AcTtA UNIV. SAPIENTIAE, INFORMATICA, 1, 1 (2009) 63-70

&

Observations on incrementality principle
within the test preparation process

Csaba Szabd Ladislav Samuelis
Dept. of Computers and Informatics Dept. of Computers and Informatics
FEEI, Technical University of Kosice FEEI, Technical University of Kosice
Letnd 9, 04200 Kogice, Slovakia Letnd 9, 04200 Kosice, Slovakia
email: Csaba.Szabo@tuke.sk email: Ladislav.Samuelis@tuke.sk

Abstract. This paper deals with the abilities of consolidating the sys-
tem design and test planning phases of the software life cycle (SWLC).
We present our observations on the presence of evolution-like features
inside test plans during design and development of the application. We
focus on the role of incrementality principle within the test preparation
process. The presence of this principle is not evoked by the planning pro-
cess itself, but is inherent in the development stream that incrementally
interferes the software design. We analyze this feature and give explana-
tion. Finally, we discuss the impacts of the incrementality principle on
management and improvement of software processes.

1 Motivation

Nowadays, a lot of software development methods is available for use in SWLC
implementations to achieve the best fit to users’ requirements [1]. The main
task of each one of them is to deliver faultless software.

When software reliability, safety, stability and overall applicability are ques-
tioned, software engineers use testing methods to satisfy and prove these fea-
tures.

AMS 2000 subject classifications: 68N19

CR Categories and Descriptors: D.2.5. [Testing and Debugging]: Subtopic - Tracing.
Key words and phrases: incrementality principle, test preparation, software evolution,
test evolution

63

64 Cs. Szabo, L. Samuelis

Test method selection and execution (i.e. the realization of proofs) strictly
depend on the characteristics of the used development method and on the
overall SWLC management strategy. Even if no strategy is present, there is
no strictly meant freedom in testing process selection. No classical testing is
needed in case of mathematically proven algorithm implementation [2] if there
is used an also proven implementation technique. (S-type software according
to Lehman’s laws [3].)

The connection between development and testing does not end by strategy
selection and SWLC principles definition. The final verification method of
the software depends on the software itself, on its architecture and aim. The
most of SWLC models propose test preparation as a separate process that
might be executed parallel to or immediately after the design/implementation
processes.

On other hand, any interconnection between two models indicates depen-
dencies between them and this is the basis of change propagation across these
models [4, 5, 6]. This propagation preserves the actual state of each one ac-
cording to the development stage and requirements. The mentioned intercon-
nection might be tight or loose depending on the SWLC, but will be present,
due to the main principles of software development and testing.

In our paper, we present three observations that highlight change propaga-
tion across the whole SWLC, especially on test preparation. Section 2 deals
with so-called old school SWLCs based on top-down or bottom-up develop-
ment strategies. Section 3 is denoted to agile processes of SWLC. In Section 4,
we show an example development method called cowboy coding, where might
be neither SWLC nor development practices considered. Section 5 concludes
our observations and points out more issues to take into consideration in the
future.

2 Observation one: old school techniques

Old school methodologies include the waterfall, spiral, staged, iterative, incre-
mental strategies [1]. We classify classical model-driven development (MDD)
[7], component based development and the Unified Process (UP) [8] as belong-
ing to this group as well.

Within these methodologies, test preparation is a separate process running
parallel divided into smaller activities or sequentially after implementation of
software is done.

Having a parallel process implementation, development and test prepara-

Incrementality principle within test preparation 65

tion processes operate the same requirements, functions and interfaces. These
techniques principle is to prepare test right after a component interface and /or
implementation is finished. Any incremental change of those components hav-
ing tests already prepared is propagated across these tests as well as across
all other affected interfaces/implementations within the same design model.
Figure 1 shows a typical example of such a SWLC, where the software reached
a specific development level (i.e. can be tested), but there are still parts of it
that are not implemented yet.

Running make test

Prepending /root/.cpan/build/ExtUtils-MakeMaker-6.46/blib/arch
/root/.cpan/build/ExtUtils-MakeMaker-6.46/blib/1ib to PERL5SLIB.
PERL_DL_NONLAZY=1 /usr/local/bin/perl "-MExtUtils::Command: :MM"
"-e" "test_harness(0, ’blib/1lib’, ’blib/arch’)" t/*.t

t/00-load.............. 1/1 # Testing Test::Pod 1.26, Perl 5.008
008, /usr/local/bin/perl
t/00-load.............. ok
t/all_pod_files........ ok
t/cut-outside-block....ok

t/good....... ...l ok
t/item-ordering........ ok
t/load................. ok
t/missing-file......... ok

t/pod. ..ot ok
t/selftest............. ok
t/spaced-directives....skipped: Not written yet
t/unknown-directive....ok

All tests successful.

