathéodory functions in D.

The function qc(z) =
√
1+ cz, maps D onto a set which is bounded by the

lemniscate of Bernoulli. That is, qc(D) = {w ∈ C : |w2 − 1| < c}, and the class
S∗(qc) given by S∗(qc) = {f ∈ A : |(zf ′(z)/f(z))2 − 1| < c} (0 < c ≤ 1), has
been briefly discussed in [17]. We consider the class U(λ) of analytic functions
satisfying the following condition, U(λ) := {f ∈ A : |(z/f(z))2f ′(z) − 1| <

λ, 0 < λ ≤ 1}. From [16] it is known that the functions in U(λ) are univalent
if 0 < λ ≤ 1, but not necessarily univalent if λ > 1.

Various sufficient conditions for Carathéodory functions were studied by
authors in [5, 6, 11, 12, 13, 14]. Using differential subordination as a tool,
authors in [13] and [14] obtained sufficient conditions for Carathéodory func-
tions.Recently, Kim et al. [5] obtained sufficient conditions involving the argu-
ment of the function such that the function is Carathéodory. Motivated by the
aforementioned works, in this paper various results involving analytic function
to be Carathéodory are obtained and as a consequence, sufficient conditions
for functions to belong to the classes S∗(qc) and U(λ) are provided. The results
thus obtained generalize and extend certain recent results.

2 Main results

To prove the main results we need the following Lemma.

Lemma 1 [4] Let w be a non constant regular function in D. If |w| attains
its maximum value on the circle |z| = r < 1 at z0, then

z0w
′(z0) = kw(z0),

where k ≥ 1 is a real number.

Lemma 2 [1, 3] Let q ∈ Q(a), and let p(z) = a+anz
n+ · · · be analytic in D

with p(z) 6≡ a and n ≥ 2, if p is not subordinate to q then there exist points
z0 = r0e

iθ0 ∈ D and ζ0 ∈ ∂D\E(q) and an m ≥ n for which p(Dr0) ⊂ q(D),
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1. p(z0) = q(ζ0)

2. Re

{
ζ0q
′′(ζ0)

q′(ζ0)

}
≥ 0 and

∣∣∣∣zp′(z)q′(ζ)

∣∣∣∣ ≤ m,

3. z0p
′(z0) = mζ0q

′(ζ0)

4. Re

{
z0p
′′(z0)

p′(z0)
+ 1

}
≥ mRe

{
ζ0q
′′(ζ0)

q′(ζ0)
+ 1

}

5. Re

{
z20p
′′′(z0)

p′(z0)

}
≥ m2 Re

{
ζ20q
′′′(ζ0)

q′(z0)

}
.

Theorem 1 Let 0 ≤ α < 1, 0 < λ ≤ 1, β, γ, δ, µ ∈ R. For an analytic
function p defined in D with p(0) = 1, if

Re

{
(p(z) − α)λ(µ+ β(p(z) − α) +

γ

p(z) − α
+
δzp ′(z)

p(z) − α
)

}
> g(ε(α, λ), α, λ),

(1)

where

g(u,α, λ) = −uλ+1
(
β+

δ

2(1− α)

)
sin
(λπ
2

)
+ µ cos

(λπ
2

)
uλ

+

(
γ−

δ(1− α)

2

)
sin
(λπ
2

)
uλ−1

and

ε(α, λ) =
µλ cos

(λπ
2

)
+
√
µ2λ2 cos2

(λπ
2

)
+4(λ2−1)

(
β+ δ

2(1−α)

)
(γ− δ(1−α)

2 ) sin2
(λπ
2

)
2(λ+ 1)

(
β+ δ

2(1−α)

)
sin
(λπ
2

)
then p ∈ P(α).

