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Abstract. Making use of last derivative approximation and weight func-
tion approach, we construct an eighth-order class of three-step methods,
which are consistent with the optimality conjecture of Kung-Traub for
constructing multi-point methods without memory. Per iteration, any
method of the developed class is totally free from derivative evaluation.
Such classes of schemes are more practical when the calculation of deriva-
tives is hard. Error analysis will also be studied. Finally, numerical com-
parisons are made to reveal the reliability of the proposed class.

1 Introduction

The theoretical thorough study of iterative processes for simple roots goes
back at least to the book of Traub [19]. Among questions and ideas which have
been addressed, the problem of computing simple roots by multi-point without
memory methods emerged. To illustrate further in [4], the authors have given
two classes of n-step methods without memory; one including derivative cal-
culation, also known as derivative-involved methods; and one derivative-free
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class. As an example, they gave the following family of one-parameter methods





yn = xn + βf(xn),

zn = yn − β
f(xn)f(yn)

f(yn)−f(xn)
,

wn = zn −
f(xn)f(yn)

f(zn)−f(xn)
[ 1
f[yn,xn]

− 1
f[zn,yn]

],

xn+1 = wn −
f(xn)f(yn)f(zn)

f(wn)−f(xn)
[ 1
f(wn)−f(yn)

{ 1
f[wn,zn]

− 1
f[zn,yn]

}

− 1
f(zn)−f(xn)

{ 1
f[zn,yn]

− 1
f[yn,xn]

}],

(1)

wherein β ∈ R − {0}, by using inverse interpolation for annihilating the new-
appeared first derivatives of the function in the Steffensen-Newton-Newton
structure. They also conjectured that a multi-point iteration without memory
can achieve the maximum order of convergence 2(n−1), by consuming n, func-
tional evaluations per full cycle. Therefore, (1)’s order end efficiency index are
optimal.

Different methods of various orders have been introduced and improved by
many authors. A complete review on the published papers in this field for the
works from 2000 to 2010 have been given in the book of Iliev and Kyurkchiev
[2]. In [8], the authors considered weight function approach to give some new
classes of optimal Jarratt-type fourth-order methods. Authors in [13] studied a
combination of last derivative approximation and weight function approach to
furnish optimal eighth-order derivative-involved methods. Discussion on new
multiple zero finders when the multiplicity of the roots is available have been
recently introduced by Sharifi et al. in [5]. Note that Soleymani and Hos-
seinabadi in [9] presented a sixth-order derivative-free method including three
steps. The references [10-12] also contain new derivative-free developments in
this active topic of study. For more information, one may consult [15-18].
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Figure 1. The graph of the function f(x).

Derivative-free methods are important when we deal with complicated func-
tions, such as f(x) = cos(sin(x2

√
x))× cos(x3)×arctan(sin(x5+x−1))+x3+1,
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where its plot is given in Figure 1, or we try to find multiple roots of nonlinear
equations (in the case that multiplicity is unknown), [1].

For this cause, this work is devoted to find an optimal three-step class of
iterations without memory in which any method includes four function eval-
uations per cycle to obtain the eighth order of convergence and possess the
optimal efficiency index 1.682. Toward this end, we make use of weight function
approach alongside an approximation for the first derivative of the function for
the quotients of a Steffensen-Newton-Newton structure. The efficiency of our
class is then compared with those available in the literature to show better or
equal results. Some methods from the suggested class are tested numerically
in Section 3 to support the theoretical results given in Section 2. Section 4
includes a short conclusion of the article.

