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Abstract. In this paper we study an eigenvalue problem in R
N, which

involves the p-Laplacian (1 < p < N), and the nonlinear term has a global
(p − 1)-sublinear growth. We guarantee an open interval of eigenvalues,
for which the eigenvalue problem has three distinct radially symmetric
solutions in a weighted Sobolev space. We use a compact embedding
result of Su, Wang and Willem ([6]) and a Ricceri-type three critical
points theorem of Bonanno ([1]).

1 Main result

Let V, Q : (0,∞) → (0,∞) be two continuous functions satisfying the following
hypotheses

(V) there exist real numbers a and a0 such that

lim inf
r→∞

V(r)

ra
> 0, lim inf

r→0

V(r)

ra0
> 0.

(Q) there exist real numbers b and b0 such that

lim inf
r→∞

Q(r)

rb
< ∞, lim inf

r→0

Q(r)

rb0
< ∞.
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110 I. I. Mezei

Let C∞
0 (RN) denote the collection of smooth functions with compact support

and

C∞
0,r(R

N) = {u ∈ C∞
0 (RN)|u is radially symmetric}.

We recall that a function u ∈ C∞
0 (RN) is radially symmetric, if u(|x|) = u(x),

for any x ∈ R
N.

Let D
1,p
r (RN) be the completion of C∞

0,r(R
N) under

||u||p =

∫

RN

|∇u|pdx.

Define the Lebesgue spaces for p ≥ 1 and q ≥ 1:

Lp(RN; V) = {u : R
N → R|u is measurable,

∫

RN

V(|x|)|u|pdx < ∞}

Lq(RN; Q) = {u : R
N → R|u is measurable,

∫

RN

Q(|x|)|u|qdx < ∞}

with the corresponding norms

||u||Lp(RN ;V) =

(∫

RN

V(|x|)|u|pdx

)1/p

,

||u||Lq(RN ;Q) =

(∫

RN

Q(|x|)|u|qdx

)1/q

.

For these norms, we use the abbreviations: ||u||Lp(RN ;V) = ||u||p,V and
||u||Lq(RN ;Q) = ||u||q,Q.

Then define W
1,p
r (RN; V) = D

1,p
r (RN) ∩ Lp(RN; V), which is a Banach space

under

||u||
p
W =

∫

RN

(|∇u|p + V(|x|)|u|p)dx.

In order to state the embedding theorem used in our proofs, we need to intro-
duce the following notations:

q∗ =






p2(N − 1 + b) − ap

p(N − 1) + a(p − 1)
, b ≥ a > −p,

p(N + b)

N − p
, b ≥ −p ≥ a,

p, b ≤ max{a, −p}
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q∗ =






p(N + b0)

N − p
, b0 ≥ −p, a0 ≥ −p,

p2(N − 1 + b0) − a0p

p(N − 1) + a0(p − 1)
, −p ≥ a0 > −N−1

p−1
p, b0 ≥ a0,

∞, a0 ≤ −N−1
p−1

p, b0 ≥ a0.

We shall use the following embedding theorem.

Theorem 1 [6, Theorem 1.] Let 1 < p < N. Assume (V) and (Q). Then we

have the embedding

W1,p
r (RN; V) →֒ Lq(RN; Q) (1)

for q∗ ≤ q ≤ q∗, when q∗ < ∞ and for q∗ ≤ q < ∞, when q∗ = ∞.

Furthermore, the embedding is compact for q∗ < q < q∗. And if b <

max{a, −p} and b0 > min{−p, a0}, the embedding is also compact for q = p.

Therefore, supposing besides (V) and (Q) the condition

(ab) b < max{a, −p} and b0 > min{−p, a0},

the embedding
W1,p

r (RN; V) →֒ Lp(RN; Q) (2)

is also compact.
The collection of those functions, which satisfy the conditions (V), (Q) and
(ab) is not empty. For example, taking

a = p, b = −p − 1, a0 = −p, b0 = −p + 1,

the functions V and Q defined by

V(r) = max

{

1,
1

rp

}

,

Q(x) = min

{
1

rp+1
,

1

rp−1

}

satisfy all three assumptions for every 1 < p < N.

For λ > 0, we consider the following problem:

(Pλ)






−∆pu + V(|x|)|u|p−2u = λQ(|x|)f(u) in R
N

|u(x)| → 0, as |x| → ∞
,
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where f : R → R is a continuous function.
We say that u ∈ W

1,p
r (RN; V) is a weak radial solution of the problem (Pλ)

if
∫

RN

(|∇u|p−2∇u∇v + V(|x|)|u|p−2uv)dx − λ

∫

RN

Q(|x|)f(u(x))v(x)dx = 0,

for every v ∈ W
1,p
r (RN; V).

We assume the following conditions on f :

(f1) there exists C > 0 such that |f(s)| ≤ C(1 + |s|p−1), for every s ∈ R;

(f2) lim
s→0

f(s)

|s|p−1
= 0;

(f3) there exists s0 ∈ R such that F(s0) > 0, where F(s) =
∫s

0
f(t)dt.

Our main result is the following

Theorem 2 Let f : R → R be a continuous function which satisfies (f1), (f2),

(f3), and assume that (V), (Q) and (ab) are verified. Then, there exists an

open interval Λ ⊂ (0,∞) and a constant µ > 0 such that for every λ ∈ Λ prob-

lem (Pλ) there are at least three distinct weak radial solutions in W
1,p
r (RN; V),

whose W
1,p
r (RN; V)–norms are less than µ.

2 Auxiliary results

In this section we give a few preliminary results. These will be used in the
proof of the main result in the next section.
We denote the best embedding constant of the embedding (1) by Cq, i.e. we
have the inequality:

||u||q,Q ≤ Cq||u||W.

We define the energy functional corresponding to (Pλ) as

Eλ : W1,p
r (RN; V) → R

Eλ(u) =
1

p
||u||

p
W − λJ(u),

where J : W
1,p
r (RN; V) → R is the functional defined by

J(u) =

∫

RN

Q(|x|)F(u(x))dx.
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The functional Eλ is of class C1 (see for instance [3, Lemma 4]), and its deriva-
tive is given by

〈E ′
λ(u), v〉 =

∫

RN

(|∇u|p−2∇u∇v+V(|x|)|u|p−2uv)dx−λ

∫

RN

Q(|x|)f(u(x))v(x)dx,

for every v ∈ W
1,p
r (RN; V). Therefore, the critical points of the energy func-

tional are exactly the weak radial solutions of the problem (Pλ).

Lemma 1 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R is sequen-

tially weakly lower semicontinuous.

Proof. Due to (f2), for arbitrary small ε > 0, there exists δ > 0 such that

|f(s)| ≤ εp|s|p−1, for every s ≤ |δ|. (3)

Combining this inequality with condition (f1), we obtain

|f(s)| ≤ εp|s|p−1 + K(δ)r|s|r−1, for every s ∈ R, (4)

where r ∈]q∗, q
∗[ is fixed and K(δ) > 0 does not depend on s.

Let {un} be a sequence from W
1,p
r (RN; V), which is weakly convergent to some

u ∈ W
1,p
r (RN; V). Then there exists a positive constant M > 0 such that

||un||W ≤ M, ||un − u||W ≤ M,∀n ∈ N. (5)

We claim that |J(un)−J(u)| → 0 as n → ∞. Using inequality (4), the standard
mean value theorem for F and the Hölder’s inequality, we obtain:

|J(un) − J(u)| ≤

∫

RN

Q(|x|)|F(un(x)) − F(u(x))|dx ≤

≤

∫

RN

Q(|x|)|f(θun(x) − (1 − θ)u(x))||un(x) − u(x)|dx ≤

≤ εp

∫

RN

Q(|x|)|θun(x) − (1 − θ)u(x)|p−1|un(x) − u(x)|dx +

+ K(δ)r

∫

RN

Q(|x|)|θun(x) − (1 − θ)u(x)|r−1|un(x) − u(x)|dx ≤

≤ εp

∫

RN

Q(|x|)(|un(x)|p−1 + |u(x)|p−1)|un(x) − u(x)|dx +

+ K(δ)r

∫

RN

Q(|x|)|(|un(x)|r−1 + |u(x)|r−1)|un(x) − u(x)|dx ≤

≤ εp(||un||
p−1
p,Q + ||u||

p−1
p,Q)||un − u||p,Q +

+ K(δ)r(||un||r−1
r,Q + ||u||r−1

r,Q)||un − u||r,Q.
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Now, using the embeddings (1), (2) and the inequalities (5) we have

|J(un) − J(u)| ≤ εpCp
p(||un||

p−1
W + ||u||

p−1
W )||un − u||W +

+ K(δ)rCr−1
r (||un||r−1

W + ||u||r−1
W )||un − u||r,Q ≤

≤ 2εpCp
pMp + 2K(δ)rCr−1

r Mr−1||un − u||r,Q.

