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Abstract. This paper is concerned with the existence and multiplicity
of solutions for p(x)-Laplacian equations with Robin boundary condition.
Our technical approach is based on variational methods.

1 Introduction

The purpose of this paper is to study the existence and multiplicity of solutions
for the following Robin problem involving the p(x)-Laplacian -div(|∇u|p(x)−2∇u) = f(x, u) in Ω

|∇u|p(x)−2∂u
∂ν

= β(x)|u|p(x)−2u on ∂Ω,
(1)
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where Ω is an open bounded subset of RN(N ≥ 2), with smooth boundary,
∂u

∂ν
is the outer unit normal derivative on ∂Ω, β ∈ L∞(Ω), with ess inf

Ω
β > 0

and p ∈ C+(Ω) with

1 < p− := inf
Ω
p(x) ≤ p+ := sup

Ω

p(x) < +∞.
Recently, there has been an increasing interest in studying of problems (1).

This great interest may be justified by their various physical applications,
we can for example refer to [3, 2, 6, 9, 16, 19, 23, 24, 25, 27, 30, 32]. In
fact, there are applications concerning elastic mechanics [33], electrorheological
fluids [28, 29], image restoration [12], dielectric breakdown, electrical resistivity
and polycrystal plasticity and continuum mechanics [4]. We refer to [18] for
an overview of this subject and to [11, 14] for the p(x)−Laplacian equations.

From the variational point of view, by using a theorem obtained by B.
Ricceri in [5], the work [2] shows the existence of at least three solutions for a
Navier problem involving the fourth order operator.

The authors in [6] obtained the existence of three distinct weak solutions
of p(x)−Laplacian Dirichlet problems as applications of critical point theorem
obtained by G. Bonanno and S.A. Marano in [7]. In the same breath, the
authors in [30] consider the p(x)−Laplacian-like problem ( originated from a
capillary phenomenon) which the main tool is a general critical point theorem
in [8].

In the statement of problem (1), f : Ω×R→ R is a Carathéodory function
verifying (F0) such that

(F0) There exists a constant c1 ≥ 0 such that

| f(x, t) |≤ c1(1+ |t|q(x)−1),

for all (x, t) ∈ Ω× R where q ∈ C+(Ω), q(x) < p∗(x) for all x ∈ Ω.

Where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Motivated by the references mentioned above, we establish the existence and
multiplicity of solutions for problem (1). It is known that the extension p(x)-
Laplace operator possesses more complicated structure than the p-Laplacian.
For example, it is inhomogeneous and usually it does not have the so-called
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first eigenvalue, since the infimum of its spectrum is zero. This provokes some
mathematical difficulties which makes the study of such a problems particulary
interesting.

Now, we formulate our main results as follows.

Theorem 1 Assume that (F0) and the following assumptions hold.

(F1) 0 < limt→0 F(x,t)|t|p
− < 1

p− , for |t| > δ, with δ > 0,

(F2) lim|t|→+∞ p(x)F(x,t)

|t|p
− ≤ 0 a.e x ∈ Ω,

(F3) lim|t|→+∞ ∫Ω F(x, t)dx = −∞,
Then the problem (1) has two weak solutions.

Theorem 2 Assume that (F0) and the following conditions hold.

(F4) lim|t|→+∞ F(x,t)

|t|p
− = 0,

(F5) f(x, t)t > 0 for all (x, t) ∈ Ω× R,

(F6) lim|t|→+∞ [f(x, t)t− p+F(x, t)] = −∞.
Then the problem (1) has at least one weak solution.

Through taking the same methods of this paper, results similar to Theorems
1–2 can also be proven for Neumann and Steklov problems.

Our paper is organized as follows. We first present some necessary prelim-
inary results on variable exponent Sobolev spaces. Next, we give the proof of
the main results about the existence of weak solutions.

