
Acta Univ. Sapientiae, Mathematica, 11, 1 (2019) 172–185

DOI: 10.2478/ausm-2019-0014

Multiplication semimodules

Rafieh Razavi Nazari
Faculty of Mathematics,

K. N. Toosi University of Technology,
Tehran, Iran

email: rrazavi@mail.kntu.ac.ir

Shaban Ghalandarzadeh
Faculty of Mathematics,

K. N. Toosi University of Technology,
Tehran, Iran

email: ghalandarzadeh@kntu.ac.ir

Abstract. Let S be a semiring. An S-semimodule M is called a mul-
tiplication semimodule if for each subsemimodule N of M there exists
an ideal I of S such that N = IM. In this paper we investigate some
properties of multiplication semimodules and generalize some results on
multiplication modules to semimodules. We show that every multiplica-
tively cancellative multiplication semimodule is finitely generated and
projective. Moreover, we characterize finitely generated cancellative mul-
tiplication S-semimodules when S is a yoked semiring such that every
maximal ideal of S is subtractive.

1 Introduction

In this paper, we study multiplication semimodules and extend some results
of [7] and [17] to semimodules over semirings. A semiring is a nonempty set S
together with two binary operations addition (+) and multiplication (·) such
that (S,+) is a commutative monoid with identity element 0; (S, .) is a monoid
with identity element 1 6= 0; 0a = 0 = a0 for all a ∈ S; a(b + c) = ab + ac
and (b+ c)a = ba+ ca for every a, b, c ∈ S. We say that S is a commutative
semiring if the monoid (S, .) is commutative. In this paper we assume that
all semirings are commutative. A nonempty subset I of a semiring S is called
an ideal of S if a + b ∈ I and sa ∈ I for all a, b ∈ I and s ∈ S. A semiring
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S is called yoked if for all a, b ∈ S, there exists an element t of S such that
a + t = b or b + t = a. An ideal I of a semiring S is subtractive if a + b ∈ I
and b ∈ I imply that a ∈ I for all a, b ∈ S. A semiring S is local if it has a
unique maximal ideal. A semiring is entire if ab = 0 implies that a = 0 or
b = 0. An element s of a semiring S is a unit if there exists an element s′ of
S such that ss′ = 1. A semiring S is called a semidomain if for any nonzero
element a of S, ab = ac implies that b = c. An element a of a semiring S is
called multiplicatively idempotent if a2 = a. The semiring S is multiplicatively
idempotent if every element of S is multiplicatively idempotent.

Let (M,+) be an additive abelian monoid with additive identity 0M. Then
M is called an S-semimodule if there exists a scalar multiplication S×M→M

denoted by (s,m) 7→ sm, such that (ss′)m = s(s′m); s(m+m′) = sm+ sm′;
(s + s′)m = sm + s′m; 1m = m and s0M = 0M = 0m for all s, s′ ∈ S and all
m,m′ ∈M. A subsemimodule N of a semimodule M is a nonempty subset of
M such that m + n ∈ N and sn ∈ N for all m,n ∈ N and s ∈ S. If N and L
are subsemimodules of M, we set (N : L) = {s ∈ S | sL ⊆ N}. It is clear that
(N : L) is an ideal of S.

Let R be a ring. An R-module M is a multiplication module if for each
submodule N of M there exists an ideal I of R such that N = IM [2]. Mul-
tiplication semimodules are defined similarly. These semimodules have been
studied by several authors(e.g. [5], [6], [18], [20]). It is known that invertible
ideals of a ring R are multiplication R-modules. Invertible ideals of semirings
has been studied in [8]. In this paper, in order to study the relations between
invertible ideals of semirings and multiplication semimodules, we generalize
some properties of multiplication modules to multiplication semimodules (cf.
Theorems 2 and 12). In Section 2, we show that if M is a multiplication S-
semimodule and P is a maximal ideal of S such that M 6= PM, then MP

is cyclic. In Section 3, we study multiplicatively cancellative(abbreviated as
MC) multiplication semimodules. We show that MC multiplication semimod-
ules are finitely generated and projective. In Section 4, we characterize finitely
generated cancellative multiplication semimodules over yoked semirings with
subtractive maximal ideals.

2 Multiplication semimodule

In this section we give some results of multiplication semimodules which are
related to the corresponding results in multiplication modules.
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Definition 1 [6] Let S be a semiring and M an S-semimodule. Then M is
called a multiplication semimodule if for each subsemimodule N of M there
exists an ideal I of S such that N = IM. In this case it is easy to prove that
N = (N : M)M. For example, every cyclic S-semimodule is a multiplication
S-semimodule [20, Example 2].

Example 1 Let S be a multiplicatively idempotent semiring. Then every ideal
of S is a multiplication S-semimodule. Let J be an ideal of S and I ⊆ J. If
x ∈ I, then x = x2 ∈ IJ. Therefore I = IJ and hence J is a multiplication
S-semimodule.

Let M and N be S-semimodules and f : M → N an S-homomorphism. If
M′ is a subsemimodule of M and I is an ideal of S, then f(IM′) = If(M′).
Now suppose that f is surjective and N′ is a subsemimodule of N. Put M′ =
{m ∈ M | f(m) ∈ N′}. Then M′ is a subsemimodule of M and f(M′) = N′.
It is well-known that every homomorphic image of a multiplication module is
a multiplication module (cf. [7] and [19, Note 1.4]). A similar result holds for
multiplication semimodules.

Theorem 1 Let S be a semiring, M and N S-semimodules and f : M → N

a surjective S-homomorphism. If M is a multiplication S-semimodule, then N
is a multiplication S-semimodule.

Proof. Let N′ be a subsemimodule of N. Then there exists a subsemimodule
M′ of M such that f(M′) = N′. Since M is a multiplication S-semimodule,
there exists an ideal I of S such that M′ = IM. Then N′ = f(M′) = f(IM) =
If(M) = IN. Therefore N is a multiplication S-semimodule. �

Fractional and invertible ideals of semirings have been studied in [8]. We
recall here some definitions and properties.

An element s of a semiring S is multiplicatively-cancellable (abbreviated as
MC), if sb = sc implies b = c for all b, c ∈ S. We denote the set of all MC
elements of S by MC(S). The total quotient semiring of S, denoted by Q(S),
is defined as the localization of S at MC(S). Then Q(S) is an S-semimodule
and S can be regarded as a subsemimodule of Q(S). For the concept of the
localization in semiring theory, we refer to [10] and [11]. A subset I of Q(S)
is called a fractional ideal of S if I is a subsemimodule of Q(S) and there
exists an MC element d ∈ S such that dI ⊆ S. Note that every ideal of S
is a fractional ideal. The product of two fractional ideals is defined by IJ =
{a1b1+ . . .+anbn | ai ∈ I, bi ∈ J}. A fractional ideal I of a semiring S is called
invertible if there exists a fractional ideal J of S such that IJ = S.
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Now we restate the following property of invertible ideals from [8, Theorem
1.3] (see also [13, Proposition 6.3]).

Theorem 2 Let S be a semiring. An ideal I of S is invertible iff it is a mul-
tiplication S-semimodule which contains an MC element of S.

Let M be an S-semimodule and P a maximal ideal of S. Then similar to [7],
we define TP(M) = {m ∈M | there exist s ∈ S and q ∈ P such that s+q =
1 and sm = 0}. Clearly Tp(M) is a subsemimodule of M. We say that M
is P-cyclic if there exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1 and
tM ⊆ Sm.

The following two theorems can be thought of as a generalization of [7,
Theorem 1.2] (see also [5, Proposition 3]).

Theorem 3 Let M be an S-semimodule. If for every maximal ideal P of S
either TP(M) =M or M is P-cyclic, then M is a multiplication semimodule.

Proof. Let N be a subsemimodule of M and I = (N :M). Then IM ⊆ N. Let
x ∈ N and J = {s ∈ S | sx ∈ IM}. Clearly J is an ideal of S. If J 6= S, then
by [9, Proposition 6.59] there exists a maximal ideal P of S such that J ⊆ P.
If M = TP(M), then there exist s ∈ S and q ∈ P such that s + q = 1 and
sx = 0 ∈ IM. Hence s ∈ J ⊆ P which is a contradiction. So the second case will
happen. Therefore there exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1

and tM ⊆ Sm. Thus tN is a subsemimodule of Sm and tN = Km where
K = {s ∈ S | sm ∈ tN}. Moreover, tKM = KtM ⊆ Km ⊆ N. Therefore tK ⊆ I.
Thus t2x ∈ t2N = tKm ⊆ IM. Hence t2 ∈ J ⊆ P which is a contradiction.
Therefore J = S and x ∈ IM. �

Theorem 4 Suppose that M is an S-semimodule. If M is a multiplication
semimodule, then for every maximal ideal P of S either M = {m ∈ M | m =
qm for some q ∈ P} or M is P-cyclic.

Proof. Let P be a maximal ideal of S and M = PM. If m ∈ M, then there
exists an ideal I of S such that Sm = IM. Hence Sm = IPM = PIM = Pm.
Therefore m = qm for some q ∈ P. Now let M 6= PM. Thus there exists
x ∈ M such that x /∈ PM. Then there exists ideal I of S such that Sx = IM.
If I ⊆ P, then x ∈ IM ⊆ PM which is a contradiction. Thus I * P and since P
is a maximal ideal of S, P + I = S. Thus there exist t ∈ I and q ∈ P such that
q+ t = 1. Moreover, tM ⊆ IM = Sx. Therefore M is P-cyclic. �

We recall the following result from [10].



176 R. Razavi Nazari, Sh. Ghalandarzadeh

Theorem 5 A commutative semiring S is local iff for all r, s ∈ S, r + s = 1

implies r or s is a unit.

By using Theorem 4, we obtain the following corollary.

Corollary 1 Suppose that (S,m) is a local semiring. Let M be a multiplication
S-semimodule such that M 6= mM. Then M is a cyclic semimodule.

Proof. Since M 6= mM, M is m-cyclic. Thus there exist n ∈ M, t ∈ S and
q ∈ m such that t+q = 1 and tM ⊆ Sn. Since S is a local semiring, t is unit.
Hence M = Sn. �

Remark 1 Let S be a semiring and T a non-empty multiplicatively closed
subset of S, and let M be an S-semimodule. Define a relation ∼ on M× T as
follows: (m, t) ∼ (m′, t′) ⇐⇒ ∃s ∈ T such that stm′ = st′m. The relation ∼ on
M × T is an equivalence relation. Denote the set M × T/ ∼ by T−1M and the
equivalence class of each pair (m, s) ∈M× T by m/s. We can define addition
on T−1M by m/t +m′/t′ = (t′m + tm′)/tt′. Then (T−1M,+) is an abelian
monoid. Let s/t ∈ T−1S and m/u ∈ T−1M. We can define the product of s/t
and m/u by (s/t)(m/u) = sm/tu. Then it is easy to check that T−1M is an
T−1S-semimodule [3]. Let P be a prime ideal in S and T = S\P. Then T−1M
is denoted by MP.

We can obtain the following results as in [15].

1. Suppose that I is an ideal of a semiring S and M is an S-semimodule.
Then T−1(IM) = T−1IT−1M.

2. Let N, N′ be subsemimodules of an S-semimodule M. If Nm = N′
m for

every maximal ideal m, then N = N′.

Theorem 6 Let S be a semiring and M a multiplication S-semimodule. If P
is a maximal ideal of S such that M 6= PM, then MP is cyclic.

