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Abstract. This paper is concerned with the existence and multiplicity
of solutions for p(x)-Laplacian equations with Robin boundary condition.
Our technical approach is based on variational methods.

1 Introduction

The purpose of this paper is to study the existence and multiplicity of solutions
for the following Robin problem involving the p(x)-Laplacian

div([VuP®2Vu) = f(x,u) in Q

0
|Vu|P(XJ*2% = B(x)|u|P(X)*2u on 0Q),

(1)
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where Q is an open bounded subset of RN(N > 2), with smooth boundary,

0
a—: is the outer unit normal derivative on 0Q), p € L*°(Q), with ess igf >0

and p € C,(Q) with

1<p =infp(x) <p' :=supp(x) < +oo.
Q Q

Recently, there has been an increasing interest in studying of problems (1).
This great interest may be justified by their various physical applications,
we can for example refer to [3, 2, 6, 9, 16, 19, 23, 24, 25, 27, 30, 32]. In
fact, there are applications concerning elastic mechanics [33], electrorheological
fluids [28, 29], image restoration [12], dielectric breakdown, electrical resistivity
and polycrystal plasticity and continuum mechanics [4]. We refer to [18] for
an overview of this subject and to [11, 14] for the p(x)—Laplacian equations.

From the variational point of view, by using a theorem obtained by B.
Ricceri in [5], the work [2] shows the existence of at least three solutions for a
Navier problem involving the fourth order operator.

The authors in [6] obtained the existence of three distinct weak solutions
of p(x)—Laplacian Dirichlet problems as applications of critical point theorem
obtained by G. Bonanno and S.A. Marano in [7]. In the same breath, the
authors in [30] consider the p(x)—Laplacian-like problem ( originated from a
capillary phenomenon) which the main tool is a general critical point theorem
in [8].

In the statement of problem (1), f: Q x R — R is a Carathéodory function
verifying (Fy) such that

(Fo) There exists a constant ¢y > 0 such that
[ £0x,) 1< er (14 [t]9097),
for all (x,t) € Q x R where q € C.(Q), q(x) < p*(x) for all x € Q.

Where

Np(x) -
() = N_pp’(‘x) if p(x) <N
+o00 if p(x)>N.

Motivated by the references mentioned above, we establish the existence and
multiplicity of solutions for problem (1). It is known that the extension p(x)-
Laplace operator possesses more complicated structure than the p-Laplacian.
For example, it is inhomogeneous and usually it does not have the so-called
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first eigenvalue, since the infimum of its spectrum is zero. This provokes some
mathematical difficulties which makes the study of such a problems particulary
interesting.

Now, we formulate our main results as follows.

Theorem 1 Assume that (Fo) and the following assumptions hold.

F(x,t)

(F]) 0 < limy_yp P

< p1—_, for [t] > &, withd > 0,

(F2) hm\t\—ﬂroo p(Tt)IE(}Yt) <0 aexeQ,

(F3) hm\t\—)-ﬁ-oo IQ F(X, t)dx = —oo,

Then the problem (1) has two weak solutions.

Theorem 2 Assume that (Fo) and the following conditions hold.

Fix,t)
= 0,

(F5) f(x,t)t >0 for all (x,t) € Q x R,

(Fa) limyy 400

(F6) hm\t\—wroo [f(x) t)t - P+F(X» t)] = —0Q.

Then the problem (1) has at least one weak solution.

Through taking the same methods of this paper, results similar to Theorems
1-2 can also be proven for Neumann and Steklov problems.

Our paper is organized as follows. We first present some necessary prelim-
inary results on variable exponent Sobolev spaces. Next, we give the proof of
the main results about the existence of weak solutions.

2 Preliminaries
In the sequel, let p(x) € C,(Q), where
CL(Q) = {h:he C(Q),h(x) > 1 for any x € ﬁ}.

The variable exponent Lebesgue space is defined by

LPY(Q) = {u: Q — R measurable andJ u(x)P™ dx < 400}
Q
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furnished with the Luxemburg norm

. u(x)
Wlireo () = Wy = inf{o >0 J T'pm dx < 1},
Q

and the variable exponent Sobolev space is defined by
WP (Q) = fu e 1PM(Q) : [Vul € 1PY(Q)}
equipped with the norm

HuHW1»P(X)(Q) — |u|[_p(X)(Q) + |vu|L‘p(x)(Q).

