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Abstract: Nowadays more and more live events are being consumed via the web or 
smart phones rather than legacy broadcast services. In this paper we present a scenario − 
focusing on wireless smartphone-based nodes − that covers this trend. Starting from this 
scenario we introduce a novel service that can be offered on top of classical streaming 
media services to the users of these mobile handheld devices. Considering that the 
wireless infrastructure is heavily loaded by the traffic of the real-time stream itself, we 
propose a distributed caching solution to offload it, improving the scalability of the 
system. We define two heuristic algorithms to place the caching elements within the 
network in an optimal way – the goal was either to minimize the required number of 
caching nodes or the size of the cache. In our earlier work we have investigated some 
individual aspects covered by the scenario and built a testbed that implements these 
proposals. In this paper we present the extension of this integrated testbed suitable for 
network coding based communication, which supports the measurement based 
evaluation of the presented scenario and the evaluation of the implementation details. 
Finally we offer a measurement based assessment of the features implemented in the 
testbed. 
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1. Introduction 

The economic success and the market share of Android devices [1] led to the 
situation where a significant part of the population carries a plentiful of sensors 
and short-range communication devices with them. These general purpose 
devices have an unprecedentedly high computational power, allowing the 
execution of complex operations in the background. The smartphones also offer 
the possibility to experiment with a wide variety of wireless networking issues. 
In our earlier work we have started to develop a generic testbed environment, as 
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introduced in [2] and [3]. In this testbed the Android devices may act as 
harvesters (mobile data collectors), communicating nodes and real-time media 
endpoints in distributed wireless networks. We primarily used this testbed to 
research the applicability of network coding techniques in sensor networks and 
on forwarding streaming video over wireless links [3]. 

In [2] we also presented several scenarios that motivated our research of 
network coding. The scenarios cover wireless sensor networking (WSN - [4]) 
communication and distributed wireless communication research issues, 
network coding application alternatives, real-time media streaming and 
communication management. For the details of the respective scenarios please 
refer to [2]. 

In this paper we extend the scenarios, introducing a novel service that can be 
offered on top of a classical streaming media service. The scenario focuses on 
crowded events, when lots of users follow the same live content. The new 
service is the replay of recent highlight of this real event. Considering that the 
wireless infrastructure is heavily loaded by the traffic of the real-time stream 
itself, we propose a distributed caching solution to offload it, improving the 
scalability of the system. We will discuss the details of such novel service and 
will present a model that will allow us to analyze its behavior later in Section 3. 
Although media distribution might use multicast in order to use efficiently the 
network resources, most of the devices and applications still use unicast. 
Therefore in the following we will focus only on unicast solutions. Because the 
scenarios are used as motivations for our research, which are validated by 
testbed experiments, the testbed development was a natural follow up of the 
scenario definition and analysis. We implemented both the media streaming and 
network coding support in our testbed that can be used to demonstrate the 
presented scenarios and the test implementation details. The details of this work 
are presented in Section 5. 
 As explained in this paper, the implementation of this scenario is based on 
network coding mechanisms, already used in earlier scenarios. Network coding 
(NC) mechanism re-codes packets of flows within the network at various nodes, 
promising overall higher throughput and/or reliability [2], [5]. Here we only 
shortly review the main advantage of the NC, using the widely used butterfly 
topology (see Fig. 1): “if the packets of a stream are distributed over parallel 
paths (flows a and b) and packets are encoded together using network coding, 
the original packets can be restored at the destination. This approach can be 
used to increase the network capacity. Let us assume that both a and b flows 
require the same bandwidth.  In Fig. 1 the common link carries the encoded 
a+b flow instead of carrying both a and b flows. Now, using NC techniques, the 
required capacity of a+b is the same as for the individual a (or b) flow. Thus we 
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can achieve a 50% cost saving over the common link in terms of bandwidth 
capacity” [2]. 

 
Figure 1: Network coding in a network with butterfly topology. 