Proof. Define the analytic function p : D→ C as

p(z) =
1+ (1− 2α)w(z)

1−w(z)
, (2)

where w is an analytic function in D with w(0) = 0. Suppose that there exists
a point z0 ∈ D, such that

Re{p(z)} > α for |z| < |z0| and Re{p(z0)} = α, (3)
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then we have

|w(z)| < 1 for |z| < |z0| and |w(z0)| = 1. (4)

By Lemma 1 , we have z0w
′(z0) = kw(z0), where k is a real number with

k ≥ 1. Now,

z0p
′(z0)

2k(1− α)
=

w(z0)

(1−w(z0))2
=
2{Rew(z0) − 1}

|1−w(z0)|4
.

Putting p(z0) = α + iy, we have w(z0) = 1 −
2(1− α)2

(1− α)2 + y2
+ i

2(1− α)y

(1− α)2 + y2

and

z0p
′(z0) = −k

(1− α)2 + y2

2(1− α)
, (5)

which is a non positive real number. Also we observe that for the case 0 < λ < 1

Re

{
(p(z0) − α)

λ
(
µ+ β(p(z0) − α) +

γ

p(z0) − α
+ δ

z0p
′(z0)

p(z0) − α

)}
= Re{β(p(z0) − α)

λ+1 + µ(p(z0) − α)
λ + γ(p(z0) − γ)

λ−1

+ δz0p
′(z0)(p(z0) − α)

λ−1}

= Re

{
β(iy)λ+1 + µ(iy)λ +

(
γ− kδ

(1− α)2 + y2

2(1− α)

)
(iy)λ−1

}
= Re

{(
− β sin

λπ

2
+ iβ cos

λπ

2
− k

δ

2(1− α)

(
sin
λπ

2
− i cos

λπ

2

))
|y|λ+1

+ µ
(

cos
λπ

2
+ i sin

λπ

2

)
|y|λ +

(
γ− kδ

1− α

2

)(
sin
λπ

2
− i cos

λπ

2

)
|y|λ−1

}
=
(
− β sin

λπ

2
− k

δ

2(1− α)
sin
λπ

2

)
|y|λ+1 + µ

(
cos

λπ

2

)
|y|λ

+
(
γ− k

δ(1− α)

2

)(
sin
λπ

2

)
|y|λ−1

≤ −
(
β+

δ

2(1− α)

)
sin

λπ

2
|y|λ+1 + µcos

λπ

2
|y|λ +

(
γ−

δ(1− α)

2

)
sin

λπ

2
|y|λ−1

= g(|y|, α, λ) ≤ max
u∈(0,∞)

g(u,α, λ) = g(ε(α, λ), α, λ),

which is a contradiction to (1). For the case when λ = 1,

Re

{
(p(z0) − α)

(
µ+ β(p(z0) − α) +

γ

p(z0) − α
+ δ

z0p
′(z0)

p(z0) − α

)}
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= Re

{
(p(z0)−α)+

(
µ+ β(p(z0) − α)+

γ

p(z0) − α
−δk

( (1− α)2 + y2

2(1− α)p(z0) − α

))}
≤ Re

{
(iy)µ+ β(iy)2 + γ− δ

((1− α)2 + y2
2(1− α)

)}
= −

(
β+

δ

2(1− α)

)
y2 + γ− δ

(1− α)

2

≤ γ− δ
(1− α)

2
= g(ε(α, 1), α, 1).

This contradicts (1). Hence the proof. �

Remark 1 By taking µ = δ = 1 and β = γ = 0 in Theorem 1, we get the
result obtained in [6, Theorem 2.29].

By taking p(z) = zf ′(z)/f(z) and α = 0 in Theorem 1, we have the following
result:

Corollary 1 For a function f ∈ A and 0 < λ ≤ 1, if

Re

{
(β− δ)

(zf ′(z)
f(z)

)λ+1
+
(
µ+ δ+ δ

zf ′′(z)

f ′(z)

)(zf ′(z)
f(z)

)λ
+ γ

(zf ′(z)
f(z)

)λ−1}
> g(ε(0, λ), 0, λ),

then f ∈ S∗.

