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Abstract. Let G be a simple connected graph. The reciprocal transmis-
sion Tr ′G(v) of a vertex v is defined as

Tr ′G(v) =
∑

u∈V(G)

1

dG(u, v)
, u 6= v.

The reciprocal distance signless Laplacian (briefly RDSL) matrix of a
connected graph G is defined as RQ(G) = diag(Tr ′(G)) + RD(G),
where RD(G) is the Harary matrix (reciprocal distance matrix) of G and
diag(Tr ′(G)) is the diagonal matrix of the vertex reciprocal transmis-
sions in G. In this paper, we investigate the RDSL spectrum of some
classes of graphs that are arisen from graph operations such as carte-
sian product, extended double cover product and InduBala product. We
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introduce minimum covering reciprocal distance signless Laplacian ma-
trix (or briefly MCRDSL matrix) of G as the square matrix of order n,
RQC(G) := (qi,j),

qi,j =


1+ Tr ′(vi) if i = j and vi ∈ C

Tr ′(vi) if i = j and vi /∈ C
1

d(vi, vj)
otherwise,

where C is a minimum vertex cover set of G. MCRDSL energy of a graph
G is defined as sum of eigenvalues of RQC. Extremal graphs with respect
to MCRDSL energy of graph are characterized. We also obtain some
bounds on MCRDSL energy of a graph and MCRDSL spectral radius of
G, which is the largest eigenvalue of the matrix RQC(G) of graphs.

1 Introduction

Throughout the paper, we consider G as a simple connected graph with vertex
set V(G) and edge set E(G). A graph G of order n and size m is called an
(n,m) graph. Distance between two vertices u and v is denoted by d(u, v).
The diameter of G is the maximum distance between any pair of vertices and
is denoted by diam(G).

For a vertex v, deg(v) denotes the degree of v. Energy of a graph introduced
by Ivan Gutman [12] as the sum of the absolute values of the eigenvalues of
adjacency matrix of G. The concept of energy of graph have been extensively
studied; for more information we refer to surveys [13, 23, 24]. Various kinds
of graph energy such as Laplacian energy [14], minimum covering energy [1],
minimum covering distance energy [21], and minimum covering Harary energy
[22] of a graph were proposed and some mathematical aspects of them were
investigated. A subset C of V(G) is called a vertex covering set of G if every
edge of G is incident to at least one vertex of C. A vertex covering set with
minimum cardinality is called minimum vertex covering set. The cardinality of
a minimum vertex covering set in a graph G is known as the vertex covering
number of G, denoted by τ(G). A set of vertices that no pair of which are
adjacent is called vertex independent set.

A vertex independent set with maximum cardinality is called maximum
vertex independent set.

The cardinality of maximum independent set in G is called independence
number of G, denoted by α(G). Clearly if C is a vertex covering set of G, the
V(G)−C make an independent set for G. This follows the well known relation
τ(G) + α(G) = n, where n is order of G. Two distinct edges in a graph G
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are independent if they do not share a common vertex in G. A matching of a
graph G is a set of pairwise independent edges in G. The matching number of
G, β(G) is the number of edges in the largest matching of G. The investigation
of matrices related to various graph structures is a very large and growing area
of research. In what follows, some of such matrices are introduced.

Let C be a minimum covering set of a graph G. The minimum covering
matrix [1] of G is defined as AC(G) = (aij), where

aij =


1 if vivj ∈ E(G)
1 if i = j and vi ∈ C
0 otherwise.

The Harary matrix of a graph G, RD(G) was introduced by Ivanciuc et al [17]
and successfully used in computer generation of acyclic graphs based on local
vertex invariants and topological indices. The Harary matrix RD(G) = (RDij)
is a square matrix of order n, where

RDij =

0 if i = j
1

d(vi, vj)
otherwise.

The Harary matrix can be used to derive a variant of the Balaban index,
Harary index and topological indices based on reciprocal distance in graphs.
The minimum covering energy of G is defined to be absolute values of the
eigenvalues of AC(G). The minimum covering Harary matrix [22] of G, is a
square matrix n× n defined as RDC(G) = (RDCij), where

RDCij =


1 if i = j and vi ∈ C
0 if i = j and vi /∈ C

1

d(vi, vj)
otherwise.