In our work we follow an alternative (Random Linear Network Coding - 
RLNC - [6]), where nodes assign coefficients to each packet randomly. All 
nodes using random network coding are independent and randomized, without 
the need of any knowledge of the rest of the network, assuring high quality 
transmission [7]. Early works focused on the case when the network is 
populated by large enough number of flows (inter-flow NC) [8], then also 
considered the intra-flow case [9]. Later works then further extended the area of 
applicability [10], [11], [12]. 

2. Caching of media streams – related work 

The traffic volume of streaming media had exceeded that of any other traffic 
type, including peer-to-peer or web access and researchers tried to reduce its 
bandwidth demand by various methods, including caching. There is a vast available 
literature in this field. In what follows we highlight the most important ones. 

Early caching strategies focused on the deployment of a dedicated proxy 
close to the consumers, and a god overview of these solutions divided them in 
four categories: sliding-interval caching, prefix caching, segment caching, and 
rate-split caching [13]. The sliding-interval caching [14] stores data at the first 
appearance of it (as it is arriving from the server), and delivers it to the 
subsequent requests. The prefix caching [15] always stores the first segments of 
the media, thus the proxy can immediately serve any request and starting to 
fetch the rest of the data in the meantime. The segment caching [16], [17], [18] 
offers a more advanced solution, because it assigns utilities to the segments, and 
caches them accordingly. The rate-split caching [19] breaks with the time-based 
segmentation of the stream and splits it along the rate. The lower rate 
component may arrive directly from the server, while the rest of the data, 
ensuring the premium quality of the service, uses only local networking 
resources. 

The advent of the peer-to-peer (P2P) networks influenced this research area, 
as well. Several P2P based solutions were proposed: some of them are more 
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generic, as rely on the logical P2P overlays [20], or ones that use the specific 
architecture of the access network and cannot be directly applied in other 
networks [21].  

As Content Delivery Networks (CDN) gained in popularity, researchers 
applied the streaming video caching mechanisms on this technology, too [22].  
Similarly, caching in clouds is a promising research direction [23]. 
Nevertheless, both directions require heavy investments in the infrastructure. 
Moreover, in our scenario the problem is the overload of the access, which 
connects the cloud to the users, thus we still have to address this issue. The 
combination of network coding methods with P2P solution is a noteworthy 
novelty [24], but in this paper we focus on a specific service, not supported in 
earlier papers. 

Finally we mention the new networking paradigm, the Information Centric 
Network, which has an advanced caching mechanism [27], integrated with its 
novel data forwarding mechanism. The challenging research issues gave birth to 
several interesting papers [25], [26] involving multicast scenarios, but our work 
deals with classical IP unicast networks. 

The reader interested in further details of streaming video caching is directed 
to a thorough overview of this field [28]. 

3.  Near-real time streaming supported by caching 

A. Basic Scenarios 

Before presenting our new scenario we summarize first the basic scenarios 
that motivated our work, because it leads to a better understanding of our 
testbed and also introduces the reader to Section 3.B. For a detailed description 
the reader is redirected to [2]. The scenarios built on the fact that the cheap 
short-range wireless devices (RFID and NFC tags) favor the deployment of 
large distributed wireless sensor networks (WSN) [4]. Nevertheless, the 
collection of the sensory data from such large deployed networks will be both 
an economical and a logistic issue. We proposed to use the ubiquitous Android 
smartphones to do this task and envisaged a cooperative wireless mesh to 
convey the sensory data to a management center. Apart of sensory data, the 
smartphones had to forward live video and control traffic, both required to 
manage and control the wireless nodes. The network coding was the technology 
of choice to improve the reliability and performance of the communication over 
the wireless mesh. 

In this paper we build on the basic scenarios, reusing the ideas of forwarding 
live streaming video streams. Although we reuse many building blocks 
developed during our earlier work, this new scenario can be described and 
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analyzed as a standalone one. Note that this common background will be more 
evident when we describe our testbed, as mentioned later in Section 5. As a 
consequence the following sub-section contains the definition of the scenario 
itself, along with the motivation behind it. 

B. Near real-time streaming service 

In their quest to gain competitive advantage on the travel and leisure market, 
many cities organize large public events: city festivals or thematic events (e.g., 
concerts, art festivals, sporting events). In parallel with this trend more live events 
are being consumed via the web or smart phones rather than broadcast; the 
“second screen” is gaining prominence and people are multi-tasking on their 
devices; attendees of live events continue using their smart devices (e.g. for social 
media). Current access networks are hard pressed to provide the required QoS.  

This scenario aims at providing various mechanisms to support the goal of 
increasing QoE of live media streaming while at the same time decreasing the 
network load. The target service is for (near) real-time streaming media 
distribution. Note that participants at events often want to see replays of the key 
moments or re-watch some recent performance, often only a few seconds after it 
happened. We build on the trend that attendees of live events will use their 
smart devices during the event – for email, social media and, more and more, 
for recording and consuming video. 

The load in the wireless access is decreased by the use of network coding 
and stretching the lifetime of the network encoded packets somewhere in the 
network distributed in end devices or well-placed points in the distribution/ 
access domain. The cached distribution primarily is implemented on the user's 
devices. 

Figure 2: Media streaming with caching. 

This scenario is depicted in Fig. 2. The streaming media is distributed by the 
APi Access Points. The nodes receiving the data encode it and cache it locally 
(S1, …). Any time a node (blue stars) want a replay, they will have the data 
chunks readily available in their local mesh network. 
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The above scenario, although seems a quite limited one at first glance, it 
proves to be a complex one. The complexity comes from the fact that it uses 
many technologies and during the analysis of the scenario we have to deal both 
with the technical details to be solved in order to implement the scenario and 
with the interactions among these particular technologies. In our earlier work 
we have investigated some individual aspects covered by the scenario. 

In our earlier paper [2] we evaluated candidate radio technologies to support 
the scenarios. In [3] we investigated the aspects of distributed streaming video 
communication in our testbed, focusing on the performance of a simplified 
logical ring that formed a peer-to-peer overlay over the Android devices within 
the testbed. In [5] we presented a simulation based performance evaluation of 
caching strategies. In this paper we add new elements to these series of results, 
addressing the particularities of this scenario introduced above. We propose two 
alternative algorithms that offer an optimized solution to our scenario. Then in 
Section 5 we present an extension of our earlier testbeds that can support the 
measurement based evaluation of our scenario.  

4. Proposed caching model optimization 

 In this section we take a closer look at two alternatives to optimize the cache 
placement within the scenario presented in Section 3.B. The optimization 
problem is not trivial, because not all nodes should necessarily act as caches and 
even those that do, do not necessarily store every packet in their cache memory. 
The starting point is the all the nodes are attached to one APi from the set of a 
set of {APi} Access Points and the covered area is large enough to make sure 
that nodes cannot communicate directly with everyone within the whole 
network. We also consider that the nearest caching nodes and cache hit statistics 
can be obtained by the requesting nodes [5]. 

A. Minimizing the number of caches 

In the first model we search for the number of caching nodes to serve those 
nodes that are attached to the same AP and we allow to store unlimited number 
of segments in the cache. We can give the required number of caching nodes |Si| 
as the rounded up value of the total size of required data chunks (gw segments 
are required for Di users) divided by the direct link capacity c: 

 



=

c
gDS wi

i  (1) 

Note that this solution does not allow that a node attached to APi to request 
data from a caching node attached to APj. Our goal is to get the minimal number 
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of caching nodes, a subset of all N nodes. ci is the total capacity of the direct link 
from node i (we consider that the total incoming and outgoing capacities are 
equal). In [5] we gave a 0-1 Integer Linear Programming (ILP) to solve this 
optimization problem, but this type of ILPs are known to be NP hard [29]. 

Therefore we propose the following heuristic algorithm (see Table 1). 

