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Abstract. The purpose of this paper is to introduce a class of functions
Fλ, λ ∈ [0, 1], consisting of analytic functions f normalized by f(0) =
f ′(0) − 1 = 0 in the open unit disk U which satisfies the subordination
condition that

zf ′(z)/{(1− λ)f(z) + λz} ≺ q(z), z ∈ U,

where q(z) =
√
1+ z2+ z. Some basic properties (including the radius of

convexity) are obtained for this class of functions.

1 Introduction

Let H denote the class of analytic functions in the open unit disc U = {z :
|z| < 1} in the complex plane C. Also, letA denote the subclass ofH comprising
of functions f normalized by f(0) = 0, f ′(0) = 1, and let S ⊂ A denote the
class of functions which are univalent in U. We say that an analytic function
f is subordinate to an analytic function g, and write f(z) ≺ g(z), if and only
if there exists a function ω, analytic in U such that ω(0) = 0, |ω(z)| < 1 for
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|z| < 1 and f(z) = g(ω(z)). In particular, if g is univalent in U, then we have
the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(|z| < 1) ⊂ g(|z| < 1). (1)

Let a function f be analytic univalent in the unit disc U = {z : |z| < 1} on
the complex plane C with the normalization f(0) = 0, then f maps U onto a
starlike domain with respect to w0 = 0 if and only if

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ U). (2)

It is well known that if an analytic function f satisfies (2) and f(0) = 0,

f ′(0) 6= 0, then f is univalent and starlike in U.
A set E is said to be convex if and only if it is starlike with respect to each

of its points, that is if and only if the linear segment joining any two points
of E lies entirely in E. Let f be analytic and univalent in Ur = {z : |z| < r ≤ 1}.
Then f maps Ur onto a convex domain E if and only if

Re

{
1+

zf ′′(z)

f ′(z)

}
> 0 (z ∈ Ur). (3)

If r = 1, then the function f is said to be convex in U (or briefly convex). The
set of all functions f ∈ A that are starlike univalent in U will be denoted by
S∗ and the set of all functions f ∈ A that are convex univalent in U by K.

Definition. For given λ ∈ [0, 1], let Fλ denote the class of analytic functions
f in the unit disc U normalized by f(0) = f ′(0) − 1 = 0 and satisfying the
condition that

zf ′(z)

(1− λ)f(z) + λz
≺
√
1+ z2 + z =: q(z), z ∈ U, (4)

where the branch of the square root is chosen to be q(0) = 1.
We note that for λ = 0 in (4), we have the class F0 which connects a starlike

function with the function q(z) by means of a subordination and is defined by

F0 = {f ∈ A : zf ′(z)/f(z) ≺
√
1+ z2 + z, z ∈ U}. (5)

Also, for λ = 1 in (4), we obtain a class F1 which depicts a subordination
relationship between the function f ′(z) with the function q(z) and this class
is defined by

F1 = {f ∈ A : f ′(z) ≺
√
1+ z2 + z, z ∈ U}. (6)
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The function w(z) =
√
1+ z maps U onto a set bounded by Bernoulli lem-

niscate, and the class of functions f ∈ A such that zf ′(z)/f(z) ≺
√
1+ z was

considered in [14], while zf ′(z)/f(z) ≺
√
1+ cz was considered in [1]. This way

the well known class of k-starlike functions were seen to be connected with
certain conic domains. For some recent results for k-starlike functions, we re-
fer to [8, 11, 13, 15]. Certain function classes were also considered in recent
papers [2, 3, 4, 5, 7, 12] which were defined by means of the subordination
that zf ′(z)/f(z) ≺ q̂(z), where q̂(z) was not univalent. For a unified treatment
of some special classes of univalent functions we refer to [10] (see also [16]).

2 Auxiliary results

Lemma 1 The function

h(z) =
z√
1+ z2

(7)

is convex in Ur, where r =
√
2/2..

Proof. Using (7), we have

1+
zh ′′(z)

h ′(z)
=
1− 2z2

1+ z2
,

hence

Re

{
1+

zh ′′(z)

h ′(z)

}
> 0 for |z| <

√
2

2

and thus h(z) is convex in Ur, where r ≤
√
2/2. �

Corollary 1 If r ≤
√
2/2 and h(z) = z/

√
1+ z2, then we have

min
|z|≤r

{Re {h(z)}} =
−r√
1+ r2

.