Theorem 2 For an analytic function p in D with p(0) = 1 and 0 ≤ α < 1, if

zp ′(z)

(p(z) − α)1/β
6= iδ (6)

for all δ ∈ R, with |δ| ≥ 1 and β =
1

2n− 1
, n ∈ N,

then p ∈ P(α).

Proof. Let

h(z) =
(p(z) − α
1− α

)1/β
.

We note that h is analytic in D, with h(0) = 1. Here p(z) 6= α for z ∈ D,
suppose that there exist a point z1 ∈ D such that p(z1) = α, then z1 is a zero
of multiplicity m ≥ 1 such that

h(z) = (z− z1)
mg(z) (m ∈ N),
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where g(z) is analytic in D and g(z1) 6= 0. Therefore we have

zp ′(z)

(p(z) − α)
= β

( mz

z− z1
+
zg ′(z)

g(z)

)
. (7)

But the imaginary part of right-hand side of (7) can take any value when z
approaches z1. This contradicts (6). Therefore p(z) 6= α, that is h(z) 6= 0.
Suppose that there exist a point z0 ∈ D such that

Re{(h(z))β} > 0 for |z| < |z0| and Re{(h(z0))
β} = 0 (h(z0) 6= 0).

Setting

φ(z) =
1− (h(z))β

1+ (h(z))β
,

we observe that

|φ(z)| < 1 for |z| < |z0|, |φ(z0)| = 1 and φ(0) = 0.

Hence the conditions of Lemma 1 are satisfied. By taking

(h(z0))
β = iy,

where y is a non zero positive real number, and by using Lemma 1, we obtain

z0φ
′(z0)

φ(z0)
=

−2β(h(z0))
β−1z0h

′(z0)

1− (h(z))2β
= k,

and

−z0h
′(z0) =

k(1+ y2)

2β(h(z0))−1(iy)
.

Now,

z0p
′(z0)

(p(z0) − α)1/β
=

−k(1− α)1−(1/β)(1+ y2)

2((iy)1/β

=
−k(1− α)1−(1/β)(1+ y2)

2y1/β

(
cos

π

2β
− i sin

π

2β

)
.

For β =
1

2n− 1
, n ∈ N

z0p
′(z0)

(p(z0) − α)1/β
=

−k(1− α)1−(1/β)(1+ y2)

2y1/β
(−1)n+1i = iδ, δ ∈ R,
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which is a contradiction to (6), where

|δ| =
∣∣∣k(1− α)1−(1/β)(1+ y2)(−1)n+2

2y1/β

∣∣∣
≥ (1− α)1−(1/β)(1+ y2)

2y1/β
≥ 1.

Hence the proof. �

For the choice of p(z) = zf ′(z)/f(z), β = 1 and p(z) = f ′(z), β = 1 and
α = 0, in Theorem 2, we have the following Corollary 2 and Corollary 3
respectively.

Corollary 2 For 0 ≤ α < 1, if the function f ∈ A satisfies

zf ′(z)
(
1−

zf ′(z)

f(z)

)
+ z2f ′′(z)

zf ′(z) − αf(z)
6= iδ (δ ∈ R, |δ| ≥ 1),

then f ∈ S∗(α).

Corollary 3 If f ∈ A satisfies

zf ′′(z)

f ′(z)
6= iδ (δ ∈ R, |δ| ≥ 1),

then f is univalent.

Theorem 3 Let α, β, γ, δ ∈ R with 0 ≤ α < 1, γ < β+ δ

2
and let G(z) be a

complex valued function defined in D. If p is analytic in D with p(0) = 1 and

Re{γz3p ′′′(z) + (3γ+ β)z2p ′′(z) + (γ+ 2β+ δ)zp ′(z) +G(z)p(z)}

> µ(α,β, γ, δ,G(z)),
(8)

where

µ(α,β, γ, δ,G(z)) =
(1− α)[Im(G(z))]2 − [δ+ β− 2γ]2

2(δ+ β− 2γ)
+ αRe{G(z)},

then p ∈ P(α).
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Proof. Let the function p be defined as in (2), suppose that there exists a point
z0 in D satisfying (3). By defining h : D→ C as h(z) = (1+(1−2α)z)/(1− z),
we have p ⊀ h. By Lemma 2, there exist a ζ0 ∈ ∂D and m ≥ 1 such that