Proposition 1 [21] The spaces LP™)(Q) and W'PX)(Q) are separable, uni-
formly convez, reflexive Banach spaces. The conjugate space of LPX(Q) is
LIN(Q), where q(x) is the conjugate function of p(x); i.e.,

for allx € Q. Foru e LPM(Q) and v € LIM(Q) we have

|| wtom)an] < (= + =) vl

Proposition 2 [21] For p,r € C(Q) such that v(x) < p*(x) (r(x) < p*(x))
for all x € Q, there is a continuous (compact) embedding

WLP(X)(Q) s ]_T(X)(Q)’

where

p*(x) = Noif pl) <N
+oo  if p(x) >N.

Proposition 3 [15] For p € C,(Q) and such v € C,(3Q) that r(x) < p%(x)
(r(x) < p°(x)) for all x € Q, there is a continuous (compact) embedding

whPM(Q) — 1" (0),

where

)
(o]
¥
|
=3
Ra?
=
|

ot i Pl <N
400 if p(x) >N.
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Proposition 4 [17], [Theorem 2.1] For any u € WX (Q), let
[ wllo:= |u|Lp(x>(aQ) + |vu|]_p(x)(Q)-
Then || u | is a norm on WP (Q) which is equivalent to
Huuwhpm(g) = |u|[_p(X)(Q) + |vu|LP(X)(Q)-

Now, for any u € X := WX (Q) define

Jull := inf {o >0 L (‘ V‘;(X) ‘p(x) dx + LQ

u(x) [p(

Bx)|= | X))dcrxg}.

o

Where 3 € L°(Q) and doy is the measure on the boundary 0Q.Then by (4),
||| is also a norm on WP (Q) which is equivalent to ||.|jyy1,px) () and ||.[la.
Now, we introduce the modular p : X — R defined by

p(u) = L) |Vu|P(X) dx + LQ B(X)|u(x)|p(x)dgx

for all u € X. Here, we give some relations between the norm [.|| and the
modular p.

Proposition 5 [21] For u € X we have
() ul <1=1>1) & plu) <T{=T>1);
(i) Iffull < 1= JulP” <p(w) < [ulP;
(ii) If u > 1= [lullP” < p(w) < P

Lemma 1 [26] Let X = X; @ Xy, where X is a real Banach space and X3 # 0,
and is finite dimensional. Suppose that d € C' (X, R) satisfies Cerami condition
(C) with the following assertions:

(i) There is a constant o and a bounded neighborhood D of 0 in X; such
that $|oD < «.

(ii) There is a constant > o such that $|X; > B.

Then & possesses a critical value ¢, moreover, ¢ can be characterized as

¢ = inf max ¢ (h(u))
hEF UED

where

I'={he C(D,X)h=id on oD}
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Lemma 2 [10] Let X = Xj @ X3, where X is a real Banach space and X; # 0,
and is finite dimensional. Suppose that & € C'(X,R) satisfies Palais-smalle
condition (PS) with the following assertions for some v > 0:

(i) d(uw) <0, forue Xy, fluf <.
(il) d(u) >0, forue Xy, Jul| <.

Assume also that ¢ is bounded below and ir)%fd) < 0. Then ¢ has at least two

nonzero critical points.

Definition 1 We say that u € X is a weak solution of (1) if

J IVuPY2uvvdx + J
Q

B(x)uP™¥2uvdo, = J f(x, u)vdx
Je)

Q

for allv e X.

The functional associated to (1) is given by

_ [ gy 1 P(X) gy
d(u) JQP(X)IVLLI dx+LQp(X)B(x)Iu dx JQF(x,u)dx (2)

It should be noticed that under the condition (Fy) the functional ¢ is of class
C'(X,R) and

/

¢ (W= J IVulPM2yuvvdx + J B (x)[ulP¥2uvdo, — J f(x, u)vdx,
Q d

o}
Yu,veX

Q

Then, we can see that the weak solution of (1) corresponds to critical point of
the functional ¢.

3 Proof of main result

We recall that ¢ satisfies Palais-smale condition (PS) in X, if any sequence
(un) such that ¢(un) is bounded and ¢’ (un) — 0 as n — oo, has convergent
subsequence.