Proof. By Lemma 1, the function h(z) is convex in Ur, where r ≤
√
2/2 and

h(Ur) is symmetric with respect to the real axis. Since the function h(z) is real
for real z, therefore, Re {h(z)} attains its extremal values at −r and r, which
proves the corollary. �

Lemma 2 The function

q(z) =
√
1+ z2 + z

is convex in Ur, where r is at least
√
2/2.
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Proof. By elementary calculations, it can easily be shown that q(z) is univa-
lent in the unit disc. For the proof that q(z) is convex, we use (3). Thus, we
obtain

1+
zq ′′(z)

q ′(z)
=

1

1+ z2
+

z√
1+ z2

=
1

1+ z2
+ h(z),

where h(z) is given in (7). By Corollary 1, we have

min
|z|≤
√
2/2

{
Re

{
1+

zq ′′(z)

q ′(z)

}}
≥ min
0<x≤

√
2/2

{
Re

{
1

1+ x2
−

x√
1+ x2

}}
=
2−
√
3

3
> 0,

(8)

because

t(x) =
1

1+ x2
−

x√
1+ x2

decreases in

[
0,

√
(
√
5− 1)/2

]
from t(0) = 1 to t

(√
(
√
5− 1)/2

)
= 0, so

that t(
√
2/2) = (2 −

√
3)/3 is the smallest value of t(x) for 0 < x ≤

√
2/2.

Therefore, in view of (8), the function q(z) =
√
1+ z2 + z is convex in Ur,

where r is at least
√
2/2.

�

Corollary 2 If r ≤
√
2/2 and q(z) =

√
1+ z2 + z, then we have

min
|z|≤r

{Re {q(z)}} =
√
1+ r2 − r.

Proof. By Lemma 2, the function q(z) is convex in Ur, where r ≤
√
2/2 and

h(Ur) is symmetric with respect to the real axis. Therefore, q(z) is real for
real z, and thus, Re {q(z)} attains its extremal values at −r and r. �

Lemma 3 The function q(z) =
√
1+ z2 + z satisfies

Re {q(z)} > 0 (9)

in U.
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Proof. Let z = eit, t ∈ [0, 2π). We assume that arg{e2it + 1} ∈ (−π, π]. It
follows that |e2it + 1| = |2 cos t| and

arg(e2it + 1) =


t for t ∈ [0, π/2),
t− π for t ∈ (π/2, 3π/2),
t− 2π for t ∈ (3π/2, 2π).

Therefore, we infer that

eit +
√
e2it + 1

=


cos t+ i sin t+

√
|2 cos t|(cos t/2+ i sin t/2) for t ∈ [0, π/2),

i for t = π/2,

cos t+ i sin t+
√

|2 cos t|(sin t/2− i cos t/2) for t ∈ (π/2, 3π/2),
−i for t = 3π/2,

cos t+ i sin t+
√

|2 cos t|(− cos t/2− i sin t/2) for t ∈ (3π/2, 2π).

Now some simple calculations show that Re
{
eit +

√
e2it + 1

}
= 0 if and only

if t = π/2 or if t = 3π/2, which implies that Re {q(z)} > 0 in U (see Fig.1
below). �

-
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Figure 1. q(eit).

3 Basic properties of the class Fλ
Corollary 3 Let n ≥ 2 be a given positive integer. Then the function

fn,a(z) = z+ az
n (z ∈ U)
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is in the class Fλ if and only if

|a| ≤ 2−
√
2

n+ (1−
√
2)(1− λ)

. (10)

Proof. The function

Fn,a(z) :=
zf ′n,a(z)

(1− λ)fn,a(z) + λz
=

1+ nazn−1

1+ (1− λ)azn−1

maps U onto the disc Fn,a(U) that is symmetric with respect to the real axis.
For

Fn,a(z) ≺
√
1+ z2 + z, (11)

it is necessary that Fn,a(z) 6= 0, and so we may assume that |na| < 1. We have
then

1− n|a|

1− (1− λ)|a|
< Re{Fn,a(z)} <

1+ n|a|

1+ (1− λ)|a|
.