Proof. By (1), MP is a multiplication SP-semimodule. Since M 6= PM, MP 6=
PPMP by (2). Moreover, by [10, Theorem 4.5], SP is a local semiring. Thus by
Corollary 1, MP is cyclic. �

3 MC multiplication semimodules

In this section, we study MC multiplication semimodules and give some prop-
erties of these semimodules.
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In [4] an S-semimodule M is called cancellative if for any s, s′ ∈ S and
0 6= m ∈ M, sm = s′m implies s = s′. We will call these semimodules
multiplicatively cancellative(abbreviated as MC). For example every ideal of
a semidomain S is an MC S-semimodule.

Note that if M is an MC S-semimodule, then M is a faithful semimodule.
Let tM = {0} for some t ∈ S. If 0 6= m ∈M, then tm = 0m = 0. Thus t = 0.
Therefore M is faithful. But the converse is not true. For example, if S is an
entire multiplicatively idempotent semiring, then every ideal of S is a faithful
S-semimodule but it is not an MC semimodule.

Moreover, for an R-module M over a domain R, M is an MC semimodule
iff it is torsionfree. Also we know that if R is a domain and M a faithful
multiplication R-module, then M will be a torsionfree R-module and so M is
an MC semimodule.

An element m of an S-semimodule M is cancellable if m +m1 = m +m2

implies that m1 = m2. The semimodule M is cancellative iff every element of
M is cancellable [9, P. 172].

Lemma 1 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then M is an MC semimodule.

Proof. Let 0 6= m ∈M and s, s′ ∈ S such that sm = s′m. Since S is a yoked
semiring, there exists t ∈ S such that s + t = s′ or s′ + t = s. Suppose that
s + t = s′. Then sm + tm = s′m. Since M is a cancellative S-semimodule,
tm = 0. Moreover, there exists an ideal I of S such that Sm = IM since M
is a multiplication S-semimodule. Then tIM = tSm = {0} and hence tI = {0}

since M is faithful. But S is an entire semiring, so t = 0. Therefore s = s′.
Now suppose that s′ + t = s. A similar argument shows that s = s′. Therefore
M is an MC semimodule. �

We now give the following definition similar to [12, P. 127].

Definition 2 Let S be a semidomain. An S-semimodule M is said to be tor-
sionfree if for any 0 6= a ∈ S, multiplication by a on M is injective, i.e., if
ax = ay for some x, y ∈M, then x = y.

Theorem 7 Let S be a yoked semidomain and M a cancellative torsionfree
S-semimodule. Then M is an MC semimodule.

Proof. Let 0 6= m ∈ M and s, s′ ∈ S such that sm = s′m. Since S is a
yoked semiring, there exists t ∈ S such that s + t = s′ or s′ + t = s. Suppose
that s+ t = s′. Then sm+ tm = s′m. Since M is a cancellative S-semimodule,
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tm = 0. SinceM is a torsionfree S-semimodule,m = 0 which is a contradiction.
Thus t = 0 and hence s = s′. Now suppose that s′+ t = s. A similar argument
shows that s = s′. Therefore M is an MC semimodule. �

Now, similar to [7, Lemma 2.10] we give the following theorem (see also [6,
Theorem 3.2]).

Theorem 8 Let P be a prime ideal of S and M an MC multiplication semi-
module. Let a ∈ S and x ∈M such that ax ∈ PM. Then a ∈ P or x ∈ PM.

Proof. Let a /∈ P and put K = {s ∈ S | sx ∈ PM}. If K 6= S, there exists a
maximal ideal Q of S such that K ⊆ Q. Let M = QM and m ∈ M. Then
similar to the proof of Theorem 4, there exists q ∈ Q such that m = qm

which is a contradiction, since M is an MC semimodule. Therefore M 6= QM.
Thus by Theorem 4, we can conclude that M is Q-cyclic. Therefore there
exist m ∈ M, t ∈ S and q ∈ Q such that t + q = 1 and tM ⊆ Sm. Thus
tx = sm for some s ∈ S. Moreover, tPM ⊆ Pm. Hence tax ∈ tPM ⊆ Pm.
Therefore tax = p1m for some p1 ∈ P and hence asm = p1m. Since M is
an MC semimodule, as = p1 ∈ P and since P is a prime ideal, s ∈ P . Then
tx = sm ∈ PM and hence t ∈ K ⊆ Q which is a contradiction. Thus K = S.
Therefore x ∈ PM. �

Lemma 2 (cf. [1]) Suppose that S is a semiring. Let M be an S-semimodule
and θ(M) =

∑
m∈M(Sm : M). If M is a multiplication S-semimodule, then

M = θ(M)M.

