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Abstract: Despite the advanced technologies used in recent years, the lack of robust 

systems still exists. The automated steering system is a critical and complex task in the 

domain of the autonomous vehicle’s applications. This paper is a part of project that 

deals with model-based control strategy as one of the most common control strategies. 

The main objective is to present the implementations of Model Predictive Control 

(MPC) for an autonomous vehicle steering system in regards to trajectory tracking 

application. The obtained results are analysed and the efficiency of the use of MPC 

controller were discussed based on its behaviour and performance. 
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1. Introduction 

In recent years with the significant increase in the number of vehicles on the 

roads, many types of research and reports have raised the attention to the fact of 

increase the risk of road safety issues such as traffic congestion and car 

accidents which are caused by human errors. In this context, the autonomous 

vehicles have gained more attention as a solution to overcome these challenges, 

in addition to the other benefits it provides in terms of better fuel economy 

provision and reducing the pollution [1], [2]. The autonomous vehicle’s 

applications can be divided into 3 main modules: Sensing and Perception, 

Planning and Control. Sensing and Perception is the fundamental module that 

provides the information of the driving environment to the vehicle letting the 

system know the surrounding environment in real-time such as surrounding 

obstacles, velocity, and vehicle location. In the planning module, the system 
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uses data provided by the previous sub-system (Sensing and Perception) to 

determine the safest and the most appropriate trajectory to be followed by the 

vehicle. In the Control module, the control strategies are applied to control the 

actuators of the different parts of the system in order to drive and steer the 

vehicle along the desired path [3]. Improving the automated steering system in 

order to develop a highly secure, stable and easy to drive autonomous vehicle 

has gained significant interest [4]. The vehicle models that can be used in 

trajectory tracking problems can be divided into three mains categories: 

Geometric, Kinematic and Dynamic vehicle models with several control 

strategies [5]. The paper presents preliminary research results of the proposed 

MPC controller based on the dynamic model and it is structured as follows: in 

the first section, the autonomous vehicle system review is presented. Second 

section describes the dynamic vehicle model and control strategy. The design of 

the vehicle model and the MPC controller are described in section three. In 

section four, the implementations and the obtained results are discussed. The 

conclusions of the paper are presented in section five. 

2. Autonomous vehicles model and control strategy 

The vehicle model plays an essential role in regards to the system 

simulations process, which is a crucial stage in the development process of the 

controllers. In the simulation process, the properties of the controller are defined 

and the parameters are tuned in order to achieve the best performance. The 

vehicle (like robot) model can be divided into two main classes, holonomic 

system and non-holonomic system based on the number of controllable degrees 

of freedom (DOF) against the total number of DOF. In a holonomic system, the 

number of controllable degrees of freedom is equal to the total number of DOF. 

In contrast, a system with number of controllable degrees of freedom less than 

the total number of DOF is called a non-holonomic system. It is worth to 

mention that most of the vehicles are considered as non-holonomic due to the 

fact that only two degrees of freedom are controllable (the lateral positions and 

the longitudinal directions) [6], [7]. One more thing to take into consideration is 

that the vehicle model can be reduced to be two – tire models which is called a 

bicycle model. In bicycle models the right and the left tires are assumed to have 

the same behaviour. Trajectory tracking tasks based on [8], [9], can be divided 

into three main motion tasks which are, trajectory tracking, path following and 

point to point motion. 
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2.1  Dynamic Vehicle Model 

Kinematic, Geometric and Dynamic models are the three main types of path 

tracking tasks. Unlike Geometric and kinematic model, the dynamic model 

considers the internal and external forces and describes the motion of the 

vehicle with respect to its position, velocity and acceleration. Fig. 1 shows the 

dynamic vehicle model, where 𝜃 is the vehicle heading, 𝑣 is vehicle velocity, 𝛿𝑅 

and 𝛿𝐹 denote the rear and front steering angle respectively, 𝐹𝐹 and 𝐹𝑅 are the 

lateral forces that are applied on the front and rear tires respectively, 𝐿 is the 

wheelbase of the vehicle, 𝐿𝐹 and 𝐿𝑅 are the rear and front half-wheelbases 

respectively, 𝐺 is the gravity force, 𝛽𝐹 and 𝛽𝑅 are the sideslip angles of the front 

and rear wheels respectively [10], [11]. 

 

 

Figure 1: Dynamic vehicle model 

2.2 Dynamic Controller 

In the path tracking task, the control law of the dynamic controller includes 

the dynamic properties of the system. Taking the effects of the vehicle 

dynamics into consideration naturally makes the dynamic controllers more 

efficient and stable compared to geometric and kinematic controllers [12]. 

However, dynamic feedback (such as the torque) is required for this type of 

control strategy, which in turn requires a special type of sensors and more data 

processing. Several studies can be found regarding the use of the dynamic 

control strategy for autonomous vehicle tasks [13], [14]. In this paper, Model 
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Predictive Control strategy was used to control the autonomous vehicle model 

as a dynamic control strategy. Model Predictive Controller (MPC) is an 

optimization strategy for model-based control, and it can be implemented for 

linear and nonlinear systems. The optimization process is achieved by selecting 

the optimal values of the plant model which in turn provides the optimal 

performance in terms of tracking the reference output. MPC controller uses the 

plant model to simulate the vehicle path (for vehicle path tracking task) in the 

next P time steps (prediction horizon), meaning that it looks forward to make 

the predictions. MPC strategy uses different scenarios to achieve the 

optimization, where the optimal scenario is the one that minimizes the error 

between the predicted and the reference trajectory. MPC is an effective strategy 

for the systems where the model dynamics are unchanged [15]. 

3. Design of the MPC controller 

Model Predictive Controller is used to control the front steering angle of the 

vehicle by means of adjusting and driving the lateral deviation (𝑑) and the 

relative yaw angle (𝜃) to be very close to zero (see Fig. 2). To design an MPC 

controller, the model of the vehicle is created in the first step, and the 

parameters of the MPC are designed in the second step. 

3.1 Design of the Dynamic Model of the Vehicle 

In this paper, the bicycle model is used to describe the dynamics of the 

vehicle. Fig. 2 shows the global position of the vehicle in (X, Y) axes. 𝑣𝑥 is the 

longitudinal velocity and 𝑣𝑦 is the lateral velocity. The vehicle model is 

described with the following parameters: total mass of the vehicle(𝑚), yaw 

moment of the vehicle inertia(𝑙𝑧), the distance from the front tires to the centre 

of gravity (𝑙𝑓), the distance from the rear tires to the centre of gravity(𝑙𝑟), the 

cornering stiffness of front tire (𝑐𝑓), and the cornering stiffness of rear tire (𝑐𝑟). 

The lateral motion and yaw motion are determined by the fundamental laws of 

motion, meaning that they are determined by forces which are (in this case) the 

forces that are applied on front and rear tires [16], [17]. 



 Model-Based Control Strategy for Autonomous Vehicle Path Tracking Task 39 

 

 

Figure 2: Position of vehicle model 

Equations (1-a), (1-b) and (1- c) describe the lateral dynamics of the vehicle, 

where 𝑚 is the mass of the vehicle, 𝑎𝑦 is the acceleration in lateral direction y , 

ω is the yaw rate, 𝐹𝐹 and 𝐹𝑅 are the lateral forces that are applied on the front 

and rear tires, respectively. 

 𝑚𝑎𝑦 = ∑ 𝐹𝑦,𝑖 = 𝑖 𝐹𝐹+𝐹𝑅 (1-a) 

 𝑎𝑦 = 𝑣𝑦̇ + ω𝑣𝑥 (1-b) 

 𝑚(𝑣𝑦̇ + ω 𝑣𝑥)= 𝐹𝐹 + 𝐹𝑅 (1-c) 

The yaw dynamics of the vehicle is described by the sum of the all moments 

about the central gravity G (moments generated by front and rear tires) as (2) 

shows. Regarding to linear tire model, the tire forces are proportional to the 

corresponding slip angles (𝛽𝐹 , 𝛽𝑅) and the corner stiffness of the front and rear 

wheels (𝑐𝑓 , 𝑐𝑟) as equations (3-a) and (3-b) describe. 

 𝑙𝑧ω̇  = 𝑙𝑓𝐹𝐹 + 𝑙𝑟𝐹𝑅 (2) 

 𝐹𝐹 = 𝑐𝑓𝛽𝐹 (3-a) 

 𝐹𝑅 = 𝑐𝑟𝛽𝑅 (3-b) 

The bicycle model can be described as continuous state space representation 

as it is shown in (4) where: 
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States: 𝑥1 = 𝑣𝑦, 𝑥2 =θ, 𝑥3 =  ω. 

Input: u=δ. 
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The full discretized model for MPC controller is obtained by discretizing the 

continuous state space model using sample time (𝑇𝑠 = 0.1). In the next step the 

parameters of the controller need to be determined. 

3.2 Design of the MPC model 

The first step in the process of designing the MPC controller is to set the 

channels and the signal types of the plant model. In other words, to set the input 

and output channels. The signal types of input channels are: Manipulated 

variables (MV), Measured Disturbances (MD) and Unmeasured Disturbances 

(UD), whereas output channels are: Measured Outputs (MO) and Unmeasured 

Outputs (UO). In default configuration, all the inputs are considered as 

manipulated variables and all outputs are measured outputs. The MPC plant 

model in this paper was designed with two inputs, therefore the first and second 

input channels were set as MV for steering angle and MD for road yaw angle 

rate. respectively. In addition to the inputs, the model has four measured 

outputs, which are: lateral deviation, relative yaw angle, lateral velocity, and 

yaw rate (ω= ψ̇ ) as it is shown in Fig. 3. Yaw rate is the rotation rate of the car 

or in other words the changing rate of the heading angle of the car. Generally 

speaking, in the course of designing the parameters of an MPC controller, 

several recommendations can be taken into consideration [15]. In addition to 

design the parameters, the constraints of the manipulated variable (steering 

angle) were set as Table 1 shows. 
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Figure 3: Inputs and outputs of MPC Plant model. 

Table 1: Constraints and Parameters of the MPC controller 

Parameters 

Sample Time (𝑇𝑠) 0.1 seconds 

Prediction Horizon (P) 20 seconds 

Control Horizon (M) 20 seconds 

Constraints 

Steering Angle (δ) [-1.04 – 1.04] rad 

Changing Rate of Steering Angle [-0.26 – 0.26] rad 

4. Simulation and results 

For the simulation process, the weights of the inputs and outputs of the 

controller were determined as it is shown in Table 2. It is worth to point out that 

non-zero values were assigned to the variables which have a reference to follow 

and the weight refers to the priority of the variables, where the high weight 

indicates high priority. 

Table 2: Parameters’ weights of MPC controller 

Parameter Weight 

Change of steering angle 0.1 

Lateral deviation 1 

Yaw Angle 0.1 

Lateral Velocity 0 

Yaw Rate 0 
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After determining the weights of the parameters, the inputs of the MPC 

controller were defined (reference trajectory, longitudinal velocity, lateral 

deviation and relative yaw angle). The reference trajectory can be determined in 

two different ways, the first one is by using the Driving Scenario Designer 

Toolbox in MATLAB, where the waypoints can be determined in order to 

create lane –change maneuver, and in this case, the reference yaw angles and 

lateral positions will be determined automatically by the toolbox. The second 

way (used in this paper) is by generating future lane curvature, which is used to 

calculate the lateral deviation and relative yaw angle of the created lane (see 

Fig. 4). The longitudinal velocity is considered a constant parameter. 

 

Figure 4: General Model of MPC and plant for Simulink 

Fig. 5 shows the output control actions (steering angles) of the MPC 

controller after running the simulation, while Fig. 6 and Fig. 7 show the effects 

of these control actions on the lateral deviation and relative yaw angle which 

describe the performance of the controller. 
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Figure 5: Control Actions of the MPC Controller 

 

Figure 6: Lateral deviation resulting from the MPC implementation 
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Figure 7: Relative yaw angle resulting from the MPC implementation 

The obtained results show that the MPC controller succeeded in providing 

control actions that drive both relative yaw angle and lateral deviation to be 

very close to zero, meaning that, the designed MPC controller drove the 

autonomous vehicle along the reference path efficiently. 

5. Conclusions 

In this paper, a dynamic vehicle model and model based control strategy 

(model predictive controller) were used to implement trajectory tracking task 

for autonomous vehicle. The designed MPC controller succeeded in driving the 

vehicle within the desired trajectory by providing optimal control actions. 

Designing the vehicle model taking in consideration the internal and external 

forces and the well-designed MPC parameters played the essential role in 

achieving the satisfactory performance. 
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