2 Preliminaries

In the sequel, let p(x) ∈ C+(Ω), where

C+(Ω) =
{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

The variable exponent Lebesgue space is defined by

Lp(x)(Ω) = {u : Ω→ R measurable and

∫
Ω

|u(x)|p(x) dx < +∞}
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furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{σ > 0 :

∫
Ω

|
u(x)

σ
|p(x) dx ≤ 1},

and the variable exponent Sobolev space is defined by

W1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

equipped with the norm

‖u‖W1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Proposition 1 [21] The spaces Lp(x)(Ω) and W1,p(x)(Ω) are separable, uni-
formly convex, reflexive Banach spaces. The conjugate space of Lp(x)(Ω) is
Lq(x)(Ω), where q(x) is the conjugate function of p(x); i.e.,

1

p(x)
+

1

q(x)
= 1,

for all x ∈ Ω. For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) we have∣∣∣ ∫
Ω

u(x)v(x)dx
∣∣∣ ≤ ( 1

p−
+
1

q−

)
|u|p(x)|v|q(x).

Proposition 2 [21] For p, r ∈ C+(Ω) such that r(x) ≤ p∗(x) (r(x) < p∗(x))
for all x ∈ Ω, there is a continuous (compact) embedding

W1,p(x)(Ω) ↪→ Lr(x)(Ω),

where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.

Proposition 3 [15] For p ∈ C+(Ω) and such r ∈ C+(∂Ω) that r(x) ≤ p∂(x)
(r(x) < p∂(x)) for all x ∈ Ω, there is a continuous (compact) embedding

W1,p(x)(Ω) ↪→ Lr(x)(∂Ω),

where

p∂(x) = (p(x))∂ :=

{
(N−1)p(x)
N−p(x) if p(x) < N

+∞ if p(x) ≥ N.
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Proposition 4 [17], [Theorem 2.1] For any u ∈W1,p(x)(Ω), let

‖ u ‖∂:= |u|Lp(x)(∂Ω) + |∇u|Lp(x)(Ω).

Then ‖ u ‖∂ is a norm on W1,p(x)(Ω) which is equivalent to

‖u‖W1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Now, for any u ∈ X :=W1,p(x)(Ω) define

‖u‖ := inf
{
σ > 0 :

∫
Ω

(∣∣∣∇u(x)
σ

∣∣∣p(x)dx+ ∫
∂Ω

β(x)
∣∣∣u(x)
σ

∣∣∣p(x))dσx ≤ 1}.
Where β ∈ L∞(Ω) and dσx is the measure on the boundary ∂Ω.Then by (4),
‖.‖ is also a norm on W1,p(x)(Ω) which is equivalent to ‖.‖W1,p(x)(Ω) and ‖.‖∂.
Now, we introduce the modular ρ : X→ R defined by

ρ(u) =

∫
Ω

|∇u|p(x)dx+
∫
∂Ω

β(x)|u(x)|p(x)dσx

for all u ∈ X. Here, we give some relations between the norm ||.|| and the
modular ρ.

Proposition 5 [21] For u ∈ X we have

(i) ‖u‖ < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(ii) If ‖u‖ < 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;
(iii) If ‖u‖ > 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .

Lemma 1 [26] Let X = X1 ⊕ X2, where X is a real Banach space and X2 6= 0,
and is finite dimensional. Suppose that φ ∈ C1(X, R) satisfies Cerami condition
(C) with the following assertions:

(i) There is a constant α and a bounded neighborhood D of 0 in X2 such
that φ|∂D ≤ α.

(ii) There is a constant β > α such that φ|X1 ≥ β.
Then φ possesses a critical value c, moreover, c can be characterized as

c = inf
h∈Γ

max
u∈D

φ(h(u))

where
Γ = {h ∈ C(D,X)|h = id on ∂D}.
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Lemma 2 [10] Let X = X1 ⊕ X2, where X is a real Banach space and X2 6= 0,
and is finite dimensional. Suppose that φ ∈ C1(X, R) satisfies Palais-smalle
condition (PS) with the following assertions for some r > 0:

(i) φ(u) ≤ 0, for u ∈ X1, ‖u‖ ≤ r.

(ii) φ(u) ≥ 0, for u ∈ X2, ‖u‖ ≤ r.

Assume also that φ is bounded below and inf
X
φ < 0. Then φ has at least two

nonzero critical points.

Definition 1 We say that u ∈ X is a weak solution of (1) if∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx =

∫
Ω

f(x, u)vdx

for all v ∈ X.

The functional associated to (1) is given by

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

1

p(x)
β(x)|u|p(x)dx−

∫
Ω

F(x, u)dx (2)

It should be noticed that under the condition (F0) the functional φ is of class
C1(X,R) and

φ
′
(u).v =

∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx −

∫
Ω

f(x, u)vdx,

∀ u, v ∈ X.

Then, we can see that the weak solution of (1) corresponds to critical point of
the functional φ.

3 Proof of main result

We recall that φ satisfies Palais-smale condition (PS) in X, if any sequence
(un) such that φ(un) is bounded and φ

′
(un)→ 0 as n→ +∞, has convergent

subsequence.

Proof of Theorem 1
Let start by the following lemma.
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Lemma 3 Any bounded sequence (PS) of φ has a strongly convergent subse-
quence.

Proof. Let (un) ⊂ X be a sequence bounded (PS) sequence of φ. Up to a
subsequence, we may find u ∈ X such that un ⇀ u.

From the growth condition (F0) and Sobolev embedding, we have that∫
Ω f(x, u)(un − u)dx→ 0, since φ

′
(un)(un − u)→ 0 then∫

Ω

|∇un|p(x)−2∇u∇((un − u))dx+
∫
∂Ω

β(x)|un|
p(x)−2un(un − u)dσx → 0.

As the mapping A :W1,p(x)(Ω)→ R defined by

〈Au, v〉 =
∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx

for all u, v ∈ X is of type (S+), so un → u in W1,p(x)(Ω). �

Lemma 4 The functional φ is coercive, that is, φ(u) → +∞ when ‖u‖ →
+∞.
Proof. Suppose that there exist (un) ⊂ X and a positive constant C such that

‖un‖→ +∞, φ(un) ≤ C.
Putting vn = un

‖un‖ , so we may find v ∈ X and a subsequence of (vn) still

denoted by (vn) such that vn ⇀ v in X and vn → v in Lp(x)(Ω).

By (F1), for any ε > 0, ∃L > 0 such that

F(x, t) ≤ ε

p(x)
|t|p

− ∀|t| > L a.e x ∈ Ω,

thus, we may find a positive constant C such that

F(x, t) ≤ ε

p(x)
|t|p

−
+ C ∀t ∈ R a.e x ∈ Ω.

Therefore,

C

‖un‖p−
≥ φ(un)

‖un‖p−
≥ 1

p+
1

‖un‖p−
[∫
Ω

|∇un|p(x)dx+
∫
∂Ω

β(x)|un|
p(x)dσx

]
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−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−

≥ 1

p+
−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−
.

Consequently, choosing ε, such that
∫
Ω |vn|

p−dx > C0, where C0 is the best

constant in the embedding W1,p(x)(Ω) ↪→ Lp
−
(Ω) .

On the other hand, because ‖v‖W1,p(x)(Ω) ≤ lim inf ‖vn‖ = 1 by∫
Ω

|∇v|p−dx+
∫
Ω

|v|p
−
dx ≤ C0,

so we get
∫
Ω∇|v|

p− dx = 0, which means that v = constant 6= 0.
We obtain

lim
|un|→∞

∫
Ω

F(x, un)dx→ −∞.
When ‖un‖→ +∞, |un|→ +∞, thereby,

C ≥ 1

p+

[∫
Ω

|∇un|p(x) dx+
∫
∂Ω

β(x)|un|
p(x)dσx

]
−

∫
Ω

F(x, un)dx

≥ ‖un‖p
−

p+
−
ε

p+

∫
Ω

|vn|
p−dx−

C|Ω|

‖un‖p−
,

which implies that φ is coercive and bounded from below.

