

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 5 (2013) 5-20

5

Network Based Caching for Near Real-Time
Streaming Video

Csaba SIMON, Markosz MALIOSZ, Balázs BARANYAI

Department of Telecommunications and Media Informatics,

Budapest University of Technology and Economics,
1117 Budapest, Magyar T. krt. 2., Hungary,

e-mail: {simon; maliosz}tmit.bme.hu

Manuscript received March 29, 2014; revised September 15, 2014.

Abstract: Nowadays more and more live events are being consumed via the web or
smart phones rather than legacy broadcast services. In this paper we present a scenario −
focusing on wireless smartphone-based nodes − that covers this trend. Starting from this
scenario we introduce a novel service that can be offered on top of classical streaming
media services to the users of these mobile handheld devices. Considering that the
wireless infrastructure is heavily loaded by the traffic of the real-time stream itself, we
propose a distributed caching solution to offload it, improving the scalability of the
system. We define two heuristic algorithms to place the caching elements within the
network in an optimal way – the goal was either to minimize the required number of
caching nodes or the size of the cache. In our earlier work we have investigated some
individual aspects covered by the scenario and built a testbed that implements these
proposals. In this paper we present the extension of this integrated testbed suitable for
network coding based communication, which supports the measurement based
evaluation of the presented scenario and the evaluation of the implementation details.
Finally we offer a measurement based assessment of the features implemented in the
testbed.

Keywords: network coding, video streaming, caching.

1. Introduction

The economic success and the market share of Android devices [1] led to the
situation where a significant part of the population carries a plentiful of sensors
and short-range communication devices with them. These general purpose
devices have an unprecedentedly high computational power, allowing the
execution of complex operations in the background. The smartphones also offer
the possibility to experiment with a wide variety of wireless networking issues.
In our earlier work we have started to develop a generic testbed environment, as

6 Cs. Simon, M. Maliosz, B. Baranyai

introduced in [2] and [3]. In this testbed the Android devices may act as
harvesters (mobile data collectors), communicating nodes and real-time media
endpoints in distributed wireless networks. We primarily used this testbed to
research the applicability of network coding techniques in sensor networks and
on forwarding streaming video over wireless links [3].

In [2] we also presented several scenarios that motivated our research of
network coding. The scenarios cover wireless sensor networking (WSN - [4])
communication and distributed wireless communication research issues,
network coding application alternatives, real-time media streaming and
communication management. For the details of the respective scenarios please
refer to [2].

In this paper we extend the scenarios, introducing a novel service that can be
offered on top of a classical streaming media service. The scenario focuses on
crowded events, when lots of users follow the same live content. The new
service is the replay of recent highlight of this real event. Considering that the
wireless infrastructure is heavily loaded by the traffic of the real-time stream
itself, we propose a distributed caching solution to offload it, improving the
scalability of the system. We will discuss the details of such novel service and
will present a model that will allow us to analyze its behavior later in Section 3.
Although media distribution might use multicast in order to use efficiently the
network resources, most of the devices and applications still use unicast.
Therefore in the following we will focus only on unicast solutions. Because the
scenarios are used as motivations for our research, which are validated by
testbed experiments, the testbed development was a natural follow up of the
scenario definition and analysis. We implemented both the media streaming and
network coding support in our testbed that can be used to demonstrate the
presented scenarios and the test implementation details. The details of this work
are presented in Section 5.
 As explained in this paper, the implementation of this scenario is based on
network coding mechanisms, already used in earlier scenarios. Network coding
(NC) mechanism re-codes packets of flows within the network at various nodes,
promising overall higher throughput and/or reliability [2], [5]. Here we only
shortly review the main advantage of the NC, using the widely used butterfly
topology (see Fig. 1): “if the packets of a stream are distributed over parallel
paths (flows a and b) and packets are encoded together using network coding,
the original packets can be restored at the destination. This approach can be
used to increase the network capacity. Let us assume that both a and b flows
require the same bandwidth. In Fig. 1 the common link carries the encoded
a+b flow instead of carrying both a and b flows. Now, using NC techniques, the
required capacity of a+b is the same as for the individual a (or b) flow. Thus we

 Network Based Caching for Near Real-Time Streaming Video 7

can achieve a 50% cost saving over the common link in terms of bandwidth
capacity” [2].