Proof. Suppose that m ∈ M. Then Sm = (Sm : M)M. Thus m ∈ (Sm : M)
M ⊆ θ(M)M. Therefore M = θ(M)M. �

Theorem 9 (cf. [7, Theorem 3.1]) Let S be a semiring and M an MC multi-
plication S-semimodule. Then the following statements hold:

1. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

2. For each subsemimodule N of M there exists a unique ideal I of S such
that N = IM.

3. M 6= IM for any proper ideal I of S.

4. M 6= PM for any maximal ideal P of S.

5. M is finitely generated.
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Proof. (1) Let IM ⊆ JM and a ∈ I. Set K = {s ∈ S | sa ∈ J}. If K 6= S, there
exists a maximal ideal P of S such that K ⊆ P. By Theorem 4, M is P-cyclic
since M is an MC semimodule. Thus there exist m ∈ M, t ∈ S and q ∈ P
such that t + q = 1 and tM ⊆ Sm. Then tam ∈ tIM ⊆ tJM = JtM ⊆ Jm.
Hence there exists b ∈ J such that tam = bm. Since M is an MC semimodule,
ta = b ∈ J. Thus t ∈ K ⊆ P which is a contradiction. Therefore K = S and
hence I ⊆ J.
(2) Follows by (1)
(3) Follows by (2)
(4) Follows by (3)
(5) By Lemma 2, M = θ(M)M, where θ(M) =

∑
m∈M(Sm : M). Then

by 3, θ(M) = S. Thus there exist a positive integer n and elements mi ∈M,
ri ∈ (Smi :M) such that 1 = r1+. . .+rn. Ifm ∈M, thenm = r1m+. . .+rnm.
Therefore M = Sm1 + . . .+ Smn. �

By Lemma 1, we have the following result.

Corollary 2 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then the following statements hold:

1. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

2. For each subsemimodule N of M there exists a unique ideal I of S such
that N = IM.

3. M 6= IM for any proper ideal I of S.

4. M 6= PM for any maximal ideal P of S.

5. M is finitely generated.

The concept of cancellation modules was introduced in [14]. Similarly we
call an S-semimodule M a cancellation semimodule if whenever IM = JM for
ideals I and J of S, then I = J.

Using the Theorem 9, we obtain the following corollary.

Corollary 3 Let M be an MC multiplication semimodule. Then M is a can-
cellation semimodule.

In [7, Lemma 4.1] it is shown that faithful multiplication modules are torsion-
free. Similarly, we have the following result.

Theorem 10 Suppose that S is a semidomain and M is an MC multiplication
S-semimodule. Then M is a torsionfree S-semimodule.
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Proof. Suppose that there exist 0 6= t ∈ S andm,m′ ∈M such that tm = tm′.
Then Sm = IM and Sm′ = JM for some ideals I, J of S. Thus tIM = tJM

since tm = tm′. By Corollary 3, M is a cancellation semimodule, thus tI = tJ.
Let x ∈ I. Then tx = tx′ for some x′ ∈ J. Since S is a semidomain, x = x′.
Therefore I ⊆ J. Similarly J ⊆ I. Hence I = J and Sm = Sm′. Then there
exists s1 ∈ S such that m = s1m

′. Thus tm′ = tm = ts1m
′. Since M is an

MC semimodule, t = s1t. Since S is a semidomain, s1 = 1. Therefore m = m′

and hence M is torsionfree. �

If M is a finitely generated faithful multiplication module, then M is a pro-
jective module [17, Theorem 11]. Similarly, we have the following theorem:

Theorem 11 Let M be an MC multiplication semimodule. Then M is a pro-
jective S-semimodule.

