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Abstract. A set of vertices in a graph is a dominating set if every vertex
not in the set is adjacent to at least one vertex in the set. A dominat-
ing structure is a subgraph induced by the dominating set. Connected
domination is a type of domination where the dominating structure is
connected. Clique domination is a type of domination in graphs where
the dominating structure is a complete subgraph. The clique domina-
tion number of a graph G denoted by γk(G) is the minimum cardinality
among all the clique dominating sets of G. We present few properties of
graphs admitting dominating cliques along with bounds on clique domi-
nation number in terms of order and size of the graph. A necessary and
sufficient condition for the existence of dominating clique in strong prod-
uct of graphs is presented. A forbidden subgraph condition necessary to
imply the existence of a connected dominating set of size four also is
found.

1 Introduction

The study of domination in graphs is to a great extent a result of the study
of games and recreational mathematics. It began when C.F. De Jaenisch at-
tempted to determine the minimum number of queens that can be placed on
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an n × n chess board so that all squares are either attacked by a queen or
are occupied by a queen [10]. Domination in graph can be defined in a similar
terms as finding a set of vertices in a graph such that every vertex in the
graph is either adjacent to some vertex in the set or is in the set. Further
development in domination was observed in late 1950s with Claude Berge [3]
introducing coefficient of external stability which is now known as domination
number. A set of vertices in a graph is a dominating set if every vertex in the
graph which is not in the dominating set is adjacent to one or more vertices in
the dominating set. The domination number, γ(G), of a graph G is the mini-
mum number of vertices in a dominating set. Over the course of time different
types of domination in graphs such as total domination, connected domination
and independent domination were developed by imposing conditions on the
dominating set. For example a connected dominating set is a dominating set
that induces a connected subgraph. [17, 9, 7, 12, 2, 16].

A dominating structure in a graph is a subgraph induced by its dominating
set. Identification of graphs possessing specific types of dominating structures
is a problem that caught the attention of several researchers. In this paper
we are exploring graphs having complete graphs as a dominating structure.
Every graph referred to in this article is finite, undirected, simple and con-
nected. [5, 14, 4] A clique dominating set is a dominating set that induces a
complete subgraph. A clique dominated graph is a graph that contains a clique
as a dominating structure. Cozzens and Kelleher were the first to deal with
dominating cliques. The clique domination number, γk(G), of a graph G is the
minimum number of vertices in a clique dominating set.

The concept of domination is very useful to model several real-world prob-
lems such as social networks , bus routing, land surveying, computer and com-
munication networks . Facility allocation is another area wherein one finds
one of the most important applications of domination; in particular connected
domination and clique domination. It involves optimal placement of facilities
in a given area.[6, 7, 8] For example let us consider the problem of effective
allocation of airports and air routes of a country. The airports in important
cities of a country are connected with each other, while every other airport is
connected with that of at least one of the important cities. Another instance
is a wireless sensor network which is comprised of autonomous sensor nodes
where the connected dominating set enable faster communication by forming
a virtual network backbone for information and control routing.[15, 11, 13, 1]
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2 Related results

It is note worthy that every graph need not have a dominating clique. The
smallest clique being K1, the smallest dominating clique is a single vertex. It is
clear that a graph with a dominating vertex has a star as spanning tree. Wolk
[18] gave the necessary condition for the graphs to have dominating clique of
size one and he called such a dominating clique a central vertex or a central
point. Dominating clique of size two is an edge called dominating edge.

Theorem 1 (Wolk [18]) If G is a finite connected graph with no induced P4
or C4, then G has a dominating vertex.

Cozzens and Kelleher [5] extended the theorem to get a forbidden subgraph
condition to establish the existence of a dominating clique, which is presented
below

Theorem 2 (Cozzens and Kelleher [5]) If G is a connected graph that
has no induced P5 or C5 then G has a dominating clique.

Although the above result ensures the existence of a dominating clique, it
does not specify the size of the dominating clique. In the direction,Cozzens
and Kelleher [5] have explored the problem of identifying graphs possessing
connected dominating set of size 3.

The notation Kn+p [5] represents the complete graph Kn on n vertices along
with n pendants, one at each vertex of the complete graph. For example K3+p
is the net graph. K3+p and K4+p are shown in the Figure 1.

Figure 1: The graphs K3+p and K4+p

Note that connected dominating sets of size one and two respectively are
defined uniquely whereas a connected dominating set of size three is either a
P3 or a K3.
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Figure 2: The graphs A1, A2, A3 and A4

The characterization obtained by Cozzens and Kelleher [5] was in terms of
a class A = {P6, C6, K4+p, A1, A2, A3, A4} of graphs where the graphs A1, A2,
A3 and A4 are as shown Figure 2.

Theorem 3 (Cozzens and Kelleher [5]) If G is a finite, connected graph
with three or more vertices that has none of the graphs in Class A as an
induced subgraph, then G has a connected dominating set of size three.

We have settled the problem of obtaining a necessary condition for graphs to
have a connected dominating set of size of 4 and the result is presented section
5. First we will explore the bounds for clique domination number γk.

3 Bounds for clique domination number

Recall that a private neighbour of a vertex v with respect to the set K is
a vertex adjacent to only v from the set K. First we present the following
proposition.

Proposition 4 If K is a minimal dominating clique of a graph G, then every
vertex in K has a private neighbour.

Proof. On the contrary, assume that there is a vertex v ∈ K having no private
neighbor. Then v is adjacent to every vertex in K and v will have no private
neighbour. This implies that K− {v} is a smaller dominating clique contained
in K, which contradicts the minimality of K. �

The bound obtained by Ore [10] for domination number, is true for clique
domination as given below.
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Proposition 5 If a connected graph G of order n has a dominating clique,
then γk(G) ≤ n/2.

Proof. Assume that γk(G) > n/2. Then γk-set of G being a minimal domi-
nating clique, it is clear that there exists a vertex v ∈ γk-set of G which does
not have a private neighbor which is a contradiction to the proposition 3.1. �

Remark 6 The bound obtained in Proposition 3.2 is sharp and Kn+p is a
class of graph that attains the bound. There are 2n vertices in Kn+p and the
minimum dominating set is of size n.

It is obvious that the domination number serves as a lower bound for clique
domination number. Then the following inequality follows immediately.

Proposition 7 If the graph G has a dominating clique, then γ(G) ≤ γk(G)
≤ ω(G) where ω(G) is the clique number of the graph.

Remark 8 Let G and H be two graphs. The corona product G◦H, is the graph
obtained by taking one copy of G and |V(G)| copies of H and by joining each
vertex of the i-th copy of H to the i-th vertex of G, where 1 ≤ i ≤ |V(G)|. The
graph Kr ◦ Ks, where r ≥ s has γ(Kr ◦ Ks) = γk(Kr ◦ Ks) = ω(Kr ◦ Ks) = r.

The next theorem gives a bound for the clique domination number of a graph
in terms of its size.

Theorem 9 If G is a graph with m edges possessing a dominating clique,
then

γk(G) ≤
√
1+ 8m− 1

2
.

Proof. We know that a clique of size γk has
γk(γk − 1)

2
edges. Therefore, m ≥

γk(γk − 1)

2
+ γk so that m ≥ γk(γk + 1)

2
. By solving which we will get γk(G)

≤
√
1+ 8m− 1

2
or γk(G) ≤

−
√
1+ 8m− 1

2
. Latter being impossible can be

neglected. Hence γk(G) ≤
√
1+ 8m− 1

2
. �

Remark 10 We can observe that the bound is sharp and Kn+p is a class of
graph that attains the bound. Figure 1 shows the graphs K3+p and K4+p.
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Obviously a graph G with maximum degree ∆ = n−1 has a dominating vertex
as the vertex with degree n− 1 itself is a dominating vertex. We now consider
graphs with ∆ = n− 2 and obtain the following theorem.

Theorem 11 If G is a connected graph with maximum degree ∆ = n−2, then
G has a dominating edge.

Proof. Since ∆ = n − 2, there exists a vertex, say v in G which is adjacent
to all but one vertex (obviously excluding v), say w, of the graph. But G is a
connected graph and w is not adjacent to v which implies that w is adjacent
to a neighbor of v say u, so that uv is a dominating edge of G. �

4 Clique domination in product of graphs

Clique domination problem for two types of graph product namely Lexico-
graphical product and Cartesian product has been studied[4]. We now extend
for clique domination in tensor products strong products of graphs.

The tensor product G×H of graphs G and H is a graph such that the vertex
set of G×H is the Cartesian product V(G)×V(H); and any two vertices (u, v)
and (u ′, v ′) are adjacent in G × H if and only if u is adjacent with u ′ in G
and v is adjacent with v ′ in H.[17, 9]

We can understand by the definition of tensor product of graphs that any
vertex (u ′, v ′) is not adjacent to any other vertex (u ′, vi) and (uj, v

′), ∀vi ∈
V(H) and ∀uj ∈ V(G). For any two graphs G and H, γ(G × H) ≥ 2. For any
graph G of order n, G× K1 is Kn. And G× K2 is a bipartite graph.

Proposition 12 For complete graphs Kr and Ks, γk(Kr × Ks) = 3, if r,s ≥ 3

Proof. We can observe that the tensor product of two complete graphs Kn
and Km is a graph with any vertex (ui, vj) is adjacent to all vertices (uk, vl),
∀k 6= i and ∀l 6= j Therefore, by choosing three vertices (ui1 , vj1), (ui2 , vj2) and
(ui3 , vj3) where i1 6= i2 6= i3 and j1 6= j2 6= j3 we obtain a dominating clique,
thus proving that γk(Kr ×Ks) ≤ 3. As we have observed earlier, we require at
least two vertices to dominate a graph. And if we consider an edge, the two
vertices in the edge say (ui1 , vj1) and (ui2 , vj2) can dominate all the vertices
but (ui1 , vj2) and (ui2 , vj1), hence the graph cannot be dominated by an edge.
Therefore K3 is the smallest clique dominating the tensor product Kr × Ks �

The strong product G�H of two graphs G and H is the graph with V(G�H) =
V(G) × V(H) and (u, u ′)(v, v ′) ∈ E(G � H) if and only if either uv ∈ E(G)
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and u ′ = v ′ or u = v and u ′v ′ ∈ E(H) or uv ∈ E(G) and u ′v ′ ∈ E(H).
Note that if C ⊆ V(G�H), then the G-projection and H-projection of C are,
respectively, the sets CG = {u ∈ V(G) : (u, b) ∈ C for some b ∈ V(H)} and
CH = {v ∈ V(H) : (a, v) ∈ C for some a ∈ V(G)}. [17, 9]

Theorem 13 The graph G � H has a dominating clique if and only if the
graphs G and H have dominating cliques.

Proof. Suppose G � H has a dominating clique. Let C ⊆ V(G � H) be the
dominating clique of G � H. Consider the projections CG and CH of C on G
and H respectively. We claim that CG is a dominating clique of G and CH is a
dominating clique of H. Strong product being commutative, it is sufficient to
show that CG is a dominating clique of G. Let u, u ′ ∈ CG be distinct vertices.
By the definition of projection we can observe that there exist adjacent vertices
(u, v) and (u ′, v ′) in C. We know that (u, v) and (u ′, v ′) are adjacent in G�H
implies that either uu ′ ∈ E(G) and v = v ′ or u = u ′ and vv ′ ∈ E(H) or
uu ′ ∈ E(G) and vv ′ ∈ E(H). Since u and u ′ are distinct we can easily conclude
that uu ′ ∈ E(G). Therefore CG forms a clique in G. Now, to show that CG is a
dominating set. Let u1 /∈ CG be vertex of G. There exists a vertex (u1, v1) in
G�H. Since C is a dominating clique in G�H, there exists a vertex (u0, v0) ∈
C adjacent to (u1, v1). Since u0 and u1 are distinct, by definition of an edge in
strong product u1 and u0 are adjacent. Therefore, CG is a dominating clique
of G.
Conversely, let SG and SH be the dominating cliques in the graphs G and H.
We claim that SG × SH forms a dominating clique in G�H. Firstly to show
that SG × SH is a clique in G�H. Let (u, v) and (u ′, v ′) be two distinct vertices
in SG × SH. Either u = u ′ or uu ′ ∈ E(G) and v = v ′ or vv ′ ∈ E(H). Either
ways (u, v) and (u ′, v ′) are adjacent. Hence, SG × SH is a clique in G � H.
Now to show that SG × SH dominates G � H. Consider a vertex (u1, v1) not
in SG × SH. If u1 not in SG then there exists a u0 in SG adjacent to u1 in G
and a v0 in SH where v0 = v1 or v0 and v1 are adjacent in H. By the definition
of strong product of graphs (u1, v1) is adjacent to (u0, v0). And if u1 is in
SG since (u1, v1) not in SG × SH there exist v0 6= v1 in SH dominating v1 in
H. Owing to the definition of strong product of graphs (u1, v1) is adjacent to
(u1, v0). Therefore, SG × SH forms a dominating clique in G�H. �

Theorem 14 If G and H are connected graphs with dominating cliques, then
γk(G�H) = γk(G) × γk(H)
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Proof. Let SG and SH be the γk sets of G and H respectively. We know that
SG × SH forms a dominating clique in G�H. This implies

γk(G�H) ≤ γk(G) × γk(H)

To show that γk(G�H) ≥ γk(G) × γk(H) we need to show that ∀ (ui, vi) ∈
SG×SH, (ui, vi) ∈γk-set of (G�H). ui ∈ SG implies ui has a private neighbor
say u1. Similarly vi has a private neighbor v1. We claim that (u1, v1) is a private
neighbor of (ui, vi), i.e. there is no (u2, v2) adjacent to (u1, v1) in SG × SH. If
there exists a vertex, say, (u2, v2) adjacent to (u1, v1) then by definition of
strong product u2 = u1 and v1v2 ∈ E(H) or u1u2 ∈ E(G) and v2 = v1 or
u1u2 ∈ E(G) and v1v2 ∈ E(H) all contradicting the fact that u1 is the private
neighbor of ui and v1 is the private neighbor of vi. Which implies that ∀
(ui, vi) ∈ SG × SH, (ui, vi) ∈γk-set of (G � H). Hence SG × SH is a minimal
dominating clique of G�H. To show that SG×SH is a γk set of G�H, assume
the contrary, if SG × SH is not a γk set of G � H, then there exist a smaller
dominating clique T whose projections TG and TH forms a smaller dominating
clique for G and H respectively hence contradicting the minimality of SG and
SH. �

5 Graphs with connected dominating structure of
order four

A forbidden subgraph condition necessary for a graph to have a connected
dominating set of size three was found by Cozzens and Kelleher [5]. We discuss
a forbidden subgraph condition necessary to have a connected dominating set
of size four. There are 6 connected graphs on four vertices :- K4, C4, P4, Claw
(K1,3), Paw and Diamond (K4 − e). Therefore a connected dominating set of
size four can be any of the above mentioned graph.

Figure 3: Connected graphs of order four
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Theorem 15 If G is a finite, connected graph with four or more vertices that
has none of the graphs in B (Fig. 4) as an induced subgraph, then G has a
connected dominating structure of order four.

Figure 4: Class B
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Proof. By induction on n, the order of graph G,
(i) The theorem is true when n = 4.
(ii) Assume that any finite connected graph with n vertices, n ≥ 4, that has

none of the graphs in B as an induced subgraph has a connected dominating
structure of size four.

(iii) Let G be a finite connected graph on n+ 1 vertices, where n ≥ 4, that
has none of the graphs in class B as an induced subgraph. Let v be vertex of
G which is not a cut vertex. Consider the graph G ′, subgraph of G induced
by all vertices of G excluding v. Since G ′ is a finite connected graph with
n vertices having no graphs from class B as an induced subgraph, by the
induction hypothesis G ′ has a connected dominating structure of order four.

Let S = {a, b, c, d} induce the connected dominating structure of order
four of G ′. If v is adjacent to any vertex in S, then S dominates G also.

Suppose that in G, v is not adjacent to any vertex in S. Since G is con-
nected, v must be adjacent to some vertex of G, say x. And S being the
connected dominating set of G ′, x must be adjacent to some vertex in S. The
set {a, b, c, d, x} induces a connected graph of 5 vertices. Therefore, the
graph induced by S ∪N(S) ∪ {v} has one of the graphs from B as a subgraph,
not necessarily induced, i.e, there might be edges between the pendant ver-
tices and other vertices. If there are no edges between the pendant vertices and
the other vertices, this implies that the subgraphs are induced, which contra-
dicts the assumption that G has none of the graphs in class B as an induced
subgraph.

Figure 5: Graphs used in the proof of Theorem 15

Suppose G has at least one edge between the pendant vertices. If G has
exactly one edge between vertices as shown in Figure 5(a) , then G has an
induced subgraph shown in Figure 5(b), which is a forbidden subgraph from
class B.
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Figure 6: Graphs used in the proof of Theorem 15

If G has exactly two edges between the pendant vertices as shown in Figure
6(a) or 6(c), then G has an induced subgraph shown in Figure 6(b) or 6(d) ,
which is a forbidden subgraph from class B.

Figure 7: Graphs used in the proof of Theorem 15

If G has exactly three edges between the pendant vertices as shown in Figure
7(a) or 7(c), then G has an induced P7, which is a forbidden subgraph from
class B.
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Figure 8: Graphs used in the proof of Theorem 15

If G has exactly three edges between the pendant vertices as shown in Figure
8(a), then G has a P4 as shown in Figure 8(b) which is a connected dominating
structure of order four.

We can now observe that an edge between the pendant vertices in the graphs
in Class B will lead to obtaining a connected dominating structure of order
four or a contradiction to the absence of an induced forbidden structure from
class B. Therefore, G has a connected dominating set of size four. �

As we have seen before, the converse of this theorem need not be true. A
finite connected graph having graph from B as an induced subgraph can have
a dominating clique of size four. An example is given in Fig. 9.

Figure 9: Graph with induced P7 dominated by K4
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