Figure 1: Network coding in a network with butterfly topology.

In our work we follow an alternative (Random Linear Network Coding -
RLNC - [6]), where nodes assign coefficients to each packet randomly. All
nodes using random network coding are independent and randomized, without
the need of any knowledge of the rest of the network, assuring high quality
transmission [7]. Early works focused on the case when the network is
populated by large enough number of flows (inter-flow NC) [8], then also
considered the intra-flow case [9]. Later works then further extended the area of
applicability [10], [11], [12].

2. Caching of media streams – related work

The traffic volume of streaming media had exceeded that of any other traffic
type, including peer-to-peer or web access and researchers tried to reduce its
bandwidth demand by various methods, including caching. There is a vast available
literature in this field. In what follows we highlight the most important ones.

Early caching strategies focused on the deployment of a dedicated proxy
close to the consumers, and a god overview of these solutions divided them in
four categories: sliding-interval caching, prefix caching, segment caching, and
rate-split caching [13]. The sliding-interval caching [14] stores data at the first
appearance of it (as it is arriving from the server), and delivers it to the
subsequent requests. The prefix caching [15] always stores the first segments of
the media, thus the proxy can immediately serve any request and starting to
fetch the rest of the data in the meantime. The segment caching [16], [17], [18]
offers a more advanced solution, because it assigns utilities to the segments, and
caches them accordingly. The rate-split caching [19] breaks with the time-based
segmentation of the stream and splits it along the rate. The lower rate
component may arrive directly from the server, while the rest of the data,
ensuring the premium quality of the service, uses only local networking
resources.

The advent of the peer-to-peer (P2P) networks influenced this research area,
as well. Several P2P based solutions were proposed: some of them are more

8 Cs. Simon, M. Maliosz, B. Baranyai

generic, as rely on the logical P2P overlays [20], or ones that use the specific
architecture of the access network and cannot be directly applied in other
networks [21].

As Content Delivery Networks (CDN) gained in popularity, researchers
applied the streaming video caching mechanisms on this technology, too [22].
Similarly, caching in clouds is a promising research direction [23].
Nevertheless, both directions require heavy investments in the infrastructure.
Moreover, in our scenario the problem is the overload of the access, which
connects the cloud to the users, thus we still have to address this issue. The
combination of network coding methods with P2P solution is a noteworthy
novelty [24], but in this paper we focus on a specific service, not supported in
earlier papers.

Finally we mention the new networking paradigm, the Information Centric
Network, which has an advanced caching mechanism [27], integrated with its
novel data forwarding mechanism. The challenging research issues gave birth to
several interesting papers [25], [26] involving multicast scenarios, but our work
deals with classical IP unicast networks.

The reader interested in further details of streaming video caching is directed
to a thorough overview of this field [28].

3. Near-real time streaming supported by caching

A. Basic Scenarios

Before presenting our new scenario we summarize first the basic scenarios
that motivated our work, because it leads to a better understanding of our
testbed and also introduces the reader to Section 3.B. For a detailed description
the reader is redirected to [2]. The scenarios built on the fact that the cheap
short-range wireless devices (RFID and NFC tags) favor the deployment of
large distributed wireless sensor networks (WSN) [4]. Nevertheless, the
collection of the sensory data from such large deployed networks will be both
an economical and a logistic issue. We proposed to use the ubiquitous Android
smartphones to do this task and envisaged a cooperative wireless mesh to
convey the sensory data to a management center. Apart of sensory data, the
smartphones had to forward live video and control traffic, both required to
manage and control the wireless nodes. The network coding was the technology
of choice to improve the reliability and performance of the communication over
the wireless mesh.

In this paper we build on the basic scenarios, reusing the ideas of forwarding
live streaming video streams. Although we reuse many building blocks
developed during our earlier work, this new scenario can be described and

 Network Based Caching for Near Real-Time Streaming Video 9

analyzed as a standalone one. Note that this common background will be more
evident when we describe our testbed, as mentioned later in Section 5. As a
consequence the following sub-section contains the definition of the scenario
itself, along with the motivation behind it.

B. Near real-time streaming service

In their quest to gain competitive advantage on the travel and leisure market,
many cities organize large public events: city festivals or thematic events (e.g.,
concerts, art festivals, sporting events). In parallel with this trend more live events
are being consumed via the web or smart phones rather than broadcast; the
“second screen” is gaining prominence and people are multi-tasking on their
devices; attendees of live events continue using their smart devices (e.g. for social
media). Current access networks are hard pressed to provide the required QoS.

This scenario aims at providing various mechanisms to support the goal of
increasing QoE of live media streaming while at the same time decreasing the
network load. The target service is for (near) real-time streaming media
distribution. Note that participants at events often want to see replays of the key
moments or re-watch some recent performance, often only a few seconds after it
happened. We build on the trend that attendees of live events will use their
smart devices during the event – for email, social media and, more and more,
for recording and consuming video.

The load in the wireless access is decreased by the use of network coding
and stretching the lifetime of the network encoded packets somewhere in the
network distributed in end devices or well-placed points in the distribution/
access domain. The cached distribution primarily is implemented on the user's
devices.

Figure 2: Media streaming with caching.

This scenario is depicted in Fig. 2. The streaming media is distributed by the
APi Access Points. The nodes receiving the data encode it and cache it locally
(S1, …). Any time a node (blue stars) want a replay, they will have the data
chunks readily available in their local mesh network.

10 Cs. Simon, M. Maliosz, B. Baranyai

The above scenario, although seems a quite limited one at first glance, it
proves to be a complex one. The complexity comes from the fact that it uses
many technologies and during the analysis of the scenario we have to deal both
with the technical details to be solved in order to implement the scenario and
with the interactions among these particular technologies. In our earlier work
we have investigated some individual aspects covered by the scenario.

In our earlier paper [2] we evaluated candidate radio technologies to support
the scenarios. In [3] we investigated the aspects of distributed streaming video
communication in our testbed, focusing on the performance of a simplified
logical ring that formed a peer-to-peer overlay over the Android devices within
the testbed. In [5] we presented a simulation based performance evaluation of
caching strategies. In this paper we add new elements to these series of results,
addressing the particularities of this scenario introduced above. We propose two
alternative algorithms that offer an optimized solution to our scenario. Then in
Section 5 we present an extension of our earlier testbeds that can support the
measurement based evaluation of our scenario.

4. Proposed caching model optimization

 In this section we take a closer look at two alternatives to optimize the cache
placement within the scenario presented in Section 3.B. The optimization
problem is not trivial, because not all nodes should necessarily act as caches and
even those that do, do not necessarily store every packet in their cache memory.
The starting point is the all the nodes are attached to one APi from the set of a
set of {APi} Access Points and the covered area is large enough to make sure
that nodes cannot communicate directly with everyone within the whole
network. We also consider that the nearest caching nodes and cache hit statistics
can be obtained by the requesting nodes [5].

A. Minimizing the number of caches

In the first model we search for the number of caching nodes to serve those
nodes that are attached to the same AP and we allow to store unlimited number
of segments in the cache. We can give the required number of caching nodes |Si|
as the rounded up value of the total size of required data chunks (gw segments
are required for Di users) divided by the direct link capacity c:

 



=

c
gDS wi

i (1)

Note that this solution does not allow that a node attached to APi to request
data from a caching node attached to APj. Our goal is to get the minimal number

 Network Based Caching for Near Real-Time Streaming Video 11

of caching nodes, a subset of all N nodes. ci is the total capacity of the direct link
from node i (we consider that the total incoming and outgoing capacities are
equal). In [5] we gave a 0-1 Integer Linear Programming (ILP) to solve this
optimization problem, but this type of ILPs are known to be NP hard [29].

Therefore we propose the following heuristic algorithm (see Table 1).

Table 1: The cache placement algorithm.

Foreach APi
 Compute |Si| based on eq. (1)
 Xi := arbitrary selection of |Si| nodes from the vicinity of APi
S = U Xi

Foreach APi

Partition all the nodes with demands based on distance from the coverage
area APi among Xij

 Cij = total expected demand on Xij

Do

Flag = 0
Foreach Xij

 If Cij < Capacity(Xij) then
 Flag = 1
 Elect an additional X from the vicinity

Re-partition all the nodes with demands based on distance from
the coverage area APi among Xij

Until Flag == 0

The above heuristic algorithm takes all APs and makes an initial selection of
caches as given in (1) for the simplified scenario. Then it refines this selection,
introducing new caching nodes in those areas, where the existing ones cannot
answer all the demands. If there are no more unanswered demands, the
algorithm stops.

B. Minimizing the cache size

In Section 4.A we tried to reduce the number of caching nodes, without
restricting the individual cache sizes. Now we will try to minimize the size of the
cache, but we do not restrict the number of caching nodes. Let us keep the same
notations we introduced earlier in this section, and additionally let us note the

12 Cs. Simon, M. Maliosz, B. Baranyai

number of chunks stored at node i with ki. We proposed and ILP in [5] to solve
this optimization problem, but the same reasoning presented in Section 4.A
applies here, as well. Therefore we provide a heuristic algorithm that solves this
problem. First we give the number of chunks a node should store, if the chunks
are evenly distributed among all nodes attached to the APi. We keep the
notation used for eq. (1), and we note with Ni the total number of attached
nodes.

 







=

i

wi
i N

gDk (17)

The algorithm is given in Table 2 below.

Table 2: The cache placement algorithm.

Foreach APi
 Compute ki based on eq. (17)
k = mini (ki)
Store k chunks in each node

Foreach leacher l
 Assign the closest nodes (caches) to it
 Can’t assign more than cl
 gl = total available chunks at these caches

Do

Flag = 0
Foreach leacher l

 While gl < gw do
 Flag = 1
 kl++ for the caches linked to l

//this can be done in parallel – increase the cache only once
//during a single round

Until Flag == 0

The algorithm computes the minimal number of chunks that should be
available at the nodes (i.e., caches, since every node is a potential cache) in
order to satisfy the lowest demand at any AP. Then we find those leachers,
which have unsatisfied demand and increase the cache size by one for its
caches. The algorithm stops, if there are no new unsatisfied leachers left.

 Network Based Caching for Near Real-Time Streaming Video 13

5. Video streaming environment with Android smartphones

In this section we present a testbed to support the evaluation of the proposed
scenario and algorithms presented in this paper.

A. Testbed for streaming video services

Earlier in this paper we have already motivated our testbed development
work by the need to obtain a platform suitable to assess our scenarios. The
common point in our scenarios is the presence of a mobile node capable of
communicating over IP. This node was implemented as a remote controlled
vehicle, where the computational and communication functions are executed by
an Android smartphone, implementing an extended distributed data network.
The interface between the Android device and the motors moving the vehicle is
done by a dedicated microcontroller board, the IOIO [30].

Figure 3: a) The elements of the mobile node and b) the implemented vehicle.

Fig. 3. a) presents the components of the implemented mobile node. The
vehicle and the driving motors are on the left bottom, the IOIO board is one the
upper left part of the figure. The Android smartphone (pictured on the upper
right part of the figure) is linked to the IOIO board by Bluetooth (but we can
also use USB cables for this purpose). This device is also responsible with the
control tasks. A central management entity (bottom right corner) has a suitable
GUI to control the movement of the node (on the downlink direction) and is
connected to it over variants of WiFi (see Section 5.C for further details). As a
part of the control process, live video streams are sent from the mobile node to
the control station (i.e., uplink), the implementation details of this streaming
service being discussed later in Section 5.B. The implemented mobile node and
the management station is pictured in Fig. 3. b).

14 Cs. Simon, M. Maliosz, B. Baranyai

B. Streaming media over Android

The multimedia stream in the testbed is offered by an application
implemented from scratch by us.

A natural choice would have been the use of Real-time Transport Protocol
(RTP) for such task [31]. RTP based streaming in Android is supported by the
libstreaming library. The encoding for RTP transmission should be done using
H263 codecs instead of H264, since the latter has higher resource demands. For
decoding at the destination an external library can be used (we used vlc player,
which was able to decode the stream [32]). Due to the above Android
environment details (e.g., the delays introduced by encapsulation and control,
video handling difficulties) we decided to go for different solution.

As a first option, in order to capture the stream from the camera of the
smartphone, we use the camera preview images. Then these raw images are sent
to an image encoding library, and this encoded JPEG image, which corresponds
to a frame of the video stream, is sent over UDP to the recipient(s). This
solution makes it easier to handle the frames at the receiving peer and debug our
implementation: any disturbance in the encoding/decoding process is limited to
a well identifiable frame, not to a sequence of frames. The fragmentation of the
video frames and the header structure of the packets have been designed to be
able to carry multiple streams and/or support multiple networks encoding along
the path. In our first tests we checked the viability of our solution.

A second option was to use other, older encoders developed for TV
transmission in a selfcontaining mode. E.g., MPEG-2 Transport Stream
(MPEG-2 TS, M2TS) has been introduced in ISO/IEC 13818-1 standard in
1995 [33] . It has the advantage that video format info is in-band. Most of
Android smartphones support the playout of such streams, but the encoding of
such streams officially is not supported. Some forums reported that that in some
devices with Android OS above version 3.0 have unofficial support for this
format (e.g., Google Nexus 4). We used this smartphone to implement and test
our solution.

Fig. 4. shows the logical structure of our solution. The live feed from the
camera is encoded by the Media Recorder in real time. Instead of saving this
stream locally, it is written into a socket, which is used to send the stream over
the Internet. On the receiver side the ideal playout method would have been to
feed the read socket directly to the player, but the available players require a
seekable source. Therefore the socket is read in a loop, temporarily stored in a
file and the player plays the video from this file. The file is continuously filled
from the socket and read by the players. We just have to make sure that the new
video content is filled fast enough into the file as the player never reaches the
end of the file. We made some experiments and found that a 200ms buffer is
enough for this goal.

 Network Based Caching for Near Real-Time Streaming Video 15

Figure 4: Client-server architecture of the MPEG-2 TS implementation.

We compared our two solutions and we found that there is a tradeoff on
quality vs delay. The JPEG based solution has lower delays (avg. 300ms), but
during fast moves it is blurred, while the MPEG-TS based solution offers usable
picture during fast moves, too, but it has higher delays (avg. 500ms).

Finally, in Table 3 we summarized the measured performance of the video
transfer in our testbed. The first row corresponds to our first implementation,
when we forward the series of JPEG still pictures captured at the source. Then
we show the RTP-based solution, finally the MPEG2-TS based implementation.
As we can see, the packet delays are extremely high in the case of the RTP
based solution, while the other two provide similar results, with a clear
advantage on the JPEG-based implementation. Note that for the MPEG based
implementation we did not have packet-level statistics. The required bandwidth
was similar for the first two solutions, but it came at the price of lower Quality
of Experience (QoE). The highest disadvantage of the JPEG based solution was
the low fps (frame per second) value. The QoE of the MPEG based solution
outperformed both previous solutions.

Table 3: The performance of tested video transfer solutions.

Techno-
logy of
choice

Delay
[ms]

Avg.
delay
[ms]

Band-
width
[kilo

Bytes/
sec]

Avg.
BW
[kilo

Bytes/
sec]

Avg.
video

q.
[fps]

Still
picture
quality
(QoE)

Moving
picture
(video)
quality
(QoE)

JPEG 170-
440 290 100-300 170 15 Blurry Blurry

RTSP 1090-
1570 1300 100-200 150 20 Good Checkered

MPEG-2
TS - 500 - 250 - Excellent

(sharp)
Rarely
checkered

16 Cs. Simon, M. Maliosz, B. Baranyai

C. Communication between the mobile nodes

The Android smartphone attached to the vehicle is able to control the
vehicle, to collect sensory data and to capture live streams. Nevertheless, in
order to exploit these capabilities we have to assure the delivery of the data to
the management center. We proposed scenarios where this is achieved through a
cooperative mesh between Android smartphones (see the testbed in Fig. 5.).

Figure 5: Mobile nodes in the distributed testbed.

The cooperative mesh is a logical construct at layer 3. In order to implement
it in the testbed we used several WiFi variants. The Android SDK assures a
complex API to handle WiFi related aspects [34]. Unfortunately, the WiFi ad
hoc mode is not supported by Android. They introduced WiFi Direct [35]
(earlier also known as WiFi P2P) instead, designed to provide seamless device-
to-device WiFi connection. We implemented our testbed using this technology,
the measurement results being generated with this setup. Nevertheless, we also
used the infrastructure mode WiFi communication in our testbed and focus on
the logical overlay to emulate distributed communication scenarios [3]. [2]
introduces our RLNC implementation, and is not affected from the choice of
which WiFi alternative is used.
 As the proposed scenario is based on the network coding of streaming data,
we evaluated the performance of the testebed by means of measurements. We

 Network Based Caching for Near Real-Time Streaming Video 17

used the unsuccessful display attempts during the playout process to assess the
performance of the implementation. This is a complex parameter, aggregating
the events of unsuccessful decoding attempts and the de-synchronization events.
This latter happens when the encoded packet streams arriving over two
branches are skewed, thus the decoder cannot get enough coded segments. Note
that this event may be caused by the delays caused by a slow wireless link (e.g.,
slowed down by interference, resent packets, etc.).

Since decoding is a computationally intensive process, we tested devices
from two different generations (Google Nexus S and Nexus 4). Table 4 presents
the average results obtained after 10 experiments. We present both the encoding
and decoding performance. Note that in all cases the QoE of the played video
was specific to the JPEG streaming solution (i.e., it allowed to successfully
control the mobile node in real-time).

Table 4: The performance of network coding of media streams.

Smartphone model Encoding loss rate [%] Decoding loss rate [%]
Google Nexus S 4.8 19.1
Google Nexus 4 4.1 11.5

We can see that the encoding process has significantly lower impact. Also

note that the older device has only slightly lower performance than the Nexus 4.
During the decoding phase the Nexus S cannot keep the pace, the performance
gap between the two becoming significantly larger. A practical conclusion of
these measurements is that current state-of-the art Android devices (which are 3
years newer by design compared to the Nexus 4) provide enough resources to
support real-time RLNC decoding.

6. Conclusions

The spread of both WiFi capable Android devices makes feasible the design
and implementation of general purpose distributed heterogeneous data
networks. The high processing capacity of the smartphones makes them ideal to
experiment with streaming video distribution and related services. In this paper
we presented a novel streaming video service, and a method using network
coding based caching to offload the wireless infrastructure. We proposed a
heuristic algorithm to place the caching elements within the network.

We have built a prototype testbed based on Android smartphones which will
serve as a demonstration platform for our proposal. We have implemented a
mobile node, the live streaming video solution over the Android system and the
random linear network coding based communication between the Android
devices. We measured the performance of the implemented technologies. We

18 Cs. Simon, M. Maliosz, B. Baranyai

showed that the implementation of RLNC based streaming video is feasible in
modern Android devices. In our future work we plan to analyze the different
aspects of caching strategies in our proposed scenario.