2 Main contribution

To construct a high-order class of methods for solving nonlinear scalar equa-
tions, we take into account the following three-step Steffensen-Newton-Newton
structure

yn = xn −
βf(xn)2

f(wn) − f(xn)
, zn = yn −

f(yn)

f ′(yn)
, xn+1 = zn −

f(zn)

f ′(zn)
, (2)

wherein f(wn) = f(xn+βf(xn)); that is to say wn = xn+βf(xn), β ∈ R− {0}.
This structure possesses the eighth order of convergence, while it is inefficient.
Because it includes 6 evaluations per step and its efficiency index therefore
will be 1.4142, which is the same as Steffensen’s and Newton’s methods. Thus,
in order to contribute and hit the assigned target, we should eliminate the
existent of the derivative calculations without lowering the order, i.e. obtain-
ing a class (family) of order eight with four evaluations of the function per
full cycle only. There are many ways to do so. Among all, we first consider an
approximation for the new-appeared first derivatives f ′(yn) and f ′(zn), and
second make use of the approach of weight functions.

Let f ′(yn) ≈ (f(wn) − f(xn))/(βf(xn)), that is the same approximation as
Steffensen used in the first step of (2). Then, an estimation of the function
f(t), in the open domain D, is taken into consideration as follows: f(t) ≈
w(t) = a0 + a1(t − yn), which its first derivative is w ′(t) = a1. We suppose
this estimation passes the points yn and zn. By substituting the known values
f(t) |yn= f(yn), f(t) |zn= f(zn), we could easily obtain the unknown parame-
ters. Thus, we have a0 = f(yn) and a1 = (f(yn)−f(zn))/(yn−zn) = f[yn, zn].



172 F. Soleymani

Consequently, we have f ′(zn) ≈ f[yn, zn]. Therefore, we suggest the following
iteration






yn = xn −
f(xn)

f[xn,wn]
, wn = xn + βf(xn), β ∈ R − {0},

zn = yn −
f(yn)

f[xn,wn]
P(t),

xn+1 = zn −
f(zn)

f[yn,zn]

(

G(γ) + H(t) + K(ζ)
)

,

(3)

where t = f(y)/f(w), γ = f(y)/f(x), and ζ = f(z)/f(w). P(t), G(γ), H(t) and
K(ζ) are four real-valued weight functions that should be chosen such that the
order of convergence attains the value eight, this is the role of weight function
approach. Taylor’s series expansion around the solution for the first two steps
of (3) gives us

en+1 = − ((c2(1 + c1β)(−1 + P(0))e2
n)/c1)+

+ 1/c2
1(−c1c3(1 + c1β)(2 + c1β)(−1 + P(0))+

+ c2
2(−2 + 4P(0) + c1β(−2 + 5P(0)+

+ c1β(−1 + 2P(0)) − P ′(0)) − P ′(0)))e3
n + O(e4

n),

(4)

where cj = f(j)(α)/j!, j ≥ 1, α is the solution. This shows that P(0) =

1, P ′(0) = 2 + βf[xn, wn] should be selected in order to attain at fourth-
order convergence. By taking into account this, and similar expansion up to
the seventh term, we obtain for (3) now that G(0) = 1, G ′(0) = H(0) =K(0) =

H ′(0) = H ′′(0) = G(3)(0) = 0, K ′(0) = 2 + βf[xn, wn] and G ′′(0) = 2/(1 +

βf[xn, wn]) should be chosen in order to arrive at seventh-order convergence
as follows

en+1 =
−1

12c6
1

((1 + βc1)c
4
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1)−

− P ′′(0)))(3(2 + βc1)(6 + 2βc1(3 + βc1)−

− P ′′(0)) + H(3)(0)))e7
n + O(e8

n).

(5)

Obviously, now to gain the optimal order eight with using only four evalua-
tions of the function we should find H(3)(0) in such a way that order goes up
to eight. This is summarized in Theorem 1.