Files=11, Tests=19, 1 wallclock secs (0.11 usr 0.05 sys + O
.84 cusr 0.18 csys = 1.17 CPU)

Result: PASS

Figure 1: Example test execution upon a module still being developed

Sequential processes do not share any resources during their execution,
therefore change propagation might not affect the other process’ results. Incre-
mentality is observable e.g. in MDD [7], where test case skeletons are created
first, then these skeletons are processed mostly separately. This process in-
cludes more detailed specification of test cases. Using independent test cases,
the incrementality principle appears only in the phase of their specification.
In the case of hierarchical test structure, the dependencies are active through
the whole preparation and execution process.

Non-incremental software processes use always sequential execution that

66 Cs. Szabo, L. Samuelis

induces a less complicated first-time test preparation but a more complicated
regression testing during maintenance. Maintenance is the life-cycle phase
when the regression test selection and test review and modification appear to
be incremental. Figures 1 and 2 present practical examples of test grouping
to ease test selection and regression testing.

Running make test
PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e"
"test_harness(0, ’blib/1ib’, ’blib/arch’)" t/*.t

t/00-load......... 1/3 # Testing LaTeX::Parser 1.00, Perl 5.0080
06, /usr/local/bin/perl

t/00-1load......... ok

t/01-html......... ok

t/pod-coverage. ...ok

t/pod............. ok

All tests successful.

Files=4, Tests=20, O wallclock secs (0.05 usr 0.03 sys + O.
23 cusr 0.14 csys = 0.45 CPU)

Result: PASS

Figure 2: Example test execution upon a final version of a program that was
developed using processes of the waterfall SWLC

3 Observation two: agile processes

Agile software development methods use best practices of software develop-
ment to improve old school methods in selected areas. Extreme programming
focuses on rapid delivery and high frequency of iterations with customers in-
volved into the development process, feature and behavior driven programming
emphasize on requirement tracing and fulfillment [9]. The test driven devel-
opment (TDD) [10] approach uses tests as requirement representation and the
logical interconnection between tests and program code is very tight. There-
fore, changes are propagated across all code not only in the case of intended
intervention, but due to the test refactoring as well.

Figure 3 shows a test case reflecting functionality and architecture of the
designed implementation. The test case says Address should contain Street,
Number, City, PostalCode attributes; Street should be changeable. After the
implementation of a program that satisfies this requirement, the test case will
be extended by other requirements on Address one-by-one that incrementally
changes it. After any change within the tests, these tests are run to check

Incrementality principle within test preparation 67

public class AddressTest extends TestCase {

public void testStreet() {
Address address = new Address("Letna","9","Kosice","04200");
assertTrue (address.getStreet () .compareTo("Letna") == 0);

address.setStreet("Main");
assertTrue (address.getStreet () .compareTo("Letna") == 0);

}

protected void runTest() throws Throwable {
testStreet();

}

}

Figure 3: Example code snippet of JUnit test for TDD

implementation consistency. l.e. changes are propagated from tests to imple-
mentation. Considering the next requirement as requesting Street must not
return bad value, after extending the test case, probably no change within the
implementation will be needed.

4 Observation three: cowboy coding

Cowboy coding technique is an approach, where the emphasis is on writing
code. It is a term used to describe software development where the devel-
opers have autonomy over the development process. This includes control of
the project’s schedule, algorithms, tools, and coding style. A cowboy coder
can be a lone developer or part of a group of developers with either no exter-
nal management or management that controls only non-development aspects
of the project, such as its nature, scope, and feature set. (The what, but
not the how.) An example is the .NET environment where source code in
C+#, Visual Basic and other languages are used together in programming task
solutions. These sources are mostly translated into Common Intermediate
Language (CIL) that allows besides bytecode execution a good analysis of the
program [11] due to the meta-data that are stored within that bytecode.

In such a case, testing is covered within the project goals as satisfying the
requirement of producing a “deliverable” product, or final product evaluation.