Acknowledgements

Csaba Simon’s research work was supported by the European Union and the
State of Hungary, co-financed by the European Social Fund in the framework of
TÁMOP 4.2.4.A/1-11-1-2012-0001 National Program of Excellence (NKP).

Markosz Maliosz’s research work was carried out as part of the EITKIC_12-1-
2012-0001 project, which is supported by the Hungarian Government, managed
by the National Development Agency, financed by the Research and Technology
Innovation Fund and was performed in cooperation with the EIT ICT Labs
Budapest Associate Partner Group (www.ictlabs.elte.hu).

References

[1] Google Android developers guide – available online from: http://developer.android.
com/guide/components/index.html

[2] Soos, A., Simon, Cs., Maliosz, M., “Network Coding Based Data Collection in Distributed
Sensor Networks”, The 4th International Conference on Recent Achievements in
Mechatronics, Automation, Computer Sciences and Robotics, MACRo 2013, Târgu Mureş,
Romania, 2013.

[3] Zalatnay, Zs., Simon, Cs., Maliosz, M., Terza, B., “Managing streaming services in a
distributed testbed”, The 5th International Conference on Recent Achievements in
Mechatronics, Automation, Computer Sciences and Robotics, MACRo 2015, Târgu Mureş,
Romania, March 2015.

[4] Akan, O. B., Isik, M. T., Buyurman, B., “Wireless passive sensor networks”, IEEE
Communications Magazine, vol. 47, nr. 8, pp. 92-99, 2009.

[5] Simon, Cs., Maliosz, M., “Network Coding Based Caching for Near Real-Time Streaming
Media”, To appear in: Infocommunications Journal: a publication of the Scientific
Association for Infocommunications (HTE), vol. 7, nr. 1, pp. 7-14, 2015.

[6] Li, B., et al, “Random network coding in peer-to-peer networks: From theory to practice”,
2011.

[7] Gajic, B., Riihijrvi, J., Mhnen, P., “Performance evaluation of network coding: Effects of
topology and network traffic for linear and xor coding”, Journal of Communication, vol.
4, nr. 11, pp. 885-893, 2009.

[8] Chachulski, S., and Katti, S., “Trading structure for randomness in wireless opportunistic
routing”, in Proc. of ACM SIGCOMM, 2007.

[9] Katti, S., Katabi, D., Hu, W., Rahul, H., and Medard, M., “The importance of being
opportunistic: Practical network coding for wireless environments”, in Proc. 43rd Annual
Allerton Conference on Communication, Control, and Computing, 2005.

[10] Gkantsidis, C., and Rodriguez, P. R. “Network coding for large scale content distribution”,
in Proc. of IEEE INFOCOM 2005, vol. 4, 2005.

[11] Traskov, D., Lenz, J., Ratnakar, N. and Médard, M., “Asynchronous Network Coded
Multicast”, in Proc. of ICC Communication Theory Symposium, 2010.

 Network Based Caching for Near Real-Time Streaming Video 19

[12] Zhang, X., Neglia, G., Kurose, J., “Network Coding in Disruption Tolerant Networks,
Network Coding: Fundamentals and Applications”, Elsevier Science (Ed.), 2011.

[13] Liu, J., and Xu, J., “Proxy caching for media streaming over the Internet”, IEEE
Communications Magazine, vol. 42 nr. 8, pp. 88-94, 2004.

[14] Tewari, R., Vin, H. M., Dan, A., and Sitaram, D. “Resource-based caching for Web
servers”, in Proc. of SPIE/ACM Conf. on Multimedia Computing and Networking
(MMCN’98), San Jose, CA., 1998.

[15] Sen, S., Rexford, J., and Towsley, D., “Proxy prefix caching for multimedia streams”, in
Proc. of IEEE INFOCOM’99, New York, NY, 1999.

[16] Wu, K. L., Yu, P. S., and Wolf, J. L., “Segment-based proxy caching of multimedia
streams”, in Proc. of WorldWideWeb Conference (WWW10), Hong Kong, 2001.