Theorem 1 Let α ∈ D, be a simple zero of sufficiently differentiable function
f : D ⊆ R → R and let cj = f(j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
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then, (i): the order of convergence of the solution by the three-step class of
iterations without memory methods defined in (3) is eight, when P(0) = 1,

P ′(0) = 2 + βf[xn, wn], |P ′′(0)| < ∞, |P(3)(0)| < ∞, and





G(0) = 1,G ′(0) = G(3)(0) = 0,G ′′(0) = 2
1+βf[xn,wn]

, and |G(4)(0)| < ∞,

H(0) = H ′(0) = H ′′(0) = 0, and |H(4)(0)| < ∞,

H(3)(0) = −3(2 + βf[xn, wn])(6 + 2βf[xn, wn](3 + βf[xn, wn]) − P ′′(0)),

K(0) = 0, K ′(0) = 2 + βf[xn, wn],

(6)

and (ii): this solution reads the error equation

en+1 =
−1

48c7
1

((1 + βc1)c
2
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0)))

×(96βc1(1 + βc1)
2c2c3 − 24c2

1(1 + βc1)
2c4 + c3

2(−168 + 48P ′′(0) − 8P(3)(0)

+G(4)(0) + c1β(−4(84 + 3c1β(16 + 2c1β − P ′′(0)) − 12P ′′(0) + P(3)(0))

+(2 + c1β)(2 + c1β(2 + c1β))G(4)(0)) + H(4)(0))))e8
n + O(e9

n). (7)

Proof. We expand any term of (3) around the solution α in the nth iterate
by considering (6). Thus, we write

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n + O(e9

n). (8)

Accordingly, we attain

yn = α + (β +
1

c1

)c2e2
n +

(−(2 + (2 + βc1)βc1)c2
2 + βc1(1 + βc1)(2 + βc1)c3)

c2
1

e3
n

+ . . . + O(e9
n). (9)

Now we should expand f(yn) around the simple root by using (9). We obtain

f(yn) = (1 + βc1)c2e
2
n + (−

(2 + βc1(2 + βc1))c
2
2

c1

+ (1 + βc1)(2 + βc1)c3)e
3
n

+
1

c2
1

(5 + βc1(7 + βc1(4 + βc1)))c
3
2 − c1c2c3(7 + βc1(10 + βc1(7 + 2βc1)))

+c2
1(1 + βc1)(3 + βc1(3 + βc1))c4)e

4
n + . . . + O(e8

n). (10)

Using (10) and the second step of (3), we attain

yn −
f(yn)

f[xn, wn]
= α +

(1 + βc1)(2 + βc1)c
2
2

c2
1

e3
n + . . . + O(e9

n). (11)
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Additionally, we attain that

zn = α +
((1 + βc1)c2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0))))

2c3
1

e4
n

+ . . . + O(e9
n). (12)

Moreover, we obtain now

f(zn) =
(1 + βc1)c2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0)))

2c2
1

e
4
n

−
1

6c3
1

(6c
2
1(1 + βc1)

2
(2 + βc1)c

2
3 + 6c

2
1(1 + βc1)

2
(2 + βc1)c2c4 − 3c1(1 + βc1)c

2
2c3(64

+2βc1(46 + βc1(22 + 3βc1)) − 3(2 + βc1)P
′′

(0)) + c
4
2(6(36 + c1β(80 + 3c1β(22 + βc1(8

+βc1)))) − 3(10 + 3βc1(5 + 2βc1))P
′′(0) + (1 + βc1)P

(3)(0)))e5
n + . . . + O(e9

n).

(13)
Using (9)-(13), we have

zn −
f(zn)

f[yn, zn]
= α

+
((1 + βc1)

2c3
2(−2c1(1 + βc1)c3 + c2

2(10 + 2βc1(5 + βc1) − P ′′(0))))e6
n

2c5
1

+ . . . + O(e9
n). (14)

Now we also for the last step have (without considering (6)) xn+1 − α =

− 1
2c3

1

(c2(1+c1β)(−1+G(0)+H(0)+K(0))(−2c1c3(1+c1β)+c2
2(10+2c1β(5+c1β)−

P ′′(0))))e4
n + 1

6c4

1

(6c2
1c2

3(1 + c1β)2(2 + c1β)(−1 + G(0) + H(0) + K(0)) + 6c2
1c2c4(1 +

c1β)2(2+c1β)(−1+G(0)+H(0)+K(0))−3c1c2
2c3(1+c1β)(2(−32+32G(0)+32H(0)+

32K(0)−G ′(0)+c1β(−46+46G(0)+46H(0)+46K(0)+c1β((22+3c1β)(−1+G(0)+

H(0) + K(0)) − G ′(0)) − 2G ′(0) − H ′(0)) − H ′(0)) − 3(2 + c1β)(−1 + G(0) + H(0) +