For the evaluation phase, acceptance tests are weighted before any other
kind of tests. Acceptance test failures are reflected into functional test cre-
ation. Functional test failures indicate coding failures that should be detected

68 Cs. Szabo, L. Samuelis

by writing and running test case code. Figure 4 reflects relations between the
mentioned activities. Incrementality within tests occurs in unit testing phase
where old tests are revised and modified.

any failure
detected?

sw release

divided into
functions

acceptance testing

implementation

divided into
units

code review
&
unit testing

code
modification

Figure 4: Example testing activities of cowboy coding

5 Conclusion

We highlighted the presence of incrementality principle in software projects
and proved that it is a not replaceable feature of test preparation.
Summarizing observations gained with old school techniques, test prepara-
tion is distributed across more phases and runs in parallel to other streams
of development. Communication between these streams is one-way: changes
in the design and/or implementation indicate changes within test plan and/or
test cases.It happens because of the main top-down development principle that
introduces changes in the way of refinements at current or next (lower) levels
of abstraction. On the other hand, the bottom-up strategy needs more inde-
pendent tests first at implementation level of components. The upper (more
abstract) level tests are a kind of an incomplete set of integration tests con-

Incrementality principle within test preparation 69

sidering all possible integrations and all reachable interfaces of components.
Change propagation can be observed in cases, when changes are introduced
at bottom (or any other low) level.

The second group of observations tells us about the incrementality principle
within projects being solved agile. Extreme programming focuses on rapid
delivery of software products, iterations incrementally extend the software
solution that implicitly starts change propagation. This is propagation in
both ways, test might influence the design (the main principle of test driven
development), and design/implementation tasks might result into changes in
test plan structure or test case behavior.

The third case studies cowboy coding and points to the presence of incre-
mentality principle even in this strategy. Test preparation is based on require-
ments, these requirements build the main bridge for change propagation. At
the highest level, incrementality shows up in the way changed requirements
effect the implementation and test cases. At lower level, when a change on
the code is made, tests are created/changed only in the case of failure of tests
from higher level. Cowboy coding is a fast development technique omitting the
most things that are not strictly needed for successful delivery of the software
product. Even testing is intended to be as independent from the application
implementation as possible, but there are observations presenting some depen-
dencies defined at top level through requirements and at lower levels by failure
removal. Cowboy coding was the only methodology allowing less incremental-
ity within our observations, but even there are maintenance and development
tasks that indicate change propagation in the indirect way — by making tests
fail.

The future of this research might be focused on selection and specification
of common parameters to create meta-level descriptions of these dependencies
that, in further, might lead to rule discovery by abstraction on these depen-
dencies.

Recently, we run a few projects of quite simple programming tasks being
different in the type of used SWLC and being common in the goal to collect test
preparation incrementality characteristics. These characteristics will provide
attributes and numerical values for further analysis and metrics definition [11].

Acknowledgments

This work was supported by project VEGA No. 1/0350/08 “Knowledge-Based
Software Life Cycle and Architectures.”

70 Cs. Szabo, L. Samuelis
References
[1] D. Bell, I. Morrey, J. Pugh, The Essence of Program Design, Prentice

Hall Europe, 1st edition, 1997, Hungarian translation: Programtervezés,
Kiskapu Kft., 2003.

Z. Juhész, A. Sipos, Implementation of a finite state machine with active
libraries in C++, Proc. of the 7th International Conference on Applied
Informatics, Eger, Hungary, Vol. 2, 247-255, 2007.

M. M. Lehman, J. F. Ramil, Towards a Theory of Software Evolution
— And its Practical Impact, International Symposium on Principles of
Software Evolution, ISPSE (2000) pp. 2.

L. Samuelis, Cs. Szabd, Notes on the role of the incrementality in software
engineering, Studia Univ. Babes-Bolyai Inform., 51, 2 (2006) 11-18.

Cs. Szabé, L. Samuelis, Notes on the software evolution within test plans,
Acta Electrotechnica et Informatica, 8, 2 (2008) 56—63.

Cs. Szabd, L. Samuelis, Software evolution within test plans — how, when
and why? Egyptian Computer Science Journal, 29, 2 (2007) 1-10.

B. Hailpern, P. Tarr, Model-driven development: The good, the bad, and
the ugly, IBM Systems Journal, 45, 3 (2006) 451-461.

J. Arlow, 1. Neustadt, UML 2 and the Unified Process: Practical Object-
Oriented Analysis and Design, Addison-Wesley, 2nd edition, 2005.

P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, Agile software de-
velopment methods — Review and analysis, Otamedia Oy, Espoo, VI'T
Publications, 2002.

K. Beck, Test Driven Development: By FExample, The Addison-Wesley
Signature Series. Addison-Wesley, 2003.

Z. Porkoldb et al., Application of OO metrics to estimate .NET project
software size, Proc. of the 7th International Conference on Applied In-
formatics, Eger, Hungary, Vol. 2, 293-299, 2007.

Received: October 13, 2008