Re

{
1+

z0p
′′(z0)

p ′(z0)

}
≥ mRe

{
1+

ζ0h
′′(ζ0)

h ′(ζ0)

}
= 0

and

Re

{
z20p

′′′(z0)

p ′(z0)

}
≥ m2 Re

{
ζ20h

′′′(ζ0)

h ′(ζ0)

}
> 0.

(9)

Using (5) and (9), we obtain

Re{z20p
′′(z0)} ≤ −z0p

′(z0) and Re{z30p
′′′(z0)} ≤ 0. (10)

From (5), (10) and by taking p(z) = α + iy (y ∈ R), we have the following
inequality

Re{γz30p
′′′(z0) + (3γ+ β)z20p

′′(z0) + (γ+ 2β+ δ)z0p
′(z0) +G(z)p(z0)}

≤ (δ+ β− 2γ)z0p
′(z0) + αRe{G(z0)}− Im{G(z0)}y

≤ −(δ+ β− 2γ)

(
(1− α)2 + y2

2(1− α)

)
+ αRe{G(z0)}− Im{G(z0)}y

≤ (1− α)(Im{G(z0)})
2 − (δ+ β− 2γ)2

2(δ+ β− 2γ)
+ αRe{G(z0)}

= µ(α,β, γ, δ,G(z0)),

which contradicts (8) and completes the proof. �

On taking α = β = γ = 0, δ = 1 and G(z) ≡ 1 in Theorem 3, we get the
following Corollary that improves the result of Miller [7, p.80].

Corollary 4 For an analytic function p in D with p(0) = 1, if

Re{p(z) + zp ′(z)} > −
1

2
,

then p ∈ P.

By taking γ = β = 0, G(z) ≡ 1 and γ = β = 0, δ = 1,G(z) ≡ 1 in Theorem 3,
we obtain the Corollary 5 and Corollary 6 respectively, which are due to Kim
et al. [6, Theorem 2.6].
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Corollary 5 For an analytic function p in D with p(0) = 1, if

Re{δzp ′(z) + p(z)} > α−
(1− α)δ

2
, (0 ≤ α < 1)

then p ∈ P(α).

Corollary 6 For an analytic function p in D with p(0) = 1, if

Re{zp ′(z) + p(z)} >
(3α− 1)

2
, (0 ≤ α < 1)

then p ∈ P(α).

Theorem 4 Let p be an analytic function in D, with p(0) = 1 for β > 0, if∣∣∣∣ Im{(p(z))1/β + zp ′(z)

p(z)

}∣∣∣∣ < 1

2|(p(z))1/β|

(
(2− β)|(p(z))2/β|− β

)
, (11)

then (p(z))1/β ∈ P.

Proof. Define the function p : D→ C as

p(z) =
(1+w(z)
1−w(z)

)β
or equivalently

w(z) =
p(z)1/β − 1

p(z)1/β + 1
,

then w is analytic in D with w(0) = 0. Suppose that there exist a point z0 in
D such that

Re{(p(z))1/β} > 0 for |z| < |z0| and Re{(p(z0))
1/β} = 0,

we obtain
|w(z)| < 1 for |z| < |z0| and |w(z0)| = 1.

Therefore by using Jack’s Lemma, a simple calculation yields

1

β

z0p
′(z0)

p(z0)
=

2z0w
′(z0)

1− (w(z0))2
=

2kw(z0)

1− (w(z0))2
.