Table 1: The cache placement algorithm. 
 

Foreach APi 
 Compute |Si| based on eq. (1) 
 Xi := arbitrary selection of |Si| nodes from the vicinity of APi 
S = U Xi  
 
Foreach APi 

Partition all the nodes with demands based on distance from the coverage 
area APi among Xij 

 Cij = total expected demand on Xij 
 
Do 

Flag = 0 
Foreach Xij 

 If Cij < Capacity(Xij) then 
  Flag = 1 
  Elect an additional X from the vicinity 

Re-partition all the nodes with demands based on distance from 
the coverage area APi  among Xij 

Until Flag == 0 
 
 

The above heuristic algorithm takes all APs and makes an initial selection of 
caches as given in (1) for the simplified scenario. Then it refines this selection, 
introducing new caching nodes in those areas, where the existing ones cannot 
answer all the demands. If there are no more unanswered demands, the 
algorithm stops. 

B. Minimizing the cache size 

In Section 4.A we tried to reduce the number of caching nodes, without 
restricting the individual cache sizes. Now we will try to minimize the size of the 
cache, but we do not restrict the number of caching nodes. Let us keep the same 
notations we introduced earlier in this section, and additionally let us note the 
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number of chunks stored at node i with ki. We proposed and ILP in [5] to solve 
this optimization problem, but the same reasoning presented in Section 4.A 
applies here, as well. Therefore we provide a heuristic algorithm that solves this 
problem. First we give the number of chunks a node should store, if the chunks 
are evenly distributed among all nodes attached to the APi. We keep the 
notation used for eq. (1), and we note with Ni the total number of attached 
nodes. 

 







=

i

wi
i N

gDk  (17) 

The algorithm is given in Table 2 below. 

Table 2: The cache placement algorithm. 

Foreach APi 
 Compute ki  based on eq. (17) 
k = mini (ki) 
Store k chunks in each node 
 
Foreach leacher l 
 Assign the closest nodes (caches) to it  
  Can’t assign more than cl 
 gl = total available chunks at these caches 
 
Do 

Flag = 0 
Foreach leacher l 

 While gl < gw do 
  Flag = 1 
  kl++ for the caches linked to l 

//this  can be done in parallel – increase the cache only once 
//during a single round 

Until Flag == 0 
 
 

The algorithm computes the minimal number of chunks that should be 
available at the nodes (i.e., caches, since every node is a potential cache) in 
order to satisfy the lowest demand at any AP. Then we find those leachers, 
which have unsatisfied demand and increase the cache size by one for its 
caches. The algorithm stops, if there are no new unsatisfied leachers left.  
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5. Video streaming environment with Android smartphones 

In this section we present a testbed to support the evaluation of the proposed 
scenario and algorithms presented in this paper.  

A. Testbed for streaming video services 

Earlier in this paper we have already motivated our testbed development 
work by the need to obtain a platform suitable to assess our scenarios. The 
common point in our scenarios is the presence of a mobile node capable of 
communicating over IP. This node was implemented as a remote controlled 
vehicle, where the computational and communication functions are executed by 
an Android smartphone, implementing an extended distributed data network. 
The interface between the Android device and the motors moving the vehicle is 
done by a dedicated microcontroller board, the IOIO [30].  
 

Figure 3: a) The elements of the mobile node and b) the implemented vehicle. 

Fig. 3. a) presents the components of the implemented mobile node. The 
vehicle and the driving motors are on the left bottom, the IOIO board is one the 
upper left part of the figure. The Android smartphone (pictured on the upper 
right part of the figure) is linked to the IOIO board by Bluetooth (but we can 
also use USB cables for this purpose). This device is also responsible with the 
control tasks. A central management entity (bottom right corner) has a suitable 
GUI to control the movement of the node (on the downlink direction) and is 
connected to it over variants of WiFi (see Section 5.C for further details). As a 
part of the control process, live video streams are sent from the mobile node to 
the control station (i.e., uplink), the implementation details of this streaming 
service being discussed later in Section 5.B. The implemented mobile node and 
the management station is pictured in Fig. 3. b). 
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B. Streaming media over Android 

The multimedia stream in the testbed is offered by an application 
implemented from scratch by us.  