Now verifying the conditions (i) and (ii) in Lemma 2.

The same idea from [1] and Chung [13],we have W1,p(x)(Ω) =W0 ⊕ R.
If u ∈ R, for ‖u‖ < ρ, ρ > 0 and by (2)

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

∫
∂Ω

1

p(x)
β(x)|u|p(x)dσx −

∫
Ω

F(x, u)dx

= −

∫
Ω

F(x, u)dx

≤ 0

If u ∈W0 =
{
z ∈W1,p(x)(Ω)/

∫
Ω zdx = 0

}
, from (F0) and (F1)

F(x, t) ≤
(
1

p−
− ε

)
|u|p

−
+ C

∫
Ω

|u|q(x)dx.
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In virtue of the the continuous embedding X into Lp
−
(Ω) and Lp

+
(Ω),

φ(u) ≥ 1

p+
‖u‖p+ −

∫
Ω

F(x, u)dx

≥ 1

p+
‖u‖p+ −

1

p−

∫
Ω

|u|p
−
dx+ ε

∫
Ω

|u|p
−
dx− C

∫
Ω

|u|q(x)dx

≥ C(ε)‖u‖p+ − C‖u‖q+ − C‖u‖q− ,

for ‖u‖ = ρ small enough then φ(u) ≥ 0 for ‖u‖ ≤ ρ ∀u ∈ W0. On the other
side, when infXφ(u) = 0 then ∀u ∈ R is a minimum of φ, that means φ
admits infinite critical points.
When u ∈ X with infXφ(u) < 0, by applying Lemma 2, φ has at least two
nontrivial critical points, then the problem (1) has two nontrivial solutions in
X. �

Proof of Theorem 2 We recall the following important inequality (cf.[22])

Lemma 5 (Poincaré-Writingers inequality) There exists a positive constant
C such that for any u ∈W0 we have

|u|p(x) ≤ C|∇u|p(x).

Lemma 6 Suppose that the conditions (F0), (F4) and (F6) are hold. Then φ
verifies the Cerami condition (C)c.

Proof. Let K ∈ R such that

|φ(un)| ≤ K

and

(1+ ‖un‖)φ
′
(un)→ 0 in X∗. (3)

Suppose that ‖un‖→ +∞ as n→ +∞. Taking vn = un
‖un‖ , so

vn ⇀ v in X.

Thus,

vn(x)→ v(x) a.e x ∈ Ω

and

vn → v in Lp(x)(Ω).

Let h ∈ X, according to (3) we have that,
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∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

.

(4)

Dividing (4) by ‖un‖p
−−1 we have

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
(‖un‖p−−1)(1+ ‖un‖)

.

Then

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

−

∫
Ω

f(x, un)hdx

∣∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

.

(5)

Since ‖un‖p(x)−1 ≥ ‖un‖p
−−1 > 1,

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx

+

∫
∂Ω

β(x)|un|
p(x)−2unhdσx −

∫
Ω

f(x, un)hdx

∣∣∣∣∣
≥ 1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

|∇un|p(x)−2∇un∇hdx+
∫
∂Ω

β(x)|un|
p(x)−2unhdσx

∣∣∣∣∣
−

1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

f(x, un)hdx

∣∣∣∣∣
≥

∣∣∣∣∣
∫
Ω

|∇vn|p(x)−2∇vn∇hdx+
∫
∂Ω

β(x)|vn|
p(x)−2vnhdσx

∣∣∣∣∣



Existence of solutions 331

−
1

‖un‖p−−1

∣∣∣∣∣
∫
Ω

f(x, un)hdx

∣∣∣∣∣.
Consequently∣∣∣∣∫

Ω

|∇vn|p(x)−2∇vn∇hdx+
∫
∂Ω

β(x)|vn|
p(x)−2vnhdσx

∣∣∣∣
−

1

‖un‖p−−1

∣∣∣∣∫
Ω

f(x, un)hdx

∣∣∣∣ ≤ εn‖h‖
1+ ‖un‖

,

(6)

with εn → 0 and h ∈ X.
By (F0), (F4) and (F6) we conclude that f(x,un)