Hence

1

2kβ

z0p
′(z0)

p(z0)
=

w(z0)

1− (w(z0))2
.
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On taking (p(z0))
1/β = iy, where y is a nonzero real number, we obtain

w(z0) =
y2 − 1

1+ y2
+ i

2y

1+ y2

and

z0p
′(z0)

p(z0)
=

2kβw(z0)

1− (w(z0))2
,

where k is a real number, with k ≥ 1. Therefore∣∣∣∣ Im{(p(z0))1/β + z0p
′(z0)

p(z0)

}∣∣∣∣ = ∣∣∣∣ Im{(p(z0))
1/β}+ Im

{
z0p

′(z0)

p(z0)

}∣∣∣∣
=

∣∣∣∣y+ 2kβ
(1+ y2)

4y

∣∣∣∣
≥
∣∣∣∣y+ β

(1+ y2)

2y

∣∣∣∣
≥
∣∣∣∣y− β

(1+ y2)

2y

∣∣∣∣ ≥ |y|− β
(1+ |y|2)

2|y|

= |(p(z0))
1/β|−

β(1+ |(p(z0))
2/β|)

2|(p(z0))1/β|
,

which contradicts (11). Hence the proof. �

Theorem 5 For an analytic function p in D with p(0) = 1, if p satisfies

Re

{
(p(z))2 +

zp ′(z)

p(z)

}
< 1− c−

c

2(1− c)
(0 < c < 1), (12)

then p ∈ P. Also p(z) ≺
√
1+ cz.

Proof. Define a function p : D→ C by

p(z) =
√
1+ cw(z), (z ∈ ∆)

= 1+ p1z+ p2z
2 + ...,

or equivalently

w(z) =
p2(z) − 1

c
= w1z+w2z

2 + ....,
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we observe that w is analytic in D and w(0) = 0 .

Suppose that there exist a point z0 in D, such that

Re{p(z)} > 0 for |z| < |z0| and Re{p(z0)} = 0

and

max |w(z)| = |w(z0)| = 1 |z| ≤ |z0|.

By Lemma 1, there exist a number k ≥ 1 such that z0w
′(z0) = kw(z0).

Without loss of generality we may assume that w(z0) = e
iθ, where θ ∈ [−π, π],

for this z0, we have

Re

{
(p(z0))

2 +
z0p

′(z0)

p(z0)

}
= Re{1+ cw(z0)}+ Re

{
ckw(z0)

2(1+ cw(z0)

}
= Re{1+ ceiθ}+

ck

2
Re
{

eiθ

1+ ceiθ

}
= Re{1+ c cos θ+ i sin θ}+

ck

2
Re
{

cos θ+ sin θ

1+ ceiθ

}
≥ 1+ c cos θ+

c

2

( cos θ+ c

1+ c2 + 2c cos θ

)
= H(cos θ).

Let t = cos θ then

H(t) = 1+ ct+
c

2

( t+ c

1+ c2 + 2ct

)
.

Since H(t) is an increasing function,

H(t) ≥ H(−1) = 1− c+ c

2

( c− 1

1+ c2 − 2c

)
= 1− c−

c

2

( 1− c

(1− c)2

)
= 1− c−

c

2(1− c)
,

which is a contradiction to (12) and implies that, Re{p(z)} > 0 and |w(z0)| < 1.
That is p(z) ≺

√
1+ cz and p ∈ P, z ∈ D. �

Following results are obtained as the consequence of Theorem 5.

For the choice of p(z) =
zf ′(z)

f(z)
in Theorem 5, we have the following:
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Corollary 7 If f ∈ A satisfies

Re

{(zf ′(z)
f(z)

)2
+
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)
+ 1

}
< (1− c) −

c

2(1− c)
(0 < c < 1),

then f ∈ S∗(qc).

By taking p(z) =
z
√
f ′(z)

f(z)
in Theorem 5, we have the following:

Corollary 8 If f ∈ A satisfies

Re

{
z2f ′(z)

(f(z))2
+
zf ′′(z)

2f ′(z)
−
zf ′(z)

f(z)
+ 1

}
< (1− λ) −

λ

2(1− λ)
(0 < λ < 1),

then f ∈ U(λ) and hence it is univalent.
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