A natural choice would have been the use of Real-time Transport Protocol 
(RTP) for such task [31]. RTP based streaming in Android is supported by the 
libstreaming library. The encoding for RTP transmission should be done using 
H263 codecs instead of H264, since the latter has higher resource demands. For 
decoding at the destination an external library can be used (we used vlc player, 
which was able to decode the stream [32]). Due to the above Android 
environment details (e.g., the delays introduced by encapsulation and control, 
video handling difficulties) we decided to go for different solution. 

As a first option, in order to capture the stream from the camera of the 
smartphone, we use the camera preview images. Then these raw images are sent 
to an image encoding library, and this encoded JPEG image, which corresponds 
to a frame of the video stream, is sent over UDP to the recipient(s). This 
solution makes it easier to handle the frames at the receiving peer and debug our 
implementation: any disturbance in the encoding/decoding process is limited to 
a well identifiable frame, not to a sequence of frames. The fragmentation of the 
video frames and the header structure of the packets have been designed to be 
able to carry multiple streams and/or support multiple networks encoding along 
the path.  In our first tests we checked the viability of our solution. 

A second option was to use other, older encoders developed for TV 
transmission in a selfcontaining mode. E.g., MPEG-2 Transport Stream 
(MPEG-2 TS, M2TS) has been introduced in ISO/IEC 13818-1 standard in 
1995 [33] . It has the advantage that video format info is in-band. Most of 
Android smartphones support the playout of such streams, but the encoding of 
such streams officially is not supported. Some forums reported that that in some 
devices with Android OS above version 3.0 have unofficial support for this 
format (e.g., Google Nexus 4). We used this smartphone to implement and test 
our solution. 

Fig. 4. shows the logical structure of our solution. The live feed from the 
camera is encoded by the Media Recorder in real time. Instead of saving this 
stream locally, it is written into a socket, which is used to send the stream over 
the Internet. On the receiver side the ideal playout method would have been to 
feed the read socket directly to the player, but the available players require a 
seekable source. Therefore the socket is read in a loop, temporarily stored in a 
file and the player plays the video from this file. The file is continuously filled 
from the socket and read by the players. We just have to make sure that the new 
video content is filled fast enough into the file as the player never reaches the 
end of the file. We made some experiments and found that a 200ms buffer is 
enough for this goal. 
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Figure 4: Client-server architecture of the MPEG-2 TS implementation. 

We compared our two solutions and we found that there is a tradeoff on 
quality vs delay. The JPEG based solution has lower delays (avg. 300ms), but 
during fast moves it is blurred, while the MPEG-TS based solution offers usable 
picture during fast moves, too, but it has higher delays (avg. 500ms). 

Finally, in Table 3 we summarized the measured performance of the video 
transfer in our testbed. The first row corresponds to our first implementation, 
when we forward the series of JPEG still pictures captured at the source. Then 
we show the RTP-based solution, finally the MPEG2-TS based implementation. 
As we can see, the packet delays are extremely high in the case of the RTP 
based solution, while the other two provide similar results, with a clear 
advantage on the JPEG-based implementation. Note that for the MPEG based 
implementation we did not have packet-level statistics. The required bandwidth 
was similar for the first two solutions, but it came at the price of lower Quality 
of Experience (QoE). The highest disadvantage of the JPEG based solution was 
the low fps (frame per second) value. The QoE of the MPEG based solution 
outperformed both previous solutions. 

Table 3: The performance of tested video transfer solutions. 