K(0))P ′′(0))+c4
2(6c4

1β4(3(−1+G(0)+H(0)+K(0))−G ′(0))+6(−36+36G(0)+36H(0)+

36K(0)−5G ′(0)−5H ′(0))+6c3
1β3(−24+24G(0)+24H(0)+24K(0)−7G ′(0)−H ′(0))+

3(10 − 10G(0) − 10H(0) − 10K(0) + G ′(0) + H ′(0))P ′′(0) + 3c2
1β2(4(−33 + 33G(0) +

33H(0)+33K(0)−8G ′(0)−3H ′(0))+ (−6(−1+G(0)+H(0)+K(0))+G ′(0))P ′′(0))+

(−1+G(0)+H(0)+K(0))P(3)(0)+c1β(30(16G(0)+16H(0)+16K(0)−3G ′(0)−2(8+

H ′(0))) + 3(15 − 15G(0) − 15H(0) − 15K(0) + 2G ′(0) + H ′(0))P ′′(0) + (−1 + G(0) +

H(0) + K(0))P(3)(0))))e5
n + · · · + O(e9

n). Therefore, by combining this, (14) and
the terms of (6) in the last step of (3), we have the error equation (7). This
completes the proof and shows that our multi-point class of methods arrives
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at optimal eighth-order convergence by using only four pieces of information
and considering (6). �

Clearly, any method from our class of derivative-free methods reaches the
optimal efficiency index 81/4 ≈ 1.682, which is greater than that of Newton’s
and Steffensen’s 21/2 ≈ 1.414, 61/4 ≈ 1.565 of the sixth-order methods given
in [3, 9], 41/3 ≈ 1.587 of method given in [14], and is equal to that of (1) and
the classes of methods in [6, 7].

To provide the simplest case of our class of methods; by considering (6), we
suggest the following method without memory including three steps






yn = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + f[xn, wn])(3

+f[xn, wn](3 + f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 + f[xn, wn])

f(zn)

f(wn)
},

(15)

where its error equation satisfies

en+1 = (1/(c7
1))(1 + c1)

2c2
2((5 + c1(5 + c1))c

2
2

− c1(1 + c1)c3)((7 + c1(7 + c1))c
3
2 − 4c1(1 + c1)c2c3+

+ c2
1(1 + c1)c4)e

8
n + O(e9

n).

(16)

Remark 1. In order to implement and code the methods from the class (3),
we should be careful that after computing f[xn, wn] in the first step, its value
will be used throughout the iteration step, which in fact does not increase the
computational load of the novel optimal eighth-order derivative-free methods.

A very efficient but complicated optimal three-step method from the pro-
posed class (3) can be





yn = xn −
f(xn)

f[xn,wn]
, wn = xn + f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + f[xn , wn ])

f(yn)

f(wn)
+ (5 + f[xn , wn ](5

+f[xn , wn ]))
(

f(yn)

f(wn)

)2

},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + f[xn , wn ])(3 + f[xn , wn ](3

+f[xn , wn ]) − 5 − f[xn , wn ](5 + f[xn , wn ])))(
f(yn)

f(wn)
)3 − (13 + f[xn , wn ](26

+f[xn , wn ](21 + f[xn , wn ](8 + f[xn , wn ]))))(
f(yn)

f(wn)
)4 + (2 + f[xn , wn ])

f(zn)

f(wn)
},

(17)

where its error equation satisfies

en+1 =
(1 + c1)

4c2
2c3(4c2c3 − c1c4)

c5
1

e8
n + O(e9

n). (18)
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We can easily now observe that the error equation (18) is very small. In fact,
we have obtained the finest error equations for optimal three-step derivative-
free methods without memory by introducing (17).

Note that if we choose very small value for the nonzero parameter β in (3),
the error equations will be mostly refined and the numerical results will be
better, for example we can have





yn = xn −
f(xn)

f[xn,wn]
, wn = xn + 0.01f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 + 0.01f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 + 1

1+0.01f[xn,wn]
(

f(yn)

f(xn)
)2 − ((2 + 0.01f[xn, wn])(3

+0.01f[xn, wn](3 + 0.01f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 + 0.01f[xn, wn])

f(zn)

f(wn)
}.

(19)

Notice that if we use backward finite difference approximation in the first
step of our cycle (2), by changing the weight functions suitably, we can give
another class which is similar to (3), i.e. we can have






yn = xn −
f(xn)

f[xn,wn]
, wn = xn − βf(xn), β ∈ R − {0},

zn = yn −
f(yn)

f[xn,wn]
P(t),

xn+1 = zn −
f(zn)

f[yn,zn]

(

G(γ) + H(t) + K(ζ)
)

,

(20)

where t = f(y)/f(w), γ = f(y)/f(x), and ζ = f(z)/f(w). And P(t), G(γ), H(t)

and K(ζ) are four real-valued weight functions that should be chosen such that
the order of convergence arrives at eight. This is illustrated in Theorem 2.

Theorem 2 Let α ∈ D, be a simple zero of sufficiently differentiable function
f : D ⊆ R → R and let that cj = f(j)(α)/j!, j ≥ 1. If x0 is sufficiently close to
α, then, (i): the local order of convergence of the solution by the three-step
class of without memory methods defined in (20) is eight, when P(0) = 1,

P ′(0) = 2 − βf[xn, wn], |P ′′(0)| < ∞, |P(3)(0)| < ∞, and






G(3)(0) = 0, |G(0)| < ∞, |G ′(0)| < ∞, |G ′′(0)| < ∞, and |G(4)(0)| < ∞,

H(0) = 1 − G(0) − K(0), and H ′(0) = G ′(0)(−1 + βf[xn, wn]),

H ′′(0) = −(−1 + βf[xn, wn])(2 + (−1 + βf[xn, wn])G ′′(0)), |H(4)(0)| < ∞,

H(3)(0) = 3(−2 + βf[xn, wn])(6 + 2βf[xn, wn](−3 + βf[xn, wn]) − P ′′(0)),

K ′(0) = 2 − βf[xn, wn], |K(0)| < ∞,

(21)
and (ii): this solution reads the error equation

en+1 =
1

48c7
1

c2
2(−1 + c1β)(2c1c3(−1 + c1β) + c2

2(10 + 2c1β(−5 + c1β) − P ′′(0)))
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×(96c1c2c3(−1 + c1β)2 − 24c2
1c4(−1 + c1β)2 + c3

2(−168 + 48P ′′(0) − 8P(3)(0)

+G(4)(0) + c1β(4(84 − 12P ′′(0) + 3c1β(−16 + 2c1β + P ′′(0)) + P(3)(0))

+(−2 + c1β)(2 + c1β(−2 + c1β))G(4)(0)) + H(4)(0)))e8
n + O(e9

n). (22)

Proof. The proof of this theorem is similar to the previous one, hence it is
omitted. �

An example from this new class using backward finite difference in this first
step can be





yn = xn −
f(xn)

f[xn,wn]
, wn = xn − f(xn),

zn = yn −
f(yn)

f[xn,wn]
{1 + (2 − f[xn, wn])

f(yn)

f(wn)
},

xn+1 = zn −
f(zn)

f[yn,zn]
{1 − (−1 + f[xn, wn])(

f(yn)

f(wn)
)2 − ((−2 + f[xn, wn])(3

+f[xn, wn](−3 + f[xn, wn])))(
f(yn)

f(wn)
)3 + (2 − f[xn, wn])

f(zn)

f(wn)
},

(23)

where its error equation satisfies

en+1 = (1/(c7
1))(−1 + c1)

2c2
2((5 + c1(−5 + c1))c

2
2

− c1(−1 + c1)c3)((7 + c1(−7 + c1))c
3
2 + 4c1(−1 + c1)c2c3

− c2
1(−1 + c1)c4)e

8
n + O(e9

n).