Since the embedding W
1,p
r (RN; V) →֒ Lr(RN; Q) is compact for r ∈]q∗, q

∗[,
we have that ||un − u||r,Q → 0, whenever n → ∞. Besides that, ε is chosen
arbitrarily, so the claim follows from the last inequality. �

Lemma 2 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R is coercive.

Proof. Let η be a constant such that

0 < η <
1

pC
p
p

, (6)

where Cp is the best embedding constant of the embedding W
1,p
r (RN; V) →֒

Lp(RN; V). Due to conditions (f1) and (f2), there is a function k ∈ L1(RN; Q)

such that
|F(s)| ≤ η|s|p + k(x),∀s ∈ R,∀x ∈ R

N. (7)

Then, we obtain

Eλ(u) ≥
1

p
||u||

p
W − η

∫

RN

Q(|x|)|u(x)|pdx −

∫

RN

Q(|x|)k(x)dx ≥

≥
1

p
||u||

p
W − ηCp

p||u||
p
W − ||k||1,Q =

=

(
1

p
− ηCp

p

)
||u||

p
W − ||k||1,Q

By the choice of the function k, we have that ||k||1,Q is bounded. Therefore,
using the inequality (6), we obtain that Eλ(u) → ∞, as ||u||W → ∞, concluding
the proof. �

Lemma 3 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R satisfies the

Palais-Smale condition.

Proof. Let {un} ⊂ W
1,p
r (RN; V) be a (PS)-sequence for the function Eλ, i.e.

(1) {Eλ(un)} is bounded;
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(2) E ′
λ(un) → 0.

Since Eλ is coercive, we have that {un} is bounded. The reflexivity of the
Banach space W

1,p
r (RN; V) implies the existence of a subsequence (notated also

by {un}), such that {un} is weakly convergent to an element u ∈ W
1,p
r (RN; V).

Therefore, we have

〈E ′
λ(u), un − u〉 → 0 as n → ∞. (8)

Because the inclusion W
1,p
r (RN; V) →֒ Lp(RN; V) is compact, we have that

un → u strongly in Lp(RN; V). We would like to prove that un converges
strongly to u in W

1,p
r (RN; V). For this, we will use the following estimates

from [2, Lemma 4.10]

|ξ − ζ|p ≤ M1(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2 (9)

|ξ − ζ|2 ≤ M2(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ| + |ζ|)2−p, for p ∈]1, 2[, (10)

where M1 and M2 are some positive constants. We separate two cases. In the
first case let p ≥ 2. Then we have:

||un−u||
p
W =

∫

RN

|∇un(x) − ∇u(x)|pdx +

∫

RN

V(|x|)|un(x) − u(x)|pdx

≤ M1

∫

RN

[
|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x)

]
(∇un(x) − ∇u(x))dx

+ M1

∫

RN

V(|x|)
[
|un(x)|p−2un(x) − |u(x)|p−2u(x)

]
(un(x) − u(x))dx

= M1(〈E
′
λ(un), un − u〉 − 〈E ′

λ(u), un − u〉 + λ〈J ′(un) − J ′(u), un − u〉)

≤ M1

(
||E ′

λ(un)||
W

1,p
r (RN ;V)∗

+ λ||J ′(un) − J ′(u)||
W

1,p
r (RN ;V)∗

)
||un − u||W

− M1〈E
′
λ(u), un − u〉.