Proof. By Theorem 9, θ(M) =
∑n
i (Smi :M) = S. Thus for each 1 ≤ i ≤ n,

there exist ri ∈ (Smi : M) and si ∈ S such that 1 = s1r
2
1 + . . . + snr

2
n. Define

a map φi : M → S by φi : m 7→ siria where a is an element of S such that
rim = ami. Suppose that ami = bmi for some b ∈ S. Since M is an MC
semimodule, a = b and therefore φi is a well defined S-homomorphism. Let
m ∈M. Then m = 1m = s1r

2
1m+ . . .+ snr

2
nm = φ1(m)m1 + . . .+φn(m)mn.

By [16, Theorem 3.4.12], M is a projective S-semimodule. �

By Lemma 1, we obtain the following result.

Corollary 4 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then M is a projective S-semimodule.

Theorem 12 [7, Lemma 3.6] Let S be a semidomain and let M be an MC
multiplication S-semimodule. Then there exists an invertible ideal I of S such
that M ∼= I.

Proof. Suppose that 0 6= m ∈M. Then there exists an ideal J of S such that
Sm = JM. Let 0 6= a ∈ J. We can define an S-homomorphism φ : M → Sm

by φ : x 7→ ax. Let x, x′ ∈ M such that ax = ax′. By Theorem 10, M is
torsionfree and hence x = x′. Therefore φ is injective and so M ∼= f(M). Now
define an S-homomorphism φ′ : S→ Sm by φ′(s) = sm. Let s, s′ ∈ S such that
sm = s′m. Since M is an MC semimodule, s = s′. Therefore φ′ is injective.
It is clear that φ′ is surjective. Therefore S ∼= Sm. Hence M is isomorphic to
an ideal I of S. Thus I is a multiplication ideal and hence an invertible ideal
of S. �
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4 Cancellative multiplication semimodule

In this section, we investigate cancellative multiplication semimodules over
some special semirings and restate some previous results. From now on, let S
be a yoked semiring such that every maximal ideal of S is subtractive and let
M be a cancellative S-semimodule.

Theorem 13 (See Theorems 4 and 3) The S-semimodule M is a multiplica-
tion S-semimodule iff for every maximal ideal P of S either M is P-cyclic or
M = {m ∈M | m = qm for some q ∈ P}.

Proof. (⇒) Follows by Theorem 4.
(⇐) Let N be a subsemimodule of M and I = (N :M). Then IM ⊆ N. Let

x ∈ N and put K = {s ∈ S | sx ∈ IM}. If K 6= S, there exists a maximal ideal P
of S such that K ⊆ P. If M = {m ∈M | m = qm for some q ∈ P}, then there
exists q ∈ P such that x = qx. Since S is a yoked semiring, there exists t ∈ S
such that t + 1 = q or q + t = 1. Suppose that q + t = 1. Then qx + tx = x

and hence tx = 0. Therefore t ∈ K ⊆ P which is a contradiction. Now suppose
that t+ 1 = q. Then tx+ x = qx and hence tx = 0. Therefore t ∈ K ⊆ P. But
P is a subtractive ideal of S, so 1 ∈ P which is a contradiction. Therefore M
is P-cyclic. Thus there exist m ∈M, t ∈ S and q ∈ P such that t+ q = 1 and
tM ⊆ Sm. Therefore tN is a subsemimodule of Sm. Hence tN = Jm where
J is the ideal {s ∈ S | sm ∈ tN} of S. Then tJM = JtM ⊆ Jm ⊆ N and
hence tJ ⊆ I. Thus t2x ∈ t2N = tJm ⊆ IM. Therefore t2 ∈ K ⊆ P which is a
contradiction. �

Lemma 3 If P is a maximal ideal of S, then N = {m ∈M | m = qm for some

q ∈ P} is a subsemimodule of M.
Proof. Let m1,m2 ∈ N. Then there exist q1, q2 ∈ P such that m1 = q1m1

and m2 = q2m2. Since S is a yoked semiring, there exits an element r such
that q1 + q2 + r = q1q2 or q1q2 + r = q1 + q2. Since P is a subtractive ideal,
r ∈ P.