‖un‖p−−1
is bounded in (Lp

−
(Ω))∗

which is separable and reflexive space, then up to a subsequence denoted also(
f(x,un)

‖un‖p−−1

)
, we have f(x,un)

‖un‖p−−1
⇀ f̃, in (Lp

−
(Ω))∗. Since f(x,un)

‖un‖p−−1
→ 0 a.e

x ∈ Ω, hence
f(x, un)

‖un‖p−−1
⇀ 0 in (Lp

−
(Ω))∗

Therefore, taking h = vn − v ∈ X, in (6)

∫
Ω

|∇vn|p(x)−2∇vn∇(vn − v)dx+
∫
∂Ω

β(x)|vn|
p(x)−2vn(vn − v)dσx → 0.

By (S+) type of the operator

L(u).v =

∫
Ω

|∇u|p(x)−2∇u∇vdx+
∫
∂Ω

β(x)|u|p(x)−2uvdσx,

we have vn → v in X, so v 6= 0. Since |φ(u)| ≤ K we obtain

p+φ(u) ≥ −p+K (7)

Taking h = un, in (4)

−

∫
Ω

|∇un|p(x)dx+
∫
∂Ω

β(x)|un|
p(x)dσx +

∫
Ω

f(x, un)undx ≥ −εn

Then

− p−
∫
Ω

|∇un|p(x)

p(x)
dx+

∫
∂Ω

β(x)
|un|

p(x)

p(x)
dσx +

∫
Ω

f(x, un)undx ≥ −εn. (8)
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Adding (7)to (8), we obtain∫
Ω

f(x, un)undx− p
+

∫
Ω

F(x, un)dx ≥ C (9)

Obviously, this is contradiction and then the proof of Lemma 6 is reached. �

Lemma 7 Suppose that the conditions (F5) and (F6) hold, then the function
φ/R is anti-coercive.

Proof. From (F6), for all K > 0 there exists R > 0 such that p+F(x, u) ≥
f(x, u)u ≥ K for a.e x ∈ Ω, u ∈ R and thus for all u ∈ R,∫

Ω

F(x, u)dx ≥ 1

p+
K|Ω|− c|Ω|,

hence ∫
Ω

F(x, u)dx→ +∞ when |u|→ +∞.
By (2) and K is arbitrary

φ(u) =

∫
∂Ω

β(x)
|u|p(x)

p(x)
dσx −

∫
Ω

F(x, u)dx ≥ −

∫
Ω

F(x, u)dx

Then
φ(u)→ −∞ when |u|→ +∞.

�

Lemma 8 Under the hypothesis (F4), we have inf
W0

φ > −∞ .

Proof. Let u ∈ W0 with ‖u‖ > 1 By (F5), for ε > 0, we may find K(ε) > 0
such that F(x, u) ≤ ε|u|p− + K(ε), for a.e x ∈ Ω and for all u ∈ R.Hence,

F(x, u) ≤ ε

∫
Ω

|u|p
−
+ K(ε)|Ω| (10)

≤ εC‖u‖p− + K(ε)|Ω|

Then, when u ∈W0 we have

φ(u) =

∫
Ω

1

p(x)
|∇u|p(x) +

∫
∂Ω

1

p(x)
β(x)|u|p(x)dσx −

∫
Ω

F(x, u)dx

≥ C‖u‖p+ − εC‖u‖p− − K(ε)|Ω|

≥ −K(ε)|Ω|.

(11)
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It follows that infW0
φ > −∞.

According to previous Lemmas 6, 7 and 8, the assumptions of Lemma 1 are
satisfied and then the proof of Theorem 2 is achieved. �
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