Analogously, minimum covering Harary energy of G is defined as HEC(G) =∑n
i=1 |λi|, where λ1, λ2, . . . , λn are eigenvalues of HC(G). The mathematical

aspects of the minimum covering Harary energy was reported in [22].
The reciprocal transmission Tr ′G(v) of a vertex v is defined as

Tr ′G(v) =
∑

u∈V(G)

1

dG(u, v)
, u 6= v
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and Tr ′(G) is the diagonal matrix whose main entries are the vertex reciprocal
transmissions inG. For 1 ≤ i ≤ n, one can easily see that Tr ′G(vi) is just the i-th
row sum of RD(G). The Harary index of a graph G, denoted by H(G), has been
introduced independently by Plavšić et al. [19] and by Ivanciuc et al. [17] in
1993. It has been named in honor of Professor Frank Harary on the occasion of

his 70th birthday. The Harary index is defined as: H(G) =
∑

{u,v}⊆V(G)
1

d(u, v)
.

Let α be a real number, we use notations Hα(G) σα(G) for
∑

{u,v}⊆V(G)
1

d(u, v)α

and
∑
v∈V(G) Tr

′(v)α, respectively. Note that if α 6= 1 then Hα(G) = H(G) if
and only if G is a complete graph. The first and the second Zagreb indices of
a graph G, denoted by M1(G) and M2(G) are defined as:

M1(G) =
∑

uv∈E(G)

deg(u) + deg(v),

M2(G) =
∑

uv∈E(G)

deg(u)deg(v).

The reciprocal distance signless Laplacian matrix (or briefly RDSL matrix) is
defined as RQ(G) = Tr ′(G) + RD(G). Since the matrix RQ(G) is irreducible,
non-negative, symmetric and positive semi-definite, all its eigenvalues are non-
negative [2]. The set of eigenvalue of RQ(G) is called RDSL spectrum of G.

Motivated by the concept of minimum covering distance matrix, we define
the minimum covering reciprocal distance signless Laplacian matrix (or briefly
MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi,j),
where

qi,j =


1+ Tr ′(vi) if i = j and vi ∈ C

Tr ′(vi) if i = j and vi /∈ C
1

d(vi, vj)
otherwise.

Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of the RDSL matrix RQ(G). The
largest eigenvalue ρ1 = ρ(G) of RQ(G) is called the RDSL spectral radius of
G. By the Perron-Frobenius theorem, there is a unique normalized positive
eigenvector of RQ(G) corresponding to ρ1, which is called the (RDSL) princi-
pal eigenvector of G. Since the matrices RQC(G) is irreducible, non-negative,
symmetric and positive semi-definite, all their eigenvalues are non-negative.

For MCRDSL matrix, auxiliary energy (briefly MCRDSL energy) is defined
as sum of its eigenvalues and denoted by ERQC

(G).
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This paper is organized as follows. In the next section, RDSL spectrum of
some classes of graphs that are constructed by graph operations, is determined.
In section 3, MCRDSL spectrum of some standard graphs such as complete
graph, complete bipartite graph and cocktail party graph are computed. Ex-
tremal graphs with respect to MCRDSL energy of graph is obtained in section
4. Finally, in section 5, more bounds are given for MCRDSL energy of graph
and RDSL spectral radius in terms of the eigenvalues of RDSL matrix, Zagreb
indices and Harary index.

2 RDSL spectrum of some classes of graphs

It is a well known fact that almost all graphs are of diameter 2. Therefore in
this section, we get the RDSL spectrum of some classes of graphs of diameter 2
or 3 that are arisen from graph operations such as cartesian product, InduBala
product, extended double cover graph and complement of a graph.

The following lemma will be helpful in the sequel.

Lemma 1 [11] Let

A =

(
A0 A1
A1 A0

)
be a symmetric 2 × 2 block matrix. Then, the spectrum of A is the union of
the spectra of A0 +A1 and A0 −A1.

We begin first with cartesian product of K2 and a graph of diameter at most
2. The cartