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Abstract. Let S be a semiring. An S-semimodule M is called a mul-
tiplication semimodule if for each subsemimodule N of M there exists
an ideal I of S such that N = IM. In this paper we investigate some
properties of multiplication semimodules and generalize some results on
multiplication modules to semimodules. We show that every multiplica-
tively cancellative multiplication semimodule is finitely generated and
projective. Moreover, we characterize finitely generated cancellative mul-
tiplication S-semimodules when S is a yoked semiring such that every
maximal ideal of S is subtractive.

1 Introduction

In this paper, we study multiplication semimodules and extend some results
of [7] and [17] to semimodules over semirings. A semiring is a nonempty set S
together with two binary operations addition (4) and multiplication (-) such
that (S, +) is a commutative monoid with identity element 0; (S, .) is a monoid
with identity element 1 # 0; 0a = 0 = a0 for all a € S; a(b +c¢) = ab + ac
and (b +c)a =ba+ ca for every a,b,c € S. We say that S is a commutative
semiring if the monoid (S,.) is commutative. In this paper we assume that
all semirings are commutative. A nonempty subset I of a semiring S is called
an ideal of Sif a+ b € [ and sa € I for all a,b € I and s € S. A semiring
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Multiplication semimodules 173

S is called yoked if for all a,b € S, there exists an element t of S such that
a+t=borb+t=a. Anideal I of a semiring S is subtractive if a +b € [
and b € I imply that a € I for all a,b € S. A semiring S is local if it has a
unique maximal ideal. A semiring is entire if ab = 0 implies that a = 0 or
b = 0. An element s of a semiring S is a unit if there exists an element s’ of
S such that ss’ = 1. A semiring S is called a semidomain if for any nonzero
element a of S, ab = ac implies that b = c¢. An element a of a semiring S is
called multiplicatively idempotent if a®> = a. The semiring S is multiplicatively
idempotent if every element of S is multiplicatively idempotent.

Let (M, +) be an additive abelian monoid with additive identity Op. Then
M is called an S-semimodule if there exists a scalar multiplication Sx M — M
denoted by (s, m) — sm, such that (ss’)m = s(s'm); s(m+m') = sm + sm’;
(s+s')m=sm+s'm; ITm =m and sOpy = Op = Om for all s,s’ € S and all
m, m’ € M. A subsemimodule N of a semimodule M is a nonempty subset of
M such that m+mn € N and sn € N for all myn € N and s € S. If N and L
are subsemimodules of M, we set (N : L) ={s € S| sL C N} It is clear that
(N:L)is an ideal of S.

Let R be a ring. An R-module M is a multiplication module if for each
submodule N of M there exists an ideal I of R such that N = IM [2]. Mul-
tiplication semimodules are defined similarly. These semimodules have been
studied by several authors(e.g. [5], [6], [18], [20]). It is known that invertible
ideals of a ring R are multiplication R-modules. Invertible ideals of semirings
has been studied in [8]. In this paper, in order to study the relations between
invertible ideals of semirings and multiplication semimodules, we generalize
some properties of multiplication modules to multiplication semimodules (cf.
Theorems 2 and 12). In Section 2, we show that if M is a multiplication S-
semimodule and P is a maximal ideal of S such that M # PM, then Mp
is cyclic. In Section 3, we study multiplicatively cancellative(abbreviated as
MC) multiplication semimodules. We show that M C multiplication semimod-
ules are finitely generated and projective. In Section 4, we characterize finitely
generated cancellative multiplication semimodules over yoked semirings with
subtractive maximal ideals.

2 Multiplication semimodule

In this section we give some results of multiplication semimodules which are
related to the corresponding results in multiplication modules.
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Definition 1 [6] Let S be a semiring and M an S-semimodule. Then M is
called a multiplication semimodule if for each subsemimodule N of M there
exists an ideal 1 of S such that N = IM. In this case it is easy to prove that
N = (N : M)M. For example, every cyclic S-semimodule is a multiplication
S-semimodule [20, Example 2].

Example 1 Let S be a multiplicatively idempotent semiring. Then every ideal
of S is a multiplication S-semimodule. Let | be an ideal of S and 1 C J. If
x € 1, then x = x* € 1]. Therefore I = 1] and hence | is a multiplication
S-semimodule.

Let M and N be S-semimodules and f : M — N an S-homomorphism. If
M’ is a subsemimodule of M and I is an ideal of S, then f(IM') = If(M/).
Now suppose that f is surjective and N’ is a subsemimodule of N. Put M’ =
{m e M | f(m) € N’'}. Then M’ is a subsemimodule of M and f(M’) = N’.
It is well-known that every homomorphic image of a multiplication module is
a multiplication module (cf. [7] and [19, Note 1.4]). A similar result holds for
multiplication semimodules.

Theorem 1 Let S be a semiring, M and N S-semimodules and f : M — N
a surjective S-homomorphism. If M is a multiplication S-semimodule, then N
1s a multiplication S-semimodule.

Proof. Let N’ be a subsemimodule of N. Then there exists a subsemimodule
M’ of M such that f(M’) = N’. Since M is a multiplication S-semimodule,
there exists an ideal I of S such that M’ = IM. Then N’ = f(M/) = f(IM) =
If(M) = IN. Therefore N is a multiplication S-semimodule. O

Fractional and invertible ideals of semirings have been studied in [8]. We
recall here some definitions and properties.

An element s of a semiring S is multiplicatively-cancellable (abbreviated as
MC), if sb = sc implies b = ¢ for all b,c € S. We denote the set of all MC
elements of S by MC(S). The total quotient semiring of S, denoted by Q(S),
is defined as the localization of S at MC(S). Then Q(S) is an S-semimodule
and S can be regarded as a subsemimodule of Q(S). For the concept of the
localization in semiring theory, we refer to [10] and [11]. A subset I of Q(S)
is called a fractional ideal of S if I is a subsemimodule of Q(S) and there
exists an MC element d € S such that dI C S. Note that every ideal of S
is a fractional ideal. The product of two fractional ideals is defined by IJ =
{a1b1+...+anbn | a4 € [ by € J}. A fractional ideal I of a semiring S is called
invertible if there exists a fractional ideal | of S such that IJ = S.
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Now we restate the following property of invertible ideals from [8, Theorem
1.3] (see also [13, Proposition 6.3]).

Theorem 2 Let S be a semiring. An ideal 1 of S is invertible iff it is a mul-
tiplication S-semimodule which contains an MC element of S.

Let M be an S-semimodule and P a maximal ideal of S. Then similar to [7],
we define Tp(M) ={m € M| there exist s € S and q € P such that s+q =
1 and sm = 0}. Clearly T,(M) is a subsemimodule of M. We say that M
is P-cyclic if there exist m € M, t € S and q € P such that t + g = 1 and
tM C Sm.

The following two theorems can be thought of as a generalization of [7,
Theorem 1.2] (see also [5, Proposition 3]).

Theorem 3 Let M be an S-semimodule. If for every maximal ideal P of S
either Tp(M) = M or M is P-cyclic, then M is a multiplication semimodule.

Proof. Let N be a subsemimodule of M and I = (N : M). Then IM C N. Let
x € Nand ] ={s € S| sx € IM}. Clearly ] is an ideal of S. If ] # S, then
by [9, Proposition 6.59] there exists a maximal ideal P of S such that ] C P.
If M = Tp(M), then there exist s € S and q € P such that s +q = 1 and
sx =0 € IM. Hence s € | C P which is a contradiction. So the second case will
happen. Therefore there exist m € M, t € S and q € P such that t4+q =1
and tM C Sm. Thus tN is a subsemimodule of Sm and tN = Km where
K ={s € S|sm e tN}. Moreover, tKM = KtM C Km C N. Therefore tK C I.
Thus tx € 2N = tKm C IM. Hence t? € ] € P which is a contradiction.
Therefore ] =S and x € IM. O

Theorem 4 Suppose that M is an S-semimodule. If M is a multiplication
semimodule, then for every maximal ideal P of S either M ={m &€ M | m =
gm for some q € P} or M is P-cyclic.

Proof. Let P be a maximal ideal of S and M = PM. If m € M, then there
exists an ideal I of S such that Sm = IM. Hence Sm = IPM = PIM = Pm.
Therefore m = qm for some q € P. Now let M # PM. Thus there exists
X € M such that x ¢ PM. Then there exists ideal I of S such that Sx = IM.
If I C P, then x € IM C PM which is a contradiction. Thus I g P and since P
is a maximal ideal of S, P+ 1 =S. Thus there exist t € [ and q € P such that
q -+t =1. Moreover, tM C IM = Sx. Therefore M is P-cyclic. O

We recall the following result from [10].
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Theorem 5 A commutative semiring S is local iff for all vys € S, v+ s =1
implies v or s is a unit.

By using Theorem 4, we obtain the following corollary.

Corollary 1 Suppose that (S, m) is a local semiring. Let M be a multiplication
S-semimodule such that M # mM. Then M is a cyclic semimodule.

Proof. Since M # mM, M is m-cyclic. Thus there exist n € M, t € S and
g € msuch that t+q =1 and tM C Sn. Since S is a local semiring, t is unit.
Hence M = Sn. 0

Remark 1 Let S be a semiring and T a non-empty multiplicatively closed
subset of S, and let M be an S-semimodule. Define a relation ~ on M X T as
follows: (m,t) ~ (m/,t') & Is € T such that stm’ = st'm. The relation ~ on
M x T is an equivalence relation. Denote the set M x T/ ~ by T"'"M and the
equivalence class of each pair (m,s) € M x T by m/s. We can define addition
on T-'M by m/t + m//t' = (Ym + tm/)/tt". Then (T-'M,+) is an abelian
monoid. Let s/t € T7'S and m/u € T-'M. We can define the product of s/t
and m/u by (s/t)(m/u) = sm/tu. Then it is easy to check that T"'M is an
T'S-semimodule [3]. Let P be a prime ideal in' S and T = S\P. Then T-'M
1s denoted by Mp.
We can obtain the following results as in [15].

1. Suppose that 1 is an ideal of a semiring S and M is an S-semimodule.
Then T-HIM) = T 'IT-'M.

2. Let N, N be subsemimodules of an S-semimodule M. If Ny = N7 for
every maximal ideal m, then N = N’.

Theorem 6 Let S be a semiring and M a multiplication S-semimodule. If P
1s a mazimal ideal of S such that M £ PM, then Mp is cyclic.

Proof. By (1), Mp is a multiplication Sp-semimodule. Since M # PM, Mp #
PpMp by (2). Moreover, by [10, Theorem 4.5], Sp is a local semiring. Thus by
Corollary 1, Mp is cyclic. g

3 MC multiplication semimodules

In this section, we study M C multiplication semimodules and give some prop-
erties of these semimodules.



Multiplication semimodules 177

In [4] an S-semimodule M is called cancellative if for any s,s’ € S and
0 #m € M, sm = s'm implies s = s’. We will call these semimodules
multiplicatively cancellative(abbreviated as MC). For example every ideal of
a semidomain S is an MC S-semimodule.

Note that if M is an MC S-semimodule, then M is a faithful semimodule.
Let tM = {0} for some t € S. If 0 # m € M, then tm = 0m = 0. Thus t = 0.
Therefore M is faithful. But the converse is not true. For example, if S is an
entire multiplicatively idempotent semiring, then every ideal of S is a faithful
S-semimodule but it is not an MC semimodule.

Moreover, for an R-module M over a domain R, M is an MC semimodule
iff it is torsionfree. Also we know that if R is a domain and M a faithful
multiplication R-module, then M will be a torsionfree R-module and so M is
an MC semimodule.

An element m of an S-semimodule M is cancellable if m +m; = m + my
implies that m; = m,. The semimodule M is cancellative iff every element of
M is cancellable [9, P. 172].

Lemma 1 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then M is an MC semimodule.

Proof. Let 0 # m € M and s,s’ € S such that sm = s’m. Since S is a yoked
semiring, there exists t € S such that s +t = s’ or s’ +t = s. Suppose that
s+t =s'. Then sm + tm = s'm. Since M is a cancellative S-semimodule,
tm = 0. Moreover, there exists an ideal I of S such that Sm = IM since M
is a multiplication S-semimodule. Then tIM = tSm = {0} and hence tI = {0}
since M is faithful. But S is an entire semiring, so t = 0. Therefore s = s’.
Now suppose that s’ +t =s. A similar argument shows that s = s’. Therefore
M is an MC semimodule. O

We now give the following definition similar to [12, P. 127].

Definition 2 Let S be a semidomain. An S-semimodule M is said to be tor-
sionfree if for any 0 # a € S, multiplication by a on M is injective, i.e., if
ax = ay for some x,y € M, then x =y.

Theorem 7 Let S be a yoked semidomain and M a cancellative torsionfree
S-semimodule. Then M is an MC semimodule.

Proof. Let 0 # m € M and s,s’ € S such that sm = s’m. Since S is a
yoked semiring, there exists t € S such that s+t =s" or s’ +t = s. Suppose
that s+t =s’. Then sm+tm = s’m. Since M is a cancellative S-semimodule,
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tm = 0. Since M is a torsionfree S-semimodule, m = 0 which is a contradiction.
Thus t = 0 and hence s = s’. Now suppose that s’ +t =s. A similar argument
shows that s = s’. Therefore M is an MC semimodule. O

Now, similar to [7, Lemma 2.10] we give the following theorem (see also [6,
Theorem 3.2]).

Theorem 8 Let P be a prime ideal of S and M an MC multiplication semi-
module. Let a € S and x € M such that ax € PM. Then a € P or x € PM.

Proof. Let a ¢ P and put K ={s € S| sx € PM}. If K # S, there exists a
maximal ideal Q of S such that K C Q. Let M = QM and m € M. Then
similar to the proof of Theorem 4, there exists ¢ € Q such that m = qm
which is a contradiction, since M is an M C semimodule. Therefore M # QM.
Thus by Theorem 4, we can conclude that M is Q-cyclic. Therefore there
exist me M, t € S and q € Q such that t+q = 1 and tM C Sm. Thus
tx = sm for some s € S. Moreover, tPM C Pm. Hence tax € tPM C Pm.
Therefore tax = pym for some p; € P and hence asm = pym. Since M is
an MC semimodule, as = p; € P and since P is a prime ideal, s € P . Then
tx = sm € PM and hence t € K C Q which is a contradiction. Thus K = S.
Therefore x € PM. g

Lemma 2 (cf. [1]) Suppose that S is a semiring. Let M be an S-semimodule
and O(M) = 3 cm(Sm : M). If M is a multiplication S-semimodule, then
M = 6(M)M.

Proof. Suppose that m € M. Then Sm = (Sm: M)M. Thus m € (Sm : M)
M C 6(M)M. Therefore M = 6(M)M. O

Theorem 9 (cf. [7, Theorem 3.1]) Let S be a semiring and M an MC multi-
plication S-semimodule. Then the following statements hold:

1. If 1 and | are ideals of S such that IM C JM then I CJ.

2. For each subsemimodule N of M there exists a unique ideal 1 of S such
that N = IM.

8. M £ IM for any proper ideal 1 of S.
4. M #£ PM for any mazximal ideal P of S.

5. M is finitely generated.
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Proof. (1) Let IM C JM and a € I. Set K={s € S| sa € J}. If K # S, there
exists a maximal ideal P of S such that K C P. By Theorem 4, M is P-cyclic
since M is an MC semimodule. Thus there exist m € M, t € S and q € P
such that t+q =1 and tM C Sm. Then tam € tIM C t]M = JtM C Jm.
Hence there exists b € ] such that tam = bm. Since M is an MC semimodule,
ta =b € J. Thus t € K C P which is a contradiction. Therefore K = S and
hence I C J.

(2) Follows by (1)

(3) Follows by (2)

(4) Follows by (3)

(5) By Lemma 2, M = 6(M)M, where (M) = 3 -\ (Sm : M). Then
by 3, (M) = S. Thus there exist a positive integer n and elements m; € M,
i € (Smi: M)suchthat 1 =r1+...+1,. If m € M, then m = rym+...+r,m.
Therefore M = Smy + ...+ Sm,,. O

By Lemma 1, we have the following result.

Corollary 2 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then the following statements hold:

1. If 1 and | are ideals of S such that IM C JM then I CJ.

2. For each subsemimodule N of M there exists a unique ideal 1 of S such

that N = IM.
8. M £ IM for any proper ideal 1 of S.
4. M #£ PM for any mazximal ideal P of S.
5. M is finitely generated.

The concept of cancellation modules was introduced in [14]. Similarly we
call an S-semimodule M a cancellation semimodule if whenever IM = JM for
ideals I and J of S, then I =].

Using the Theorem 9, we obtain the following corollary.

Corollary 3 Let M be an MC multiplication semimodule. Then M is a can-
cellation semimodule.

In [7, Lemma 4.1] it is shown that faithful multiplication modules are torsion-
free. Similarly, we have the following result.

Theorem 10 Suppose that S is a semidomain and M is an MC multiplication
S-semimodule. Then M is a torsionfree S-semimodule.
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Proof. Suppose that there exist 0 # t € S and m, m’ € M such that tm = tm’.
Then Sm = IM and Sm’ = JM for some ideals I, of S. Thus tIM = tj]M
since tm = tm'. By Corollary 3, M is a cancellation semimodule, thus tI = tJ.
Let x € I. Then tx = tx' for some x’ € J. Since S is a semidomain, x = x’.
Therefore I C J. Similarly ] C I. Hence I = J and Sm = Sm/. Then there
exists s € S such that m = sym’. Thus tm’ = tm = tsym’. Since M is an
MC semimodule, t = s1t. Since S is a semidomain, s; = 1. Therefore m = m’
and hence M is torsionfree. g

If M is a finitely generated faithful multiplication module, then M is a pro-
jective module [17, Theorem 11]. Similarly, we have the following theorem:

Theorem 11 Let M be an MC multiplication semimodule. Then M is a pro-
jective S-semimodule.

Proof. By Theorem 9, 6(M) = Y '(Sm;: M) = S. Thus for each 1 <1 <mn,
there exist r; € (Smi: M) and s; € S such that 1 = 511'% + ...+ su12. Define
amap ¢; : M — S by ¢; : m — siria where a is an element of S such that
Tym = amy. Suppose that am; = bm; for some b € S. Since M is an MC
semimodule, a = b and therefore ¢; is a well defined S-homomorphism. Let
meM. Then m=1m= sw%m—i— e samim = b (m)my 4.+ dn(m)m,.
By [16, Theorem 3.4.12], M is a projective S-semimodule. O

By Lemma 1, we obtain the following result.

Corollary 4 Let S be a yoked entire semiring and M a cancellative faithful
multiplication S-semimodule. Then M is a projective S-semimodule.

Theorem 12 [7, Lemma 3.6] Let S be a semidomain and let M be an MC
multiplication S-semimodule. Then there exists an invertible ideal 1 of S such

that M = 1.

Proof. Suppose that 0 # m € M. Then there exists an ideal ] of S such that
Sm = JM. Let 0 # a € J. We can define an S-homomorphism ¢ : M — Sm
by ¢ : x — ax. Let x,x’ € M such that ax = ax’. By Theorem 10, M is
torsionfree and hence x = x’. Therefore ¢ is injective and so M = f(M). Now
define an S-homomorphism ¢’ : S — Sm by ¢/(s) = sm. Let s, s’ € S such that
sm = s'm. Since M is an MC semimodule, s = s’. Therefore ¢’ is injective.
It is clear that ¢’ is surjective. Therefore S = Sm. Hence M is isomorphic to
an ideal I of S. Thus I is a multiplication ideal and hence an invertible ideal
of S. U
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4 Cancellative multiplication semimodule

In this section, we investigate cancellative multiplication semimodules over
some special semirings and restate some previous results. From now on, let S
be a yoked semiring such that every maximal ideal of S is subtractive and let
M be a cancellative S-semimodule.

Theorem 13 (See Theorems 4 and 3) The S-semimodule M is a multiplica-
tion S-semimodule iff for every mazimal ideal P of S either M is P-cyclic or
M={mée M|m=qgm for some q € P}.

Proof. (=) Follows by Theorem 4.

(&) Let N be a subsemimodule of M and I = (N : M). Then IM C N. Let
x € N and put K={s € S| sx € IM}. If K # S, there exists a maximal ideal P
of S such that KC P. If M ={m € M | m = qm for some q € P}, then there
exists q € P such that x = gx. Since S is a yoked semiring, there exists t € S
such that t+1 = q or q +t = 1. Suppose that q +t = 1. Then gx + tx = x
and hence tx = 0. Therefore t € K C P which is a contradiction. Now suppose
that t4+ 1 = . Then tx +x = gx and hence tx = 0. Therefore t € K C P. But
P is a subtractive ideal of S, so 1 € P which is a contradiction. Therefore M
is P-cyclic. Thus there exist m € M, t € S and q € P such that t +q =1 and
tM C Sm. Therefore tN is a subsemimodule of Sm. Hence tN = Jm where
J is the ideal {s € S | sm € tN} of S. Then t]M = JtM C Jm C N and
hence t] C I. Thus t?x € t?N = tJm C IM. Therefore t? € K C P which is a
contradiction. g

Lemma 3 IfP is a mazimal ideal of S, then N ={m € M | m = qm for some
q € P} is a subsemimodule of M.

Proof. Let m;,m,; € N. Then there exist q1,q2 € P such that m;y = qimy
and my = qymy. Since S is a yoked semiring, there exits an element v such
that q1 +q2+7 =192 or qiq2 +7 = q1 + q2. Since P is a subtractive ideal,
TreP.

Assume that q1q2 +7 = q1 + q2. Then q1q2(my+ my) + r(my+ my) =
(g1 + q2)(my+mz). Thus qrqamy + q1q2my +1(My +mz) = q1my + qamy +
qima+qamy. Hence gumy+qima+r(my+my) = qymy+qamy+qrma+qam;.
Since M is a cancellative S-semimodule, v(my + my) = qymy + quymy. Thus
r(m; +my) = my + my. Therefore my +my € N.

Now assume that q1+q2+7r = q1q2. Then (q1+q2+7)(m1+my) = qi1q2(my+
my). Hence qymy + qimy + qamy + qamy + r(my +my) = q1qamy + q1q2m;.
Thus qimy + qimy + q2my + qamy + v(my + my) = qamy + qymy. Since M
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is a cancellative S-semimodule, qimy + qamy + v(my + my) = 0 and hence
my+my +r(m; +my) = (1 +71)(my +my) = 0. Since P is a subtractive
ideal, (1 + 1) ¢ P. Therefore (1 + 1)+ P = S since P is a maximal ideal
of S. Thus there exist t € P and s € S such that s(1 + 1)+t = 1. Hence
s(1+7)(my +my) +t(my +my) = my +my. Therefore t(my +my) = my+my
and so m; +my € N.

Let s € S and m € N. Then there exists q € P such that m = qm. Thus
sm = sqm. Since sq € P, sm € N. Therefore N is a subsemimodule of M. [

Similar to [7, Corollary 1.3], we have the following theorem.

Theorem 14 Let M = } ., Smy. Then M is a multiplication semimodule
if and only if there exist ideals Ix(A € A) of S such that Smy = LM for all
AEA.

Proof. (=) Obvious.

(&) Assume that there exist ideals Iy (A € A) of S such that Smy = L,;M(A €
A). Let P be a maximal ideal of S and I, ¢ P for some p € A. Then there
exists t € I, such that t ¢ P. Thus P 4 (t) = S and hence there exist q € P
and s € S such that 1 = q + st. Then tsM C ;M = Sm,,. Therefore M is
P-cyclic. Now suppose that Iy C P for all A € A. Then Smy € PM(A € A).
This implies that M = PM. But for any A € A, Smy = LM = [,PM = Pm,.
Therefore my € {m € M | m = gm for some q € P}. Since by Lemma
3, {m e M | m = gm for some q € P} is an S-semimodule, we conclude
that M = {m € M | m = gm for some q € P}. By Theorem 13, M is a
multiplication semimodule. O

It follows from Theorem 14 that if S is a yoked semiring such that every maxi-
mal ideal of S is subtractive, then any additively cancellative ideal I generated
by idempotents is a multiplication ideal.