Since un → u weakly in W
1,p
r (RN; V) and J ′ are compact (see [3, Lemma 4]),

we have that ||J ′(un)− J ′(u)||
W

1,p
r (RN ;V)∗

→ 0 . Moreover ||E ′
λ(un)|| → 0, hence

using (8), we have that ||un − u||W → 0, as n → ∞.
In the second case, when 1 < p < 2, we recall the following result: for all
s ∈ (0,∞) there is a constant cs > 0 such that

(x + y)s ≤ cs(x
s + ys), for any x, y ∈ (0,∞). (11)

Then we obtain

||un − u||2W =

(∫

RN

|∇un(x) − ∇u(x)|pdx +

∫

RN

V(|x|)|un(x) − u(x)|pdx

) 2
p

(12)
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≤ cp

[(∫

RN

|∇un(x) − ∇u(x)|pdx

) 2
p

+

(∫

RN

V(|x|)|un(x) − u(x)|pdx

) 2
p

]
.

Now, using (10) and the Hölder inequalities, we get:

∫

RN

|∇un(x) − ∇u(x)|pdx =

∫

RN

(|∇un(x) − ∇u(x)|2)
p
2 dx ≤

≤ M2 ·

∫

RN

(
(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))

)p
2
·

·(|∇un(x)| + |∇u(x)|)
p(2−p)

2 dx =

= M2 ·

∫

Ω

[
(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))

]p
2
·

[(|∇un(x)| + |∇u(x)|)p]
2−p

2 dx =

≤ M̃2

(∫

RN

|∇un(x)|pdx +

∫

RN

|∇u(x)|pdx

) 2−p
2

·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

≤ M2

[(∫

RN

|∇un(x)|pdx

) 2−p
2

+

(∫

RN

|∇u(x)|pdx

) 2−p
2

]
·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

≤ M̂2 ·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

(
||un||

(2−p)p

2

W + ||u||
(2−p)p

2

W

)
.

Then, using again relation (11) and the above inequality, we have the estimate:

(∫

RN

|∇un(x) − ∇u(x)|pdx

) 2
p

≤ (13)

≤ M ′
2 ·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)
·

(
||un||

2−p
W + ||u||

2−p
W

)
.
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We introduce the following notation: I(u) = 1
p
||u||

p
W. As we used before, the

directional derivative of I, in the direction v ∈ E is

〈I ′(u), v〉 =

∫

RN

|∇u(x)|p−2∇u(x)∇v(x)dx −

∫

RN

V(|x|)|u(x)|p−2u(x)v(x)dx.

Using the inequalities (12), (13) we have

||un − u||2W < M ′
2 · 〈I

′(un) − I ′(u), un − u〉 · (||un||
p−2
W + ||u||

2−p
W ).

Since un is bounded, the same argument as in the first case (when p ≥ 2)
shows that un converges to u strongly in W

1,p
r (RN; V).

Thus Eλ satisfies the (PS) condition for all λ > 0. �

Lemma 4

lim
t→0+

sup{J(u) : ||u||
p
W < pt}

t
= 0.

Proof. From inequality (4) we obtain:

|F(s)| ≤ ε|s|p + K(δ)|s|r, for every s ∈ R, (14)

where r ∈]q∗, q
∗[ is fixed and K(δ) does not depend on s. Then

J(u) ≤ ε||u||
p
p,Q + K(δ)||u||rr,Q.

Now, using emeddings (1), (2), we get:

J(u) ≤ εCp
p||u||

p
W + K(δ)Cr

r||u||rW.

Therefore,
sup{J(u) : ||u||

p
W < pt} ≤ εCp

ppt + K(δ)Cr
r(pt)

r
p .

Since ε is chosen arbitrarily and r > p, by dividing this last inequality with t

and taking the limit, whenever t → 0+, we conclude the proof. �

3 Proof of theorem 2

The main tool in the proof of Theorem 2 is a Ricceri-type critical points
theorem (see [4], [5]) refined by Bonanno in [1].

Theorem 3 (G. Bonanno [1]) Let X be a separable and reflexive real Banach

space, and let Φ, J : X → R be two continuously Gâteaux differentiable func-

tionals. Assume that
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(i) there exists x0 ∈ X, such that Φ(x0) = J(x0) = 0;

(ii) Φ(x) ≥ 0 for every x ∈ X;

(iii) there exists x1 ∈ X, ρ > 0, such that ρ < Φ(x1) and sup{J(x) : Φ(x) <

ρ} < ρ
J(x1)

Φ(x1)
.