Proof of Theorem 1
Let start by the following lemma.
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Lemma 3 Any bounded sequence (PS) of & has a strongly convergent subse-
quence.

Proof. Let (uy) C X be a sequence bounded (PS) sequence of ¢. Up to a
subsequence, we may find u € X such that u, — u.

From the growth condition (Fy) and Sobolev embedding, we have that
Jo Tl u)(un —u)dx — 0, since ¢’ (un)(un — 1) — O then

J IVunlp(")_ZVuV((un —u))dx + J B(x)lunlp(x)_zun(un —u)doy, — 0.
Q 20

As the mapping A : WP (Q) — R defined by

(Au,v) = J IVulPM¥ 2 vuvvdx —i—J B (x)[uP¥2uvdoy
Q 20

for all u,v € X is of type (S.), so un — u in WHPX(Q). O

Lemma 4 The functional ¢ is coercive, that is, $(u) — +oo when |u| —
+00.

Proof. Suppose that there exist (u,) C X and a positive constant C such that
[un[l = 400, d(un) < C.

Putting v, = H%II’ so we may find v € X and a subsequence of (vy) still

denoted by (vn) such that v, — v in X and vy, — v in LPM(Q).
By (Fy), for any € > 0, 3L > 0 such that
Flx,t) < —— |t Vit| > L ae x € Q,
p(x)
thus, we may find a positive constant C such that

Fx,t) < ——|tP + CVt€R a.e x € Q.

p(x)
Therefore,
C d(un) T 1 U
— > — — | IVu Ip(")dx+J B(x)unP¥do
[[wn [P [unlP™ = p* unllP” o 20 " *
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ClQ]
[un P

1 - clo
2+—€+J vnlP dx — o
Pt ptla [[un][P

Consequently, choosing €, such that fQ lva|P dx > Coy, where Cy is the best
constant in the embedding W'PX(Q) — LP (Q) .
On the other hand, because |[v|y1.px)(q) < liminf [[vn|| =1 by

€ _
B wL ol” ax =

J V[P dx —i—J VP dx < Co,
Q Q

so we get [ VIV[P" dx = 0, which means that v = constant # 0.
We obtain

lim J F(x,un) dx — —o0.
[un|—o0 Q

When ||un|| — 400, [un| — 400, thereby,

c > 1“ Vg [P dx+J B(X)Iunl"(")dcfx}—J Flx, un)dx
p Q Q

00
P _ Q

[
p Pt Ja [unl?

which implies that ¢ is coercive and bounded from below.
Now verifying the conditions (1) and (ii) in Lemma 2.

The same idea from [1] and Chung [13],we have WHPX(Q) = W, @ R.
If ueR, for ||ul| < p, p >0 and by (2)
1 1
du) = J —— VP dx +J —— B doy —J Fx,u)dx
a px) 20 P(x) Q
= —J F(x,u)dx
Q
<0

IfueW,={zeWPN(Q)/[,zdx =0}, from (Fo) and (Fy)

1 _
F(x,t) < ( — e> P + CJ /90 dx.
1% Q
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In virtue of the the continuous embedding X into LP (Q) and LP' (Q),

o) > pl\lullp* _ LF(X, Wdx

1 1 _ B
e = L [ e[ P ax—c [ e
p P Q Q Q

+ + -
> Cle)ufl’ = Clluf|f = Cllul®

>

for ||u|| = p small enough then ¢(u) > 0 for ||ul| < p Vu € Wy. On the other
side, when infyx ¢(u) = 0 then Vu € R is a minimum of ¢, that means ¢
admits infinite critical points.

When u € X with infxd(u) < 0, by applying Lemma 2, ¢ has at least two
nontrivial critical points, then the problem (1) has two nontrivial solutions in
X. O

Proof of Theorem 2 We recall the following important inequality (cf.[22])

Lemma 5 (Poincaré-Writingers inequality) There exists a positive constant
C such that for any uw € Wy we have

|u‘p(x) < Q|VU|p(X) .

Lemma 6 Suppose that the conditions (Fo), (F4) and (Fg) are hold. Then ¢
verifies the Cerami condition (C)c.

Proof. Let K € R such that

[b(un)l < K
and /
(14 )6 () =0 in X, -
Suppose that [[un|| — +oo as n — +oo. Taking vn = 2y, s0

v — Vv in X.
Thus,
vn(x) 2 v(x) a.e xeQ

and
va — v in LPY(Q).