[17] Miao, Z., and Ortega, A., “Scalable proxy caching of video under storage constraints”,
IEEE Journal on Selected Areas in Communications, vol. 20, no. 7, pp. 1315-1327,
September 2002.

[18] Fahmi, H., Latif,M., Sedigh-Ali, S., Ghafoor, A., Liu, P., and Hsu, L., “Proxy servers for
scalable interactive video support”, IEEE Computer, 43(9): 54-60, 2001.

[19] Zhang, Z.-L.,Wang, Y., Du, D., and Su, D., “Video staging: A proxyserver-based
approach to end-to-end video delivery over wide-area networks”, IEEE/ACM
Transactions on Networking, vol. 8 nr. 4, pp. 429-442, 2000.

[20] Zhang, M. et al., “A Peer-to-Peer Network for Live Media Streaming - Using a Push-Pull
Approach”, in Proc. of ACM Multimedia, 2005.

[21] Kőrösi, A., Székely, B., Császár, A., Lukovszki, Cs., “High quality P2P-Video-on-
Demand with download bandwidth limitation”, in 17th IEEE International Workshop on
Quality of Service, Charleston, USA pp. 1-9, July 2009.

[22] Adhikari, V. K., et al., “Unreeling Netflix: Understanding and Improving Multi-CDN
Movie Delivery”, in Proc. IEEE INFOCOM, 2012.

[23] Wu, Y., et al.,“CloudMedia: when Cloud on Demand Meets Video on Demand”, in Proc.
IEEE ICDCS, 2011.

[24] Wang, M., Li, B., “R2: Random Push with Random Network Coding in Live Peer-to-Peer
Streaming”, IEEE Journal on Selected Areas in Communications, 2007.

[25] Wong, W., Wang, L., and Kangasharju, J., “Neighborhood search and admission control
in cooperative caching networks”, in IEEE Global Communications Conference
(GLOBECOM), pp. 2852-2858, 2012.

[26] Montpetit, M.-J., Westphal, C., and Trossen, D., “Network coding meets information-
centric networking”, in ACM MobiHoc workshop NOM’12, pp. 31–36, June 2012.

[27] Sourlas, V., Gkatzikis, L., Flegkas, P., and Tassiulas, L., “Distributed cache management
in information-centric networks”, IEEE Transactions on Network and Service
Management, vol. Early Access Online, 2013.

[28] Li, B., Wang, Z., Liu, J., and Zhu, W., “Two decades of internet video streaming: A
retrospective view”, ACM Transactions on Multimedia Computing, Communications and
Applications (TOMCCAP), 9(1s), 33. 2013.

[29] Karp, R. M., “Reducibility Among Combinatorial Problems”, in Proc. Sympos.
Complexity of Computer Computations, IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y. New York: Plenum, pp.85-103, 1972.

[30] IOIO library basic documentation, https://github.com/ytai/ioio/wiki/IOIOLib-Basics,
Sparkfun 2012.

[31] RTP: A Transport Protocol for Real-Time Applications, IETF RFC 3550, available from:
http://tools.ietf.org/html/rfc3550.

[32] Official page of the VLC media player, available form: https://www.videolan.org/
vlc/index.html.

20 Cs. Simon, M. Maliosz, B. Baranyai

[33] International Telegraph Union - Telecommunication Standardization Sector,
Recommendation H.222.0 (07/95), available from: http://www.itu.int/rec/T-REC-H.222.0-
199507-S/en.

[34] WiFi package for Android, available from: http://developer.android.com/reference/
android/net/wifi/package-summary.html.

[35] Wi-Fi Alliance, Wi-Fi Direct, available from: http://www.wi-fi.org/discover-and-learn/wi-
fi-direct.

	A. Basic Scenarios
	B. Near real-time streaming service
	A. Minimizing the number of caches
	B. Minimizing the cache size
	A. Testbed for streaming video services
	B. Streaming media over Android
	C. Communication between the mobile nodes