(iv) the functional Φ − λJ is sequentially weakly lower semicontinuous, sa-

tisfies the Palais–Smale condition for every λ > 0 and it is coercive, for

every λ ∈ [0, ā], where ā =
ζρ

ρ
J(x1)

Φ(x1)
− sup

Φ(x)<ρ

J(x)

, with ζ > 1.

Then there is an open interval Λ ⊂ [0, ā] and a number σ > 0, such that for

each λ ∈ Λ, the equation Φ ′(x) − λJ ′(x) = 0 admits at least three distinct

solutions in X, having norm less than σ.

We also need the following result of Su, Wang, Willem.

Lemma 5 [6, Lemma 4] Assuming (V) with a > −N−1
p−1

p, there exists C > 0,

such that for all u ∈ W
1,p
r (RN; V)

|u(x)| ≤ C|x|
−

p(N−1)+a(p−1)

p2 ||u||W, |x| ≫ 1. (15)

Proof of Theorem 2. Let s0 ∈ R be from (f3), i.e. F(s0) > 0. We denote by
Br the N-dimensional closed ball with center 0 and radius r > 0.
Since Q and V are positive continuous functions, for an R > 0 there exist the
positive constants mQ, MQ, MV such that:

mQ = min
|x|≤R

Q(|x|), MQ = max
x≤R

Q(|x|);

MV = max
|x|≤R

V(|x|).

For a σ ∈]0, 1[ we define the function uσ : R
N → R by

uσ(x) =






0, if x ∈ R
N \ BR

s0, if x ∈ BσR
s0

R(1 − σ)
(R − |x|), if x ∈ BR \ BσR.
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It is clear that uσ belongs to W
1,p
r (RN; V). Denoting the volume of the ball

B1 by ωN, we obtain:

||uσ||
p
W =

∫

BσR

V(|x|)|s0|
pdx +

∫

BR\BσR

∣∣∣∣
s0

R(1 − σ)

∣∣∣∣
p

dx +

+

∫

BR\BσR

V(|x|)

∣∣∣∣
s0

R(1 − σ)

∣∣∣∣
p

(R − |x|)pdx ≤

≤ |s0|
pωNRN(σNMV + R−p(1 − σ)−p(1 − σN)) +

+|s0|
pR−p(1 − σ)−pMV

∫

BR\BσR

(R − |x|)pdx ≤

≤ |s0|
pωNRN(MV + R−p(1 − σ)−p(1 − σN))

and
J(uσ) ≥ ωNRN(mQF(s0)σ

N − MQ max
|t|≤|s0 |

F(t)(1 − σN)). (16)

By the choice of mQ and MQ, we have that 0 <
mQF(s0)

MQ max
|t|≤|s0 |

F(t)
< 1. Therefore,

we can choose a σ0 ∈





1 +

mQF(s0)

MQ max
|t|≤|s0 |

F(t)




− 1
N

, 1


 ⊆]0, 1[, such that

J(uσ0
) > 0. (17)

By Lemma 4 and inequality (16) it follows the existence of a positive constant
ρ0 > 0 so small that

ρ0 <
||uσ0

||
p
W

p
(18)

sup{J(u) : ||u||
p
W < ρ0}

ρ0

<
pJ(uσ0

)

||uσ0
||
p
W

. (19)

Using the Lemmas from the previous section and inequalities (18), (19), all the
assumptions of Theorem 3 are satisfied with the choices: E = W

1,p
r (RN; V),

Φ = 1
p
||u||

p
W, x1 = uσ0

, x0 = 0 and ζ = 1 + ρ0 and

a =
1 + ρ0

pJ(uσ0
)||uσ0

||
−p
W − sup{J(u) : ||u||

p
W < r}ρ−1

0

.

Then, there exists an open interval Λ ⊂ (0,∞) and a constant µ > 0 such
that for every λ ∈ Λ the equation Eλ = Φ − λJ admits at least three distinct
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critical points: u1
λ, u

2
λ, u

3
λ ∈ W

1,p
r (RN; V) such that

max{||u1
λ||W, ||u2

λ||W, ||u3
λ||W} < µ. (20)

It remains to show that |ui
λ(x)| → 0 as |x| → ∞, for i ∈ {1, 2, 3}. Using Lemma

5 and taking into account the estimate (20), the claim follows immediately. �
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