Let h € X, according to (3) we have that,
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J IVunlp(")ZVuthdx—FJ B(x)\unlp(x)*zunhdox
Q 20

. el

— | flx,up)hdx| < ————.
JQ (% tn) T+ Jun

Dividing (4) by ||un|[P ~' we have

1
[P

J IVunlp(XJZVuthdx—FJ B (x)[unP¥2u hdoy
Q

00
enlhl
— | f(x,un)hdx| < 0 )
JQ T (hunlP™= (1 4 [lunl))
Then
! plx)-2 plx)—2
T V| Vu,Vhdx + B(x)un Uy hdoy
[[un P o) 20
h
—J Flx, ) hex| < L
a T+ [[un |

Since [[un P71 > lun|P T > 1,

L
[ L

J IV, [P¥) 2V, Vhdx
Q

T J B0 hunPM 20 hdo, — J . 1
00 Q

L
= P

L
[ L

J IVunlp(X)_ZVuthdx+J B (%) PM 2w, hdoy
Q 20

J f(x, un ) hdx
Q

>

J Vv P29y, Vhdx + J B (x)vnP¥ 2y hdoy
Q 00
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L
[ L

J f(x, un)hdx
Q

Consequently

U Vv P29y, Vhdx + J B (%) vnP® 2y hdoy
Q 00 (6)

enllh]
f(x.u, hdx| < ————
L (6 1) ")— T4 [unll

:
[[un P~

with e, — 0 and h € X.
By (Fo), (F4) and (Fg) we conclude that floun) ¢ hounded in (LP (Q))*

[un P =1
which is separable and reflexive space, then up to a subsequence denoted also

(M>, we have —un) 1?, in (LP (Q))*. Since floun) 4 e

lun|P™ ! lunlp™—! lunlP™—!
x € Q, hence
f B
(X’iuf)] ~0in (I (Q))
[wn P

Therefore, taking h =v,, —v € X, in (6)

J Ianlp(X)’ZanV(vn —v)dx + J B(X)Ivnlp(x)’zvn(vn —v)doy — 0.
Q 20

By (S4) type of the operator
Llw.w = J IVuP¥2vuvvdx + J B (x)uP™¥2uvdaoy,
Q 20

we have v, — v in X, so v # 0. Since | (u)] < K we obtain

prdu) > —ptK (7)
Taking h = uy, in (4)

—J [V, P dx + J B(x)lunlp(x) doy, + J f(x, Un)undx > —en
Q 20 Q

Then

_J |Vun|P(X)
Q

px) bt LQ B(x)

—doy —|—J f(x,un)undx > —en.  (8)
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Adding (7)to (8), we obtain

J f(x,un)undx—erJ F(x,un)dx > C 9)
Q Q

Obviously, this is contradiction and then the proof of Lemma 6 is reached. [J

Lemma 7 Suppose that the conditions (F5) and (Fg) hold, then the function
®/R is anti-coercive.

Proof. From (Fg), for all K > 0 there exists R > 0 such that p™F(x,u) >
f(x,u)u > K for a.e x € Q, u € R and thus for all u € R,

1
|, Fovwax > kol - o
Q P

hence

J F(x,u)dx — +o0o0 when [u| — 4oo0.
Q

By (2) and K is arbitrary

B |u|p(x) B B
¢(u)—LQB(x) o JQF(x,u)dxz JQF(x,u)dx

Then
¢(u) — —oo when |u| — +oo.

Lemma 8 Under the hypothesis (F4), we have i&fd) > —00 .
0

Proof. Let u € W with [[u|| > 1 By (Fs), for € > 0, we may find K(e) > 0
such that F(x,u) < elulP + K(e), for a.e x € Q and for all u € R.Hence,

Flyu) < eJ WP+ K(e)lQ) (10)
Q
< eClull” +K(e)Ql

Then, when u € W, we have
1 x)
duw) = | —=IVulP™ +
a P(x) aq P(x)
Cllu|P” — eCllulP” —K(e)
—K(e)lQl.

B)IuP™ doy — J Flx, u)dx
Q

> Ql (11)
>
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It follows that infw, ¢ > —oo.
According to previous Lemmas 6, 7 and 8, the assumptions of Lemma 1 are
satisfied and then the proof of Theorem 2 is achieved. O
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