

Multiple radially symmetric solutions for a quasilinear eigenvalue problem

Ildikó-Ilona Mezei

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
str. M. Kogâlniceanu 1,
400084 Cluj-Napoca, Romania
email: ildiko.mezei@math.ubbcluj.ro

Abstract. In this paper we study an eigenvalue problem in \mathbb{R}^N , which involves the p-Laplacian (1 , and the nonlinear term has a global <math>(p-1)-sublinear growth. We guarantee an open interval of eigenvalues, for which the eigenvalue problem has three distinct radially symmetric solutions in a weighted Sobolev space. We use a compact embedding result of Su, Wang and Willem ([6]) and a Ricceri-type three critical points theorem of Bonanno ([1]).

1 Main result

Let $V, Q : (0, \infty) \to (0, \infty)$ be two continuous functions satisfying the following hypotheses

(V) there exist real numbers a and a_0 such that

$$\liminf_{r\to\infty}\frac{V(r)}{r^{\alpha}}>0, \liminf_{r\to0}\frac{V(r)}{r^{\alpha_0}}>0.$$

(Q) there exist real numbers b and b_0 such that

$$\liminf_{r\to\infty}\frac{Q(r)}{r^b}<\infty, \liminf_{r\to0}\frac{Q(r)}{r^{b_0}}<\infty.$$

AMS 2000 subject classifications: 35J35, 46E35

Key words and phrases: quasilinear problem, eigenvalue problem, variational methods, weighted Sobolev space

Let $C_0^\infty(\mathbb{R}^N)$ denote the collection of smooth functions with compact support

$$C^{\infty}_{0,r}(\mathbb{R}^N)=\{u\in C^{\infty}_{0}(\mathbb{R}^N)|u \text{ is radially symmetric}\}.$$

We recall that a function $u \in C_0^{\infty}(\mathbb{R}^N)$ is radially symmetric, if u(|x|) = u(x), for any $x \in \mathbb{R}^N$. Let $D_r^{1,p}(\mathbb{R}^N)$ be the completion of $C_{0,r}^{\infty}(\mathbb{R}^N)$ under

$$||u||^p = \int_{\mathbb{R}^N} |\nabla u|^p dx.$$

Define the Lebesgue spaces for $\mathfrak{p} \geq 1$ and $\mathfrak{q} \geq 1$:

$$L^p(\mathbb{R}^N;V) = \{u: \mathbb{R}^N \to \mathbb{R} | u \text{ is measurable}, \int_{\mathbb{R}^N} V(|x|) |u|^p dx < \infty \}$$

$$L^q(\mathbb{R}^N;Q) = \{u: \mathbb{R}^N \to \mathbb{R} | u \text{ is measurable}, \int_{\mathbb{R}^N} Q(|x|) |u|^q dx < \infty \}$$

with the corresponding norms

$$||u||_{L^p(\mathbb{R}^N;V)} = \left(\int_{\mathbb{R}^N} V(|x|)|u|^p dx\right)^{1/p},$$

$$\|u\|_{L^q(\mathbb{R}^N;Q)} = \left(\int_{\mathbb{R}^N} Q(|x|)|u|^q dx\right)^{1/q}.$$

For these norms, we use the abbreviations: $\|u\|_{L^p(\mathbb{R}^N;V)} = \|u\|_{p,V}$ and $||\mathfrak{u}||_{L^{\mathfrak{q}}(\mathbb{R}^{N};Q)}=||\mathfrak{u}||_{\mathfrak{q},Q}.$

Then define $W_r^{1,p}(\mathbb{R}^N;V) = D_r^{1,p}(\mathbb{R}^N) \cap L^p(\mathbb{R}^N;V)$, which is a Banach space under

$$||u||_{W}^{p} = \int_{\mathbb{R}^{N}} (|\nabla u|^{p} + V(|x|)|u|^{p}) dx.$$

In order to state the embedding theorem used in our proofs, we need to introduce the following notations:

$$q_* = \left\{ \begin{array}{l} \displaystyle \frac{p^2(N-1+b) - \alpha p}{p(N-1) + \alpha(p-1)}, & b \geq \alpha > -p, \\ \displaystyle \frac{p(N+b)}{N-p}, & b \geq -p \geq \alpha, \\ p, & b \leq \max\{\alpha, -p\} \end{array} \right.$$

$$q^* = \left\{ \begin{array}{ll} \frac{p(N+b_0)}{N-p}, & b_0 \geq -p, a_0 \geq -p, \\ \frac{p^2(N-1+b_0)-a_0p}{p(N-1)+a_0(p-1)}, & -p \geq a_0 > -\frac{N-1}{p-1}p, b_0 \geq a_0, \\ \infty, & a_0 \leq -\frac{N-1}{p-1}p, b_0 \geq a_0. \end{array} \right.$$

We shall use the following embedding theorem.

Theorem 1 [6, Theorem 1.] Let 1 . Assume (V) and (Q). Then we have the embedding

$$W_r^{1,p}(\mathbb{R}^N; V) \hookrightarrow L^q(\mathbb{R}^N; Q)$$
 (1)

for $q_* \leq q \leq q^*$, when $q^* < \infty$ and for $q_* \leq q < \infty$, when $q^* = \infty$.

Furthermore, the embedding is compact for $q_* < q < q^*$. And if $b < \max\{a, -p\}$ and $b_0 > \min\{-p, a_0\}$, the embedding is also compact for q = p.

Therefore, supposing besides (V) and (Q) the condition

(ab)
$$b < \max\{a, -p\} \text{ and } b_0 > \min\{-p, a_0\},$$

the embedding

$$W_r^{1,p}(\mathbb{R}^N; V) \hookrightarrow L^p(\mathbb{R}^N; Q)$$
 (2)

is also compact.

The collection of those functions, which satisfy the conditions (V), (Q) and (ab) is not empty. For example, taking

$$a = p, b = -p - 1, a_0 = -p, b_0 = -p + 1,$$

the functions V and Q defined by

$$V(r) = \max\left\{1, \frac{1}{r^p}\right\},\,$$

$$Q(x) = \min\left\{\frac{1}{r^{p+1}}, \frac{1}{r^{p-1}}\right\}$$

satisfy all three assumptions for every 1 .

For $\lambda > 0$, we consider the following problem:

$$\begin{cases} -\Delta_p u + V(|x|) |u|^{p-2} u = \lambda Q(|x|) f(u) \ \mathrm{in} \ \mathbb{R}^N \\ |u(x)| \to 0, \mathrm{as} \ |x| \to \infty \end{cases}$$

where $f: \mathbb{R} \to \mathbb{R}$ is a continuous function.

We say that $\mathfrak{u}\in W^{1,p}_r(\mathbb{R}^N;V)$ is a weak radial solution of the problem (P_λ) if

$$\int_{\mathbb{R}^N}(|\nabla u|^{p-2}\nabla u\nabla v+V(|x|)|u|^{p-2}uv)dx-\lambda\int_{\mathbb{R}^N}Q(|x|)f(u(x))\nu(x)dx=0,$$

for every $v \in W^{1,p}_r(\mathbb{R}^N; V)$.

We assume the following conditions on f:

 (f_1) there exists C > 0 such that $|f(s)| \le C(1 + |s|^{p-1})$, for every $s \in \mathbb{R}$;

(f₂)
$$\lim_{s\to 0} \frac{f(s)}{|s|^{p-1}} = 0;$$

 (f_3) there exists $s_0 \in \mathbb{R}$ such that $F(s_0) > 0$, where $F(s) = \int_0^s f(t) dt$.

Our main result is the following

Theorem 2 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies $(f_1), (f_2), (f_3)$, and assume that (V), (Q) and (ab) are verified. Then, there exists an open interval $\Lambda \subset (0, \infty)$ and a constant $\mu > 0$ such that for every $\lambda \in \Lambda$ problem (P_λ) there are at least three distinct weak radial solutions in $W^{1,p}_r(\mathbb{R}^N; V)$, whose $W^{1,p}_r(\mathbb{R}^N; V)$ -norms are less than μ .

2 Auxiliary results

In this section we give a few preliminary results. These will be used in the proof of the main result in the next section.

We denote the best embedding constant of the embedding (1) by C_q , i.e. we have the inequality:

$$||u||_{q,Q} \le C_q ||u||_W$$
.

We define the energy functional corresponding to (P_{λ}) as

$$\mathcal{E}_{\lambda}:W^{1,p}_r(\mathbb{R}^N;V) \to \mathbb{R}$$

$$\mathcal{E}_{\lambda}(u) = \frac{1}{p} \|u\|_{W}^{p} - \lambda J(u),$$

where $J:W^{1,p}_r(\mathbb{R}^N;V)\to\mathbb{R}$ is the functional defined by

$$J(u) = \int_{\mathbb{R}^N} Q(|x|)F(u(x))dx.$$

The functional \mathcal{E}_{λ} is of class C^1 (see for instance [3, Lemma 4]), and its derivative is given by

$$\langle \mathcal{E}_{\lambda}'(u), \nu \rangle = \int_{\mathbb{R}^{N}} (|\nabla u|^{p-2} \nabla u \nabla \nu + V(|x|) |u|^{p-2} u \nu) dx - \lambda \int_{\mathbb{R}^{N}} Q(|x|) f(u(x)) \nu(x) dx,$$

for every $v \in W^{1,p}_r(\mathbb{R}^N;V)$. Therefore, the critical points of the energy functional are exactly the weak radial solutions of the problem (P_{λ}) .

Lemma 1 For every $\lambda > 0$, the functional $\mathcal{E}_{\lambda} : W_{r}^{1,p}(\mathbb{R}^{N}; V) \to \mathbb{R}$ is sequentially weakly lower semicontinuous.

Proof. Due to (f_2) , for arbitrary small $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|f(s)| \le \varepsilon p|s|^{p-1}$$
, for every $s \le |\delta|$. (3)

Combining this inequality with condition (f_1) , we obtain

$$|f(s)| \le \varepsilon p|s|^{p-1} + K(\delta)r|s|^{r-1}$$
, for every $s \in \mathbb{R}$, (4)

where $r\in]q_*,q^*[$ is fixed and $K(\delta)>0$ does not depend on s. Let $\{u_n\}$ be a sequence from $W^{1,p}_r(\mathbb{R}^N;V)$, which is weakly convergent to some $u\in W^{1,p}_r(\mathbb{R}^N;V)$. Then there exists a positive constant M>0 such that

$$\|\mathbf{u}_{\mathbf{n}}\|_{W} \le M, \|\mathbf{u}_{\mathbf{n}} - \mathbf{u}\|_{W} \le M, \forall \mathbf{n} \in \mathbb{N}. \tag{5}$$

We claim that $|J(u_n)-J(u)|\to 0$ as $n\to\infty$. Using inequality (4), the standard mean value theorem for F and the Hölder's inequality, we obtain:

$$\begin{split} |J(u_n)-J(u)| & \leq \int_{\mathbb{R}^N} Q(|x|)|F(u_n(x)) - F(u(x))|dx \leq \\ & \leq \int_{\mathbb{R}^N} Q(|x|)|f(\theta u_n(x) - (1-\theta)u(x))||u_n(x) - u(x)|dx \leq \\ & \leq \epsilon p \int_{\mathbb{R}^N} Q(|x|)|\theta u_n(x) - (1-\theta)u(x)|^{p-1}|u_n(x) - u(x)|dx + \\ & + K(\delta)r \int_{\mathbb{R}^N} Q(|x|)|\theta u_n(x) - (1-\theta)u(x)|^{r-1}|u_n(x) - u(x)|dx \leq \\ & \leq \epsilon p \int_{\mathbb{R}^N} Q(|x|)(|u_n(x)|^{p-1} + |u(x)|^{p-1})|u_n(x) - u(x)|dx + \\ & + K(\delta)r \int_{\mathbb{R}^N} Q(|x|)(|u_n(x)|^{r-1} + |u(x)|^{r-1})|u_n(x) - u(x)|dx \leq \\ & \leq \epsilon p(||u_n||_{p,Q}^{p-1} + ||u||_{p,Q}^{p-1})||u_n - u||_{p,Q} + \\ & + K(\delta)r(||u_n||_{r,Q}^{r-1} + ||u||_{r,Q}^{r-1})||u_n - u||_{r,Q}. \end{split}$$

Now, using the embeddings (1), (2) and the inequalities (5) we have

$$\begin{split} |J(u_n)-J(u)| & \leq & \epsilon p C_p^p(||u_n||_W^{p-1}+||u||_W^{p-1})||u_n-u||_W + \\ & + & K(\delta)rC_r^{r-1}(||u_n||_W^{r-1}+||u||_W^{r-1})||u_n-u||_{r,Q} \leq \\ & \leq & 2\epsilon p C_p^p M^p + 2K(\delta)rC_r^{r-1} M^{r-1}||u_n-u||_{r,Q}. \end{split}$$

Since the embedding $W^{1,p}_r(\mathbb{R}^N;V) \hookrightarrow L^r(\mathbb{R}^N;Q)$ is compact for $r \in]q_*,q^*[$, we have that $||u_n-u||_{r,Q} \to 0$, whenever $n \to \infty$. Besides that, ε is chosen arbitrarily, so the claim follows from the last inequality.

Lemma 2 For every $\lambda > 0$, the functional $\mathcal{E}_{\lambda} : W_{r}^{1,p}(\mathbb{R}^{N}; V) \to \mathbb{R}$ is coercive.

Proof. Let η be a constant such that

$$0 < \eta < \frac{1}{pC_p^p},\tag{6}$$

where C_p is the best embedding constant of the embedding $W^{1,p}_r(\mathbb{R}^N;V) \hookrightarrow L^p(\mathbb{R}^N;V)$. Due to conditions (f_1) and (f_2) , there is a function $k \in L^1(\mathbb{R}^N;Q)$ such that

$$|F(s)| \le \eta |s|^p + k(x), \forall s \in \mathbb{R}, \forall x \in \mathbb{R}^N.$$
 (7)

Then, we obtain

$$\begin{split} \mathcal{E}_{\lambda}(u) & \geq & \frac{1}{p} \|u\|_{W}^{p} - \eta \int_{\mathbb{R}^{N}} Q(|x|) |u(x)|^{p} dx - \int_{\mathbb{R}^{N}} Q(|x|) k(x) dx \geq \\ & \geq & \frac{1}{p} \|u\|_{W}^{p} - \eta C_{p}^{p} \|u\|_{W}^{p} - \|k\|_{1,Q} = \\ & = & \left(\frac{1}{p} - \eta C_{p}^{p} \right) \|u\|_{W}^{p} - \|k\|_{1,Q} \end{split}$$

By the choice of the function k, we have that $||\mathbf{k}||_{1,Q}$ is bounded. Therefore, using the inequality (6), we obtain that $\mathcal{E}_{\lambda}(\mathbf{u}) \to \infty$, as $||\mathbf{u}||_{W} \to \infty$, concluding the proof.

Lemma 3 For every $\lambda > 0$, the functional $\mathcal{E}_{\lambda} : W^{1,p}_r(\mathbb{R}^N; V) \to \mathbb{R}$ satisfies the Palais-Smale condition.

Proof. Let $\{u_n\} \subset W_r^{1,p}(\mathbb{R}^N;V)$ be a (PS)-sequence for the function \mathcal{E}_{λ} , i.e. (1) $\{\mathcal{E}_{\lambda}(u_n)\}$ is bounded;

(2)
$$\mathcal{E}'_{\lambda}(\mathfrak{u}_n) \to 0$$
.

Since \mathcal{E}_{λ} is coercive, we have that $\{u_n\}$ is bounded. The reflexivity of the Banach space $W^{1,p}_r(\mathbb{R}^N;V)$ implies the existence of a subsequence (notated also by $\{u_n\}$), such that $\{u_n\}$ is weakly convergent to an element $u\in W^{1,p}_r(\mathbb{R}^N;V)$. Therefore, we have

$$\langle \mathcal{E}'_{\lambda}(\mathfrak{u}), \mathfrak{u}_{\mathfrak{n}} - \mathfrak{u} \rangle \to 0 \text{ as } \mathfrak{n} \to \infty.$$
 (8)

Because the inclusion $W_r^{1,p}(\mathbb{R}^N;V) \hookrightarrow L^p(\mathbb{R}^N;V)$ is compact, we have that $\mathfrak{u}_n \to \mathfrak{u}$ strongly in $L^p(\mathbb{R}^N;V)$. We would like to prove that \mathfrak{u}_n converges strongly to \mathfrak{u} in $W_r^{1,p}(\mathbb{R}^N;V)$. For this, we will use the following estimates from [2, Lemma 4.10]

$$|\xi - \zeta|^p \le M_1(|\xi|^{p-2}\xi - |\zeta|^{p-2}\zeta)(\xi - \zeta), \text{ for } p \ge 2$$
 (9)

$$|\xi - \zeta|^2 \le M_2(|\xi|^{p-2}\xi - |\zeta|^{p-2}\zeta)(\xi - \zeta)(|\xi| + |\zeta|)^{2-p}, \quad \text{for } p \in]1, 2[, \qquad (10)$$

where M_1 and M_2 are some positive constants. We separate two cases. In the first case let $p \geq 2$. Then we have:

$$\begin{split} \|u_{n}-u\|_{W}^{p} &= \int_{\mathbb{R}^{N}} |\nabla u_{n}(x) - \nabla u(x)|^{p} dx + \int_{\mathbb{R}^{N}} V(|x|) |u_{n}(x) - u(x)|^{p} dx \\ &\leq M_{1} \int_{\mathbb{R}^{N}} \left[|\nabla u_{n}(x)|^{p-2} \nabla u_{n}(x) - |\nabla u(x)|^{p-2} \nabla u(x) \right] (\nabla u_{n}(x) - \nabla u(x)) dx \\ &+ M_{1} \int_{\mathbb{R}^{N}} V(|x|) \left[|u_{n}(x)|^{p-2} u_{n}(x) - |u(x)|^{p-2} u(x) \right] (u_{n}(x) - u(x)) dx \\ &= M_{1} (\langle \mathcal{E}'_{\lambda}(u_{n}), u_{n} - u \rangle - \langle \mathcal{E}'_{\lambda}(u), u_{n} - u \rangle + \lambda \langle J'(u_{n}) - J'(u), u_{n} - u \rangle) \\ &\leq M_{1} \left(\|\mathcal{E}'_{\lambda}(u_{n})\|_{\mathcal{W}^{1,p}_{r}(\mathbb{R}^{N};V)^{*}} + \lambda \|J'(u_{n}) - J'(u)\|_{\mathcal{W}^{1,p}_{r}(\mathbb{R}^{N};V)^{*}} \right) \|u_{n} - u\|_{W} \\ &- M_{1} \langle \mathcal{E}'_{\lambda}(u), u_{n} - u \rangle. \end{split}$$

Since $u_n \to u$ weakly in $W^{1,p}_r(\mathbb{R}^N;V)$ and J' are compact (see [3, Lemma 4]), we have that $\|J'(u_n) - J'(u)\|_{W^{1,p}_r(\mathbb{R}^N;V)^*} \to 0$. Moreover $\|\mathcal{E}'_\lambda(u_n)\| \to 0$, hence using (8), we have that $\|u_n - u\|_W \to 0$, as $n \to \infty$.

In the second case, when $1 , we recall the following result: for all <math>s \in (0,\infty)$ there is a constant $c_s > 0$ such that

$$(x+y)^s \le c_s(x^s+y^s), \text{ for any } x, y \in (0, \infty).$$
 (11)

Then we obtain

$$||u_{n} - u||_{W}^{2} = \left(\int_{\mathbb{R}^{N}} |\nabla u_{n}(x) - \nabla u(x)|^{p} dx + \int_{\mathbb{R}^{N}} V(|x|) |u_{n}(x) - u(x)|^{p} dx\right)^{\frac{2}{p}}$$
(12)

$$\leq c_p \left[\left(\int_{\mathbb{R}^N} \left| \nabla u_n(x) - \nabla u(x) \right|^p dx \right)^{\frac{2}{p}} + \left(\int_{\mathbb{R}^N} V(|x|) |u_n(x) - u(x)|^p dx \right)^{\frac{2}{p}} \right].$$

Now, using (10) and the Hölder inequalities, we get:

$$\begin{split} &\int_{\mathbb{R}^N} |\nabla u_n(x) - \nabla u(x)|^p dx = \int_{\mathbb{R}^N} (|\nabla u_n(x) - \nabla u(x)|^2)^{\frac{p}{2}} dx \leq \\ &\leq M_2 \cdot \int_{\mathbb{R}^N} \left((|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) \right)^{\frac{p}{2}} \cdot \\ &\cdot (|\nabla u_n(x)| + |\nabla u(x)|)^{\frac{p(2-p)}{2}} dx = \\ &= M_2 \cdot \int_{\Omega} \left[(|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) \right]^{\frac{p}{2}} \cdot \\ &\cdot \left[(|\nabla u_n(x)| + |\nabla u(x)|)^p \right]^{\frac{2-p}{2}} dx = \\ &\leq \widetilde{M_2} \left(\int_{\mathbb{R}^N} |\nabla u_n(x)|^p dx + \int_{\mathbb{R}^N} |\nabla u(x)|^p dx \right)^{\frac{2-p}{2}} \cdot \\ &\cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widetilde{M_2} \left(\left(\int_{\mathbb{R}^N} |\nabla u_n(x)|^p dx \right)^{\frac{2-p}{2}} + \left(\int_{\mathbb{R}^N} |\nabla u(x)|^p dx \right)^{\frac{2-p}{2}} \right] \cdot \\ &\cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \\ &\leq \widehat{M_2} \cdot \left(\int_{\mathbb{R}^N} (|\nabla u_n(x)|^{p-2} \nabla u_n(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_n(x) - \nabla u(x)) dx \right)^{\frac{p}{2}} \end{aligned}$$

Then, using again relation (11) and the above inequality, we have the estimate:

$$\left(\int_{\mathbb{R}^{N}} |\nabla u_{n}(x) - \nabla u(x)|^{p} dx \right)^{\frac{2}{p}} \leq$$

$$\leq M'_{2} \cdot \left(\int_{\mathbb{R}^{N}} (|\nabla u_{n}(x)|^{p-2} \nabla u_{n}(x) - |\nabla u(x)|^{p-2} \nabla u(x)) (\nabla u_{n}(x) - \nabla u(x)) dx \right) \cdot$$

$$\left(||u_{n}||_{W}^{2-p} + ||u||_{W}^{2-p} \right).$$

$$(13)$$

We introduce the following notation: $I(u) = \frac{1}{p}||u||_W^p$. As we used before, the directional derivative of I, in the direction $v \in E$ is

$$\langle I'(u), v \rangle = \int_{\mathbb{R}^N} |\nabla u(x)|^{p-2} \nabla u(x) \nabla v(x) dx - \int_{\mathbb{R}^N} V(|x|) |u(x)|^{p-2} u(x) v(x) dx.$$

Using the inequalities (12), (13) we have

$$\|u_n-u\|_{\mathcal{W}}^2 < M_2' \cdot \langle I'(u_n)-I'(u), u_n-u \rangle \cdot (\|u_n\|_{\mathcal{W}}^{p-2} + \|u\|_{\mathcal{W}}^{2-p}).$$

Since u_n is bounded, the same argument as in the first case (when $p \geq 2$) shows that u_n converges to u strongly in $W^{1,p}_r(\mathbb{R}^N;V)$.

Thus
$$\mathcal{E}_{\lambda}$$
 satisfies the (PS) condition for all $\lambda > 0$.

Lemma 4

$$\lim_{t\to 0^+}\frac{\sup\{J(u):\|u\|_W^p<\mathfrak{p}t\}}{t}=0.$$

Proof. From inequality (4) we obtain:

$$|F(s)| \le \varepsilon |s|^p + K(\delta)|s|^r$$
, for every $s \in \mathbb{R}$, (14)

where $r \in]q_*, q^*[$ is fixed and $K(\delta)$ does not depend on s. Then

$$J(u) \leq \epsilon \|u\|_{p,Q}^p + K(\delta) \|u\|_{r,Q}^r.$$

Now, using emeddings (1), (2), we get:

$$J(u) \leq \epsilon C_p^p ||u||_W^p + K(\delta) C_r^r ||u||_W^r.$$

Therefore,

$$\sup\{J(u): \|u\|_{W}^{p} < pt\} \le \epsilon C_{p}^{p} pt + K(\delta) C_{r}^{r}(pt)^{\frac{r}{p}}.$$

Since ε is chosen arbitrarily and r > p, by dividing this last inequality with t and taking the limit, whenever $t \to 0^+$, we conclude the proof.

3 Proof of theorem 2

The main tool in the proof of Theorem 2 is a Ricceri-type critical points theorem (see [4], [5]) refined by Bonanno in [1].

Theorem 3 (G. Bonanno [1]) Let X be a separable and reflexive real Banach space, and let $\Phi, J: X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that

- (i) there exists $x_0 \in X$, such that $\Phi(x_0) = J(x_0) = 0$;
- (ii) $\Phi(x) \ge 0$ for every $x \in X$;
- (iii) there exists $x_1 \in X$, $\rho > 0$, such that $\rho < \Phi(x_1)$ and $\sup\{J(x): \Phi(x) < \rho\} < \rho \frac{J(x_1)}{\Phi(x_1)}$.
- (iv) the functional $\Phi \lambda J$ is sequentially weakly lower semicontinuous, satisfies the Palais–Smale condition for every $\lambda > 0$ and it is coercive, for every $\lambda \in [0,\bar{\alpha}]$, where $\bar{\alpha} = \frac{\zeta \rho}{\rho \frac{J(x_1)}{\Phi(x_1)} \sup_{\Phi(x) < \rho} J(x)}$, with $\zeta > 1$.

Then there is an open interval $\Lambda \subset [0, \bar{a}]$ and a number $\sigma > 0$, such that for each $\lambda \in \Lambda$, the equation $\Phi'(x) - \lambda J'(x) = 0$ admits at least three distinct solutions in X, having norm less than σ .

We also need the following result of Su, Wang, Willem.

Lemma 5 [6, Lemma 4] Assuming (V) with $a > -\frac{N-1}{p-1}p$, there exists C > 0, such that for all $u \in W_r^{1,p}(\mathbb{R}^N;V)$

$$|u(x)| \le C|x|^{-\frac{p(N-1)+\alpha(p-1)}{p^2}} ||u||_W, |x| \gg 1.$$
 (15)

Proof of Theorem 2. Let $s_0 \in \mathbb{R}$ be from (f_3) , i.e. $F(s_0) > 0$. We denote by B_r the N-dimensional closed ball with center 0 and radius r > 0. Since Q and V are positive continuous functions, for an R > 0 there exist the positive constants m_O, M_O, M_V such that:

$$\mathfrak{m}_Q = \min_{|x| \le R} Q(|x|), M_Q = \max_{x \le R} Q(|x|);$$

$$M_{\mathbf{V}} = \max_{|\mathbf{x}| < \mathbf{R}} \mathbf{V}(|\mathbf{x}|).$$

For a $\sigma \in]0,1[$ we define the function $\mathfrak{u}_\sigma : \mathbb{R}^N \to \mathbb{R}$ by

$$u_{\sigma}(x) = \left\{ \begin{array}{ll} 0, & \text{if } x \in \mathbb{R}^N \setminus B_R \\ s_0, & \text{if } x \in B_{\sigma R} \\ \frac{s_0}{R(1-\sigma)}(R-|x|), & \text{if } x \in B_R \setminus B_{\sigma R}. \end{array} \right.$$

It is clear that \mathfrak{u}_{σ} belongs to $W^{1,p}_r(\mathbb{R}^N;V)$. Denoting the volume of the ball B_1 by ω_N , we obtain:

$$\begin{split} \|u_{\sigma}\|_{W}^{p} &= \int_{B_{\sigma R}} V(|x|) |s_{0}|^{p} dx + \int_{B_{R} \setminus B_{\sigma R}} \left| \frac{s_{0}}{R(1-\sigma)} \right|^{p} dx + \\ &+ \int_{B_{R} \setminus B_{\sigma R}} V(|x|) \left| \frac{s_{0}}{R(1-\sigma)} \right|^{p} (R-|x|)^{p} dx \leq \\ &\leq |s_{0}|^{p} \omega_{N} R^{N} (\sigma^{N} M_{V} + R^{-p} (1-\sigma)^{-p} (1-\sigma^{N})) + \\ &+ |s_{0}|^{p} R^{-p} (1-\sigma)^{-p} M_{V} \int_{B_{R} \setminus B_{\sigma R}} (R-|x|)^{p} dx \leq \\ &\leq |s_{0}|^{p} \omega_{N} R^{N} (M_{V} + R^{-p} (1-\sigma)^{-p} (1-\sigma^{N})) \end{split}$$

and

$$J(u_{\sigma}) \ge \omega_N R^N(m_Q F(s_0) \sigma^N - M_Q \max_{|t| < |s_0|} F(t)(1 - \sigma^N)). \tag{16}$$

By the choice of m_Q and M_Q , we have that $0 < \frac{m_Q F(s_0)}{M_Q \max_{|t| < |s_0|} F(t)} < 1$. Therefore,

we can choose a
$$\sigma_0 \in \left[\left(1 + \frac{m_Q F(s_0)}{M_Q \max_{|t| \le |s_0|} F(t)} \right)^{-\frac{1}{N}}, 1 \right] \subseteq]0,1[$$
, such that
$$J(\mathfrak{u}_{\sigma_0}) > 0. \tag{17}$$

By Lemma 4 and inequality (16) it follows the existence of a positive constant $\rho_0 > 0$ so small that

$$\rho_0 < \frac{\|\mathbf{u}_{\sigma_0}\|_W^p}{p} \tag{18}$$

$$\frac{\sup\{J(u): ||u||_{W}^{p} < \rho_{0}\}}{\rho_{0}} < \frac{pJ(u_{\sigma_{0}})}{||u_{\sigma_{0}}||_{W}^{p}}.$$
(19)

Using the Lemmas from the previous section and inequalities (18), (19), all the assumptions of Theorem 3 are satisfied with the choices: $E = W_r^{1,p}(\mathbb{R}^N;V)$, $\Phi = \frac{1}{p} \|u\|_W^p$, $x_1 = u_{\sigma_0}$, $x_0 = 0$ and $\zeta = 1 + \rho_0$ and

$$\alpha = \frac{1 + \rho_0}{p J(u_{\sigma_0}) \|u_{\sigma_0}\|_W^{-p} - \sup\{J(u) : \|u\|_W^p < r\} \rho_0^{-1}} \; .$$

Then, there exists an open interval $\Lambda \subset (0, \infty)$ and a constant $\mu > 0$ such that for every $\lambda \in \Lambda$ the equation $\mathcal{E}_{\lambda} = \Phi - \lambda J$ admits at least three distinct

critical points: $u^1_\lambda, u^2_\lambda, u^3_\lambda \in W^{1,p}_r(\mathbb{R}^N;V)$ such that

$$\max\{\|u_{\lambda}^{1}\|_{W}, \|u_{\lambda}^{2}\|_{W}, \|u_{\lambda}^{3}\|_{W}\} < \mu. \tag{20}$$

It remains to show that $|u_{\lambda}^{i}(x)| \to 0$ as $|x| \to \infty$, for $i \in \{1, 2, 3\}$. Using Lemma 5 and taking into account the estimate (20), the claim follows immediately.

Acknowledgement

This research supported by Grant PN. II, ID-527/2007 from MEdC-ANCS.

References

- [1] G. Bonanno, Some remarks on a three critical points theorem, *Nonlinear Analysis TMA*, **54** (2003), 651–665.
- [2] J. I. Diaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations, Research Notes in Mathematics, 106. Pitman (Advanced Publishing Program), Boston, MA, 1985.
- [3] K. Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, *Electron. J. Differential Equations*, **10** (1998), 1–13.
- [4] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220–226.
- [5] B. Ricceri, A three critical points theorem revisited, *Nonlinear Analysis TMA*, **70** (2008), 3084–3089.
- [6] J. Su, Z.-Q. Wang, M. Willem, Weighted Sobolev embedding with unbounded and deacying radial potentials, J. Differential Equations, 238 (2007), 201–219.

Received: April 25, 2009