Assume that q1q2 + r = q1 + q2. Then q1q2(m1+ m2) + r(m1+ m2) =
(q1 + q2)(m1+m2). Thus q1q2m1 + q1q2m2 + r(m1 +m2) = q1m1 + q2m1 +
q1m2+q2m2. Hence q2m1+q1m2+r(m1+m2) = q1m1+q2m1+q1m2+q2m2.
Since M is a cancellative S-semimodule, r(m1 +m2) = q1m1 + q2m2. Thus
r(m1 +m2) = m1 +m2. Therefore m1 +m2 ∈ N.

Now assume that q1+q2+r = q1q2. Then (q1+q2+r)(m1+m2) = q1q2(m1+
m2). Hence q1m1 + q1m2 + q2m1 + q2m2 + r(m1 +m2) = q1q2m1 + q1q2m2.
Thus q1m1 + q1m2 + q2m1 + q2m2 + r(m1 +m2) = q2m1 + q1m2. Since M
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is a cancellative S-semimodule, q1m1 + q2m2 + r(m1 + m2) = 0 and hence
m1 + m2 + r(m1 + m2) = (1 + r)(m1 + m2) = 0. Since P is a subtractive
ideal, (1 + r) /∈ P. Therefore (1 + r) + P = S since P is a maximal ideal
of S. Thus there exist t ∈ P and s ∈ S such that s(1 + r) + t = 1. Hence
s(1+ r)(m1+m2)+ t(m1+m2) = m1+m2. Therefore t(m1+m2) = m1+m2

and so m1 +m2 ∈ N.
Let s ∈ S and m ∈ N. Then there exists q ∈ P such that m = qm. Thus

sm = sqm. Since sq ∈ P, sm ∈ N. Therefore N is a subsemimodule of M. �

Similar to [7, Corollary 1.3], we have the following theorem.

Theorem 14 Let M =
∑
λ∈Λ Smλ. Then M is a multiplication semimodule

if and only if there exist ideals Iλ(λ ∈ Λ) of S such that Smλ = IλM for all
λ ∈ Λ.

Proof. (⇒) Obvious.
(⇐) Assume that there exist ideals Iλ(λ ∈ Λ) of S such that Smλ = IλM(λ ∈

Λ). Let P be a maximal ideal of S and Iµ * P for some µ ∈ Λ. Then there
exists t ∈ Iµ such that t /∈ P. Thus P + (t) = S and hence there exist q ∈ P
and s ∈ S such that 1 = q + st. Then tsM ⊆ IµM = Smµ. Therefore M is
P-cyclic. Now suppose that Iλ ⊆ P for all λ ∈ Λ. Then Smλ ⊆ PM(λ ∈ Λ).
This implies that M = PM. But for any λ ∈ Λ, Smλ = IλM = IλPM = Pmλ.
Therefore mλ ∈ {m ∈ M | m = qm for some q ∈ P}. Since by Lemma
3, {m ∈ M | m = qm for some q ∈ P} is an S-semimodule, we conclude
that M = {m ∈ M | m = qm for some q ∈ P}. By Theorem 13, M is a
multiplication semimodule. �

It follows from Theorem 14 that if S is a yoked semiring such that every maxi-
mal ideal of S is subtractive, then any additively cancellative ideal I generated
by idempotents is a multiplication ideal.

The following is a generalization of [7, Theorem 3.1]

Theorem 15 Let M be a faithful multiplication S-semimodule. Then the fol-
lowing statements are equivalent:

1. M is finitely generated.

2. M 6= PM for any maximal ideal P of S.

3. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

4. For each subsemimodule N of M there exists a unique ideal I of S such
that N = IM.
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5. M 6= IM for any proper ideal I of S.