(24)

3 Numerical results

We check the effectiveness of the novel derivative-free method (15), (17) and
(19) of our proposed class of iterative methods (3) here. Due to this, we have
compared them with the optimal eighth-order family of Kung and Traub (1),
where β = 1, using the examples given below. The reason that we do not in-
clude other root solvers for comparisons is that, the derivative-involved meth-
ods consists of derivative calculation, which is not mostly easy-to-calculate
for hard test functions as well as the other existing derivative-free methods of
lower orders do not have any dominance to the optimal 8th-order methods for
sufficiently close initial guess.

f1(x) = cos(sin(x2
√

x)) × cos(x3) × arctan(sin(x5 + x−1)) + x3 + 1,

α1 ≈ −0.59 . . . x0 = −0.65,

f2(x) = arccot(x−2) + x2 + x sin(x2) + x3 − 6,

α2 ≈ 1.27 . . . x0 = 1.38.

The results of comparisons are given in Tables 1 and 2 in terms of the
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number significant digits for each test function after the specified number of
iterations, that is, e.g. 0.8e − 3949 shows that the absolute value of the given
nonlinear function f1, after four iterations is zero up to 3949 decimal places.
For numerical comparisons, the stopping criterion is |f(xn)| < 1.E−6000. MAT-

LAB 7.6 has been used in all computations using VPA command. As can be
seen, numerical results are in concordance with the theory developed in this
paper.

In the examples, the new methods improve the corresponding classical meth-
ods. The new methods inherit the merit of the optimal fourth-order two-step
methods with regards to application of divided differences, weight function
and high efficiency index, which is confirmed by the results in Tables 1 and 2.
According to Tables 1 and 2, under a fair comparison structure, our proposed
methods from the optimal class (3) perform well.

We mention that our primary aim was to construct a general class of very
efficient multi-point methods and to check the Kung-Traub conjecture for the
value n = 4, not to show off with thousands of accurate decimal digits. The
achieved accuracy of calculated approximations is certainly exceptional, maybe
provocative. Nonetheless, it may initiate a new challenge for constructing more
efficient methods.

Table 1. Convergence study for the test function f1

Methods |f1(x1)| |f1(x2)| |f1(x3)| |f1(x4)|

(1) 0.1e − 6 0.6e − 56 0.1e − 450 0.1e − 3608

(15) 0.3e − 7 0.3e − 61 0.3e − 493 0.8e − 3949

(17) 0.1e − 6 0.2e − 55 0.3e − 446 0.8e − 3573

(19) 0.2e − 8 0.5e − 71 0.7e − 573 0.5e − 4588

Table 2. Convergence study for the test function f2

Methods |f2(x1)| |f2(x2)| |f2(x3)| |f2(x4)|

(1) 0.7e − 5 0.1e − 49 0.3e − 407 0.4e − 3268

(15) 0.3e − 5 0.1e − 51 0.4e − 422 0.5e − 3387

(17) 0.6e − 5 0.7e − 50 0.3e − 409 0.3e − 3284

(19) 0.1e − 9 0.8e − 91 0.1e − 740 0.8e − 5938

Constructing with memory methods according to the main class (3) in this
paper, by introducing an iteration for the nonzero parameter β can be consid-
ered for future works in this field.



On a new class of optimal eighth-order derivative-free methods 179

4 Concluding remarks

In order to approximate the simple roots of uni-variate nonlinear equations, we
have developed a class of four-point three-step methods in which no deriva-
tive evaluations per full iteration is required. Per cycle, any method of our
class, such as (17), needs only four pieces of information to reach the conver-
gence rate eight. Therefore, this class satisfies the conjecture of Kung-Traub
for constructing optimal high-order multi-point without memory methods for
solving nonlinear equations. Numerical examples were considered to reveal the
accuracy of the methods from the class.
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