It follows by applying a geometric interpretation of the subordination condition
that (11) is equivalent to

√
2− 1 ≤ 1− n|a|

1− (1− λ)|a|
and

1+ n|a|

1+ (1− λ)|a|
≤
√
2+ 1. (12)

Since the second inequality in (12) above is weaker, the desired inequality
(10) readily follows from the first inequality of (12).

�

Theorem 1 Let the function f defined by

f(z) = z+

∞∑
n=2

anz
n (z ∈ U)

belong to the class Fλ, then

|a2| ≤ 1/(1+ λ) (13)

and

|a3| ≤

{
3−λ

2(1+λ)(2+λ) for λ ∈ [0, 1/3],
1
2+λ for λ ∈ (1/3, 1].

(14)

Furthermore,

|a4| ≤
5+ 9λ− 2λ2 + 2

∣∣2λ2 + 11λ− 1∣∣
2(1+ λ)(2+ λ)(3+ λ)

. (15)
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Proof. Since the function f defined by (1) belongs to the class Fλ, therefore
from (4), we have

zf ′(z) −

{
z+ (1− λ)

∞∑
n=2

anz
n

}
ω(z) =

{
z+ (1− λ)

∞∑
n=2

anz
n

}√
ω2(z) + 1,

where ω is such that ω(0) = 0 and |ω(z)| < 1 for |z| < 1. Let us denote the
function ω(z) by

ω(z) =

∞∑
k=1

ckz
k. (16)

Thus, (16) readily gives√
ω2(z) + 1 = 1+

1

2
c21z

2 + c1c2z
3 +

(
c1c3 +

1

2
c22 −

1

8
c21

)
z4 + · · · .

Moreover, {
z+ (1− λ)

∞∑
n=2

anz
n

}√
ω2(z) + 1

= z+ (1− λ)a2z
2 +

(
1

2
c21 + (1− λ)a3

)
z3

+

(
c1c2 +

1− λ

2
c21a2 + (1− λ)a4

)
z4 + · · ·

(17)

and

zf ′(z) −

{
z+ (1− λ)

∞∑
n=2

anz
n

}
ω(z)

= z+ (2a2 − c1)z
2 + (3a3 − (1− λ)c1a2 − c2)z

3

+ (4a4 − (1− λ)[c1a3 − c2a2] − c3)z
4 + · · · .

(18)

Equating now the second, third and fourth coefficients in (17) and (18), we
have

(i) (1− λ)a2 = 2a2 − c1,

(ii) 1
2c
2
1 + (1− λ)a3 = 3a3 − (1− λ)c1a2 − c2,

(iii) c1c2 +
1−λ
2 c

2
1a2 + (1− λ)a4 = 4a4 − (1− λ)[c1a3 + c2a2] − c3.
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From (i), we get

a2 =
c1
1+ λ

. (19)

It is well known that the coefficients of the bounded function ω(z) satisfies
the inequality that |ck| ≤ 1, (k = 1, 2, 3, . . .), so from (19), we have the first
inequality that |a2| ≤ 1/(1+ λ). Now, from (ii) and (13), we obtain that

(2+ λ)a3 =
1

2
c21 + (1− λ)c1a2 + c2

=
1

2
c21 +

1− λ

1+ λ
c21 + c2

= c2 +
3− λ

2(1+ λ)
c21.

(20)

Also,

λ ∈ [0, 1/3] ⇒ ∣∣∣∣ 3− λ2(1+ λ)

∣∣∣∣ ≥ 1 and λ ∈ (1/3, 1] ⇒ ∣∣∣∣ 3− λ2(1+ λ)

∣∣∣∣ < 1.
Therefore, by using the estimate (see [9]) that if ω(z) has the form (16), then

|c2 − µc
2
1| ≤ max {1, |µ|} , for all µ ∈ C,

we obtain (14). Also, from (i)-(iii) and (19)-(20), we find that

|(3+ λ)a4| =

∣∣∣∣(1− λ)[c1a3 + c2a2] + c3 + c1c2 + 1− λ

2
c21a2

∣∣∣∣
=

∣∣∣∣ 5(1− λ)

2(1+ λ)(2+ λ)
c31 +

5+ 2λ− λ2

(1+ λ)(2+ λ)
c1c2 + c3

∣∣∣∣
=

∣∣∣∣ 5(1− λ)