Proof. (1) → (2) Let P be a maximal ideal of S such that M = PM and
M = Sm1 + . . . + Smn. Since M is a multiplication S-semimodule, for each
1 ≤ i ≤ n, there exists Ki ⊆ S such that Smi = KiM = KiPM = PKiM = Pmi.
Therefore mi = pimi for some pi ∈ P. Since S is a yoked semiring, there exists
ti ∈ S such that ti + pi = 1 or 1 + ti = pi. Suppose that ti + pi = 1. Then
timi + pimi = mi. Since M is a cancellative S-semimodule, timi = 0. Now
suppose that 1 + ti = pi. Then mi + timi = pimi. Since M is a cancellative
S-semimodule, timi = 0. Put t = t1 . . . tn. Then for all i, tmi = 0. Thus
tM = {0}. Since M is a faithful S-semimodule, t = 0 ∈ P. Since P is a prime
ideal, ti ∈ P for some 1 ≤ i ≤ n. If ti + pi = 1, then 1 ∈ P which is a
contradiction. If 1 + ti = pi, then, since P is a subtractive ideal of S, 1 ∈ P
which is a contradiction. Therefore M 6= PM.
(2) → (3) Let I and J be ideals of S such that IM ⊆ JM. Let a ∈ I and

put K = {r ∈ S | ra ∈ J}. If K 6= S, then there exists a maximal ideal P of
S such that K ⊆ P. By 2, M 6= PM. Thus M is P-cyclic and hence there
exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1 and tM ⊆ Sm. Then
tam ∈ tJM = JtM ⊆ Jm. Thus there exists b ∈ J such that tam = bm. Since
S is a yoked semiring, there exists c ∈ S such that ta + c = b or b + c = ta.
Suppose that ta + c = b. Then t2a + tc = tb and tam + cm = bm. Since
M is cancellative, cm = 0. But tcM ⊆ c(Sm) = {0}. Since M is a faithful
semimodule, tc = 0. Hence t2a = tb ∈ J. Therefore t2 ∈ K ⊆ P which is a
contradiction. Thus S = K and a ∈ J. Now suppose that b + c = ta. Then
tb+tc = t2a and bm+cm = tam. Since M is cancellative, cm = 0. A similar
argument shows that a ∈ J.
(3) → (4) → (5) Obvious.
(5) → (1) By Lemma 2, M = θ(M)M, where θ(M) =

∑
m∈M(Sm : M).

Then by 5, θ(M) = S. Thus there exist elements mi ∈M, ri ∈ (Smi :M) such
that 1 = r1 + . . .+ rn. Now let m ∈M. Then m = r1m+ . . .+ rnm. Hence M
is finitely generated. �

Theorem 8 can be restated as follows:

Theorem 16 (cf. [5, Proposition 3]) Suppose that P is a prime ideal and let
M be a faithful multiplication S-semimodule. Let a ∈ S and x ∈ M such that
ax ∈ PM. Then a ∈ P or x ∈ PM.

Proof. Let a /∈ P and K = {s ∈ S | sx ∈ PM}. Assume that K 6= S. Then
there exists a maximal ideal Q of S such that K ⊆ Q. A similar argument
to that of Theorem 13 shows that M 6= QM. Thus by Theorem 4, M is Q-
cyclic. Therefore there exist m ∈M, t ∈ S and q ∈ Q such that t+q = 1 and
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tM ⊆ Sm. Thus tx = sm for some s ∈ S. Since tPM ⊆ Pm, tax ∈ tPM ⊆ Pm.
Hence tax = p1m for some p1 ∈ P. Then asm = p1m. Since S is a yoked
semiring, there exists c ∈ S such that as + c = p1 or c + p1 = as. Suppose
that as + c = p1. Then asm + cm = p1m. Since M is cancellative, cm = 0.
Then tcM ⊆ c(Sm) = {0}. Since M is a faithful semimodule, tc = 0. Hence
ast = p1t ∈ P and so s ∈ P since P is a prime ideal. Then tx = sm ∈ PM and
hence t ∈ K ⊆ Q which is a contradiction. Thus K = S. Therefore x ∈ PM.
Now suppose that c+ p1 = as. A similar argument shows that x ∈ PM. �
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