The following is a generalization of [7, Theorem 3.1]

Theorem 15 Let M be a faithful multiplication S-semimodule. Then the fol-
lowing statements are equivalent:

1. M is finitely generated.
M #£ PM for any mazximal ideal P of S.
If I and | are ideals of S such that IM C JM then I C J.

™ o e

For each subsemimodule N of M there exists a unique ideal I of S such
that N = IM.
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5. M # IM for any proper ideal 1 of S.

Proof. (1) — (2) Let P be a maximal ideal of S such that M = PM and
M = Smy +...4+ Sm,. Since M is a multiplication S-semimodule, for each
1 <1 < n, there exists K; C S such that Sm; = KiM = K{PM = PKiM = Pm;.
Therefore m; = pym,; for some p; € P. Since S is a yoked semiring, there exists
t; € S such that t; +p; = 1 or 1 +1t; = pi. Suppose that t; +p; = 1. Then
tymy + pimy = my. Since M is a cancellative S-semimodule, tiym; = 0. Now
suppose that 1+ t; = pi. Then my + tiym; = pim;. Since M is a cancellative
S-semimodule, tym; = 0. Put t = ty...t,. Then for all i, tm; = 0. Thus
tM = {0}. Since M is a faithful S-semimodule, t = 0 € P. Since P is a prime
ideal, t; € P for some 1 < i < n. If t; +p; = 1, then 1 € P which is a
contradiction. If T 4 t; = p;, then, since P is a subtractive ideal of S, 1 € P
which is a contradiction. Therefore M £ PM.

(2) — (3) Let I and ] be ideals of S such that IM C JM. Let a € I and
put K={r € S| ra € J}. If K # S, then there exists a maximal ideal P of
S such that K € P. By 2, M # PM. Thus M is P-cyclic and hence there
exist m € M, t € S and q € P such that t+q = 1 and tM C Sm. Then
tam € tJM = JtM C Jm. Thus there exists b € | such that tam = bm. Since
S is a yoked semiring, there exists ¢ € S such that ta+c=Db or b+ c = ta.
Suppose that ta + ¢ = b. Then t?a + tc = tb and tam + cm = bm. Since
M is cancellative, cm = 0. But tcM C ¢(Sm) = {0}. Since M is a faithful
semimodule, tc = 0. Hence t?a = tb € J. Therefore t* € K C P which is a
contradiction. Thus S = K and a € J. Now suppose that b + ¢ = ta. Then
tb+tc = t?a and bm+cm = tam. Since M is cancellative, cm = 0. A similar
argument shows that a € J.

(3) — (4) — (5) Obvious.

(5) — (1) By Lemma 2, M = 6(M)M, where 06(M) = } .\ (Sm : M).
Then by 5, 6(M) = S. Thus there exist elements m; € M, r; € (Smy : M) such
that T=r11+...+ 1. Now let m € M. Then m =rym+...+r,m. Hence M
is finitely generated. O

Theorem 8 can be restated as follows:
Theorem 16 (cf. [5, Proposition 3]) Suppose that P is a prime ideal and let

M be a faithful multiplication S-semimodule. Let a € S and x € M such that
ax € PM. Then a € P or x € PM.

Proof. Let a ¢ P and K ={s € S | sx € PM}. Assume that K # S. Then
there exists a maximal ideal Q of S such that K C Q. A similar argument
to that of Theorem 13 shows that M # QM. Thus by Theorem 4, M is Q-
cyclic. Therefore there exist m € M, t € S and q € Q such that t+q =1 and
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tM C Sm. Thus tx = sm for some s € S. Since tPM C Pm, tax € tPM C Pm.
Hence tax = pym for some p; € P. Then asm = p;m. Since S is a yoked
semiring, there exists ¢ € S such that as +c¢ = py or ¢ + p; = as. Suppose
that as +c¢ = p7. Then asm + cm = pym. Since M is cancellative, cm = 0.
Then tcM C ¢(Sm) = {0}. Since M is a faithful semimodule, tc = 0. Hence
ast =pit € P and so s € P since P is a prime ideal. Then tx = sm € PM and
hence t € K C Q which is a contradiction. Thus K = S. Therefore x € PM.
Now suppose that ¢ + p; = as. A similar argument shows that x € PM. 0O
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