2(1+ λ)(2+ λ)

(
c31 + 2c1c2 + c3

)
+

7λ− λ2

(1+ λ)(2+ λ)
c1c2

+

(
1−

5(1− λ)

2(1+ λ)(2+ λ)

)
c3

∣∣∣∣
≤ 5(1− λ)

2(1+ λ)(2+ λ)

∣∣∣c31 + 2c1c2 + c3∣∣∣+ (7λ− λ2)|c1c2|

(1+ λ)(2+ λ)

+

∣∣2λ2 + 11λ− 1∣∣ |c3|
2(1+ λ)(2+ λ)

.

(21)

We next use some properties of ck involved in (16). It is known that the
function p(z) given by

1+ω(z)

1−ω(z)
= 1+ p1z+ p2z

2 + · · · =: p(z) (22)
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defines a Caratheodory function with the property that Re{p(z)} > 0 in U and
that |pk| ≤ 2 (k = 1, 2, 3, . . .). Equating of the coefficients in (22) yields that

p2 = 2(c
2
1 + c2)

and

p3 = 2(c
3
1 + 2c1c2 + c3).

Hence |c21 + c2| ≤ 1 and

|c31 + 2c1c2 + c3| ≤ 1. (23)

By applying (21) and (23), we find that

|(3+ λ)a4| ≤
5(1− λ)

2(1+ λ)(2+ λ)
+

7λ− λ2

(1+ λ)(2+ λ)
+

∣∣2λ2 + 11λ− 1∣∣
2(1+ λ)(2+ λ)

,

which gives (15). �

4 Some consequences and special cases

It may be observed from (4), (5) and (9) of Lemma 3 that

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ U)

for f ∈ F0, hence f is univalent starlike with respect to the origin, and this
leads to the following result.

Corollary 4 F0 ⊂ S∗.

In view of (5) and (6), we can deduce the coefficient estimates for functions
belonging to the classes F0 and F1 from Theorem 3.1. These results are easy
to obtain and we skip mentioning here their details.

Lastly, we prove the radius of convexity of a function belonging to the
class F0.

Theorem 2 If f ∈ F0, then f is convex in Ur, where r is at least√
(5−

√
13)/2 = 0.482 . . . .
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Proof. Assume that |z| <
√
2/2. Let f ∈ S∗(q), then in view of (4), we have

f ′(z)/f(z) =
√
1+ω2(z) +ω(z),

where ω satisfies ω(0) = 0, |ω(z)| < 1 for |z| < 1, and by Schwarz Lemma, ω
satisfies |ω(reiϕ)| < r. Let us recall that ([see [6], Vol. II, p. 77])

|ω ′(z)| ≤ 1− |ω(z)|2

1− |z|2
. (24)

Differentiating zf ′(z)/f(z) =
√
1+ω2(z) +ω(z) and using (24), we obtain

Re

{
1+

zf ′′(z)

f ′(z)

}
= Re

{√
1+ω2(z) +ω(z) +

zω ′(z)√
1+ω2(z)

}
. (25)

Applying now Corollary 2, we get

min
|z|<
√
2/2

{
Re

{√
1+ω2(z) +ω(z)

}}
=
√
1+ r2 − r. (26)

Hence, from (25) and (26), we have

Re

{
1+

zf ′′(z)

f ′(z)

}
≥
√
1+ r2 − r−

∣∣∣∣∣ zω ′(z)√
1+ω2(z)

∣∣∣∣∣
≥
√
1+ r2 − r− r

1− |ω2(z)|

1− |z2|

1

|
√
1+ω2(z)|

≥
√
1+ r2 − r− r

1− |ω2(z)|

1− |z2|

1√
1− |ω2(z)|

=
√
1+ r2 − r− r

√
1− |ω2(z)|

1− r2

>
√
1+ r2 − r−

r

1− r2
.

Solving in [0,
√
2/2] the inequality:√

1+ r2 − r−
r

1− r2
≥ 0,

we obtain that 3r4− 5r2+ 1 ≥ 0, and so if r ∈
[
0,

√
(5−

√
13)/2

]
, then by (3)

the function f is convex in Ur. �
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