Techno-
logy of 
choice 

Delay 
[ms] 

Avg. 
delay 
[ms] 

Band-
width 
[kilo 

Bytes/ 
sec] 

Avg. 
BW 
[kilo 

Bytes/ 
sec] 

Avg. 
video 

q. 
[fps] 

Still 
picture 
quality 
(QoE) 

Moving 
picture 
(video) 
quality 
(QoE) 

JPEG 170- 
440 290 100-300 170 15 Blurry Blurry 

RTSP 1090-
1570 1300 100-200 150 20 Good Checkered 

MPEG-2 
TS - 500 - 250 - Excellent  

(sharp) 
Rarely 
checkered  
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C. Communication between the mobile nodes 

The Android smartphone attached to the vehicle is able to control the 
vehicle, to collect sensory data and to capture live streams. Nevertheless, in 
order to exploit these capabilities we have to assure the delivery of the data to 
the management center. We proposed scenarios where this is achieved through a 
cooperative mesh between Android smartphones (see the testbed in Fig. 5.).  

 

 
Figure 5: Mobile nodes in the distributed testbed. 

The cooperative mesh is a logical construct at layer 3. In order to implement 
it in the testbed we used several WiFi variants. The Android SDK assures a 
complex API to handle WiFi related aspects [34]. Unfortunately, the WiFi ad 
hoc mode is not supported by Android. They introduced WiFi Direct [35] 
(earlier also known as WiFi P2P) instead, designed to provide seamless device-
to-device WiFi connection. We implemented our testbed using this technology, 
the measurement results being generated with this setup. Nevertheless, we also 
used the infrastructure mode WiFi communication in our testbed and focus on 
the logical overlay to emulate distributed communication scenarios [3]. [2] 
introduces our RLNC implementation, and is not affected from the choice of 
which WiFi alternative is used. 
 As the proposed scenario is based on the network coding of streaming data, 
we evaluated the performance of the testebed by means of measurements. We 
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used the unsuccessful display attempts during the playout process to assess the 
performance of the implementation. This is a complex parameter, aggregating 
the events of unsuccessful decoding attempts and the de-synchronization events. 
This latter happens when the encoded packet streams arriving over two 
branches are skewed, thus the decoder cannot get enough coded segments. Note 
that this event may be caused by the delays caused by a slow wireless link (e.g., 
slowed down by interference, resent packets, etc.). 

Since decoding is a computationally intensive process, we tested devices 
from two different generations (Google Nexus S and Nexus 4). Table 4 presents 
the average results obtained after 10 experiments. We present both the encoding 
and decoding performance. Note that in all cases the QoE of the played video 
was specific to the JPEG streaming solution (i.e., it allowed to successfully 
control the mobile node in real-time). 

Table 4: The performance of network coding of media streams. 

Smartphone model Encoding loss rate [%] Decoding loss rate [%] 
Google Nexus S 4.8 19.1 
Google Nexus 4 4.1 11.5 

 
We can see that the encoding process has significantly lower impact. Also 

note that the older device has only slightly lower performance than the Nexus 4. 
During the decoding phase the Nexus S cannot keep the pace, the performance 
gap between the two becoming significantly larger. A practical conclusion of 
these measurements is that current state-of-the art Android devices (which are 3 
years newer by design compared to the Nexus 4) provide enough resources to 
support real-time RLNC decoding. 

6. Conclusions 

The spread of both WiFi capable Android devices makes feasible the design 
and implementation of general purpose distributed heterogeneous data 
networks. The high processing capacity of the smartphones makes them ideal to 
experiment with streaming video distribution and related services. In this paper 
we presented a novel streaming video service, and a method using network 
coding based caching to offload the wireless infrastructure. We proposed a 
heuristic algorithm to place the caching elements within the network. 

We have built a prototype testbed based on Android smartphones which will 
serve as a demonstration platform for our proposal. We have implemented a 
mobile node, the live streaming video solution over the Android system and the 
random linear network coding based communication between the Android 
devices. We measured the performance of the implemented technologies. We 
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showed that the implementation of RLNC based streaming video is feasible in 
modern Android devices. In our future work we plan to analyze the different 
aspects of caching strategies in our proposed scenario. 
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