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Abstract. Let d(A) denote the asymptotic density of the set of positive
integers. Let AD denote the set of all sets A having asymptotic density,
and let Dgs denote the set of all sets A for which the difference between its
upper and lower density is less than 6. In the paper are studied fuctions
f: N — N (not necessary a one-to-one functions) such that A € AD
implies f(A) € AD and fuctions f : N — N for that A € AD implies
f(A) € Ds. Our results generalize a theorem in [M. B. Nathanson, R.
Parikh, Density of sets of natural numbers and Lévy group, J. Number
Theory 124 (2007), 151-158.]

1 Introduction

Denote by N the set of all positive integers. For A C N let A(n) denote the
counting function of the set A. The lower asymptotic density of A is
A
A(A) = limint 2

n—oo n

the upper asymptotic density of A is

- A
d(A) = lim sup ﬂ
n—oo n

If d(A) = d(A), we say that A has an asymptotic density and we denote it by
d(A). For more details on the asymptotic density we refer to the paper [1].
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Let the group £F consists of all permutations of positive integers f such that
A € AD if and only if f(A) € AD, and the Lévy group L* consists of all
permutations f € £! such that d(f(A)) = d(A) for all A € AD. Nathanson
and Parikh [3] proved that the groups £! and £* coincide. Remark, more
complicated result in the same direction was proved in [4], but with different
assumptions on the transformation f. Connection between the Lévy group
and finitely additive measures on integers extending the asymptotic density
was studied in [5].

The mentioned Natanson and Parikh’s result follows from the following
stronger theorem:.

Theorem A [2, Theorem 2| Let f: N — N be a one-to-one function such
that if A € AD, then f(A) € AD, that is, if the set A of positive integers
has asymptotic density, then the set f(A) also has asymptotic density. Let
A = d(f(N)). Then

d(f(A)) = Ad(A)

for all A € AD.
We generalize this result showing that the condition for f to be one-to-one

function is not necessary and we will consider the set of functions Dg instead
of AD.

2 Results

Theorem 1 Let h: N — N be a function (not necessary a one-to-one) such
that if the set A of positive integers has asymptotic density, then the set h(A)
also has asymptotic density. Let A = d(h(N)). Then

d(h(A)) =Ad(A)

for all A € AD.

Proof. Let the symmetric differerence of the sets X and Y be denoted by
X Y. We construct a one-to-one function f: N — N such that

d(f(N) e h(N)) =0.

Then the assertion follows immediately from the Theorem A.
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First, we construct a function g : N — N for that N \ g(N) is infinite and
the density of the symmetric differerence of the sets h(N) and g(N) is zero. It
can be done easily using an infinite set

S :{a1)a2,a3)'-'}

with the property d(S) = 0. Obviously, we may define the set S as the set of
all squares or as the set of all primes,... Let us define

ax, ifh(n)=ax
g(n) = { . :
h(n), ifh(n)¢S

Let

B ={aj,a3,as,...,ax1,...

We have B C N\ g(N) and d(B) =0.

We construct the injective function f and a sequence of sets B1,Bo,... by
induction.
Let f(1) = g(1) and By =B. Forn > 1

if gm+1)¢g(NN[I,n]) let f(n+1)=g(n+1)and
Bn+1:Bn

if gm+1)eg(NN[,n]) let f(n+1)=minB, and
Byt =B~ {f(n+1))

From the above construction follows that for any A C N the set h(A) has
asymptotic density if and only if f(A) has asymptotic density and moreover
d(f(A)) = d(h(A)) for arbitrary A € AD, so the assertion follows. O

By the above proved theorem the property that A € AD implies f(A) € AD
is strong enough to ensure that in sense of asymptotic density large irregular-
ities in the image set f(N) cannot occur.

The main idea of the paper [3] was to show that if for a function f the density

of the set A implies the density of the set f(A) then the asymptotic density
of f(A) depends only on d(A). Equivalently, if A,B € AD and d(A) = d(B),
then d(f(A)) = d(f(B)).
In what follows we consider the question: Having a function f : N — N such
that A € AD implies f(A) € Dy, in the case d(A) = d(B) what can we say
about the upper and lower densities of the image sets f(A) and f(B)?

In our studies the following “intertwinning lemma” will be fundamental.
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Lemma 1 [3] Let A and B be sets of positive integers such that d(A) =
d(B) =+y. Then for a sufficiently fast growing sequence (pi) if

C=JAN (21,020 U BN (P21, p2is1]

i=1 i=1

then
d(C) =v.

Theorem 2 Let d > 0 and let f: N — N be a one-to-one function such that if
A € AD then f(A) € Ds. Let A,B are arbitrary sets of positive integers with
the property d(A) = d(B) =+y. Then

d(B) —d(A) <.
Proof. Let d(A) = o and d(B) = 3. Suppose, contrary to our claim that
B>o+0d.
We will construct a set C for that d(C) =y but the set f(C) ¢ Ds. We will

define the sequence (pi) by induction and using this define the set C

oo o0
C={JAn(pa 1,2l U BN (P2, p2isil. (1)

i=1 i=1

Induction hypothesis:

Suppose we have constructed sequences p1,...,Pak+1, further mq, ..., mox
and ny,...,nyk41 such that
moi_1, N2 Nf(A 1
1% 1
moi, Noie1] N (B 1
N2i+1 1

fori=1,...,k and
f(N X [pj, pj1l) N [my, 4] =0, (4)

forj=1,...2k.
Induction step: Let

Mok = 1+ max (NN [T, pay1l).
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From the fact that d(f(A)) = « we get that for sufficiently large nyxi2 we

[IL+)L+] I‘L| I

N2k42 k+1

and moreover let Nk 2 > (K + 2).mok1.
Define pox2 as the least positive integer t satisfying

min f([t, c0) NN) > nopo.
From the definition of the numbers mow.1, Nok12, P2x+2 follows that

fINN [paks1, Pars2]) N Mo, noky2l = 0.

Similarly, let
Moy2 = 1+ max (NN [T, pagal).

From d(f(B)) = p we have that for sufficiently large N,y 3 we have

[[M2k42, Nok43] N F(B)] 1
2Ky 3 kK+1

Define poy3 as the least positive integer t for that
min f([t,00) NN) > 1oy 3.
Analogously, from the definition of the numbers My 12, Nox13, P2ki3 We have

NN [p2ks2, Pakt3l) N Moz, nokys] = 0.

After completing induction the relations (2)-(4) hold for every k € N.
We estimate the upper and lower density of the constructed set C. Using
(1) together with (2) and (4) we have

f _ _
fming LM e FE M2 M 1+ a1, nad N (A)]
n—oo n k—o0 nok k—o0 N2k
< Tminf [ et t) =
= e kw1 T T

On the other hand, by (1), (3) and (4)

lim sup fFOm) > lim sup M >

n—oo n k— o0 M2K+1
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B 1
> limsup |Imax, n2k41] N 1(B)| > limsup ((3 _ ) _p. (5)
k—o00 N2Kk+1 k—o00 k

By Lemma 1 the set C € AD but (5) and (5) yield to the fact that
d(f(C)) —d(f(C)) >B—a>8

and therefore f(C) ¢ Ds. This contradiction completes the proof. O
Remarks. It is worth pointing out that

ﬁ {fIN—>N; ifAeADthenf(A)eDl}:
n=1

={f:N— N; if A € AD then f(A) € AD}.

In Theorem 2 the condition for the function f to be an injection is not
necessary. It can be shown by the same way as in Theorem 1.

We have proved that for given f : N — N (if A € AD then f(A) € Ds) the
upper bound for d(f(A)) and the lower bound for d(f(A)) depends only on the
asymptotic density of A. Clearly, for any dense set A and for any 6 € [0, 1]
there is a set B C A such that d(B) = 6.d(A) (see e.g. [2], Proposition 1), but
using this fact we can only deduce, that these bounds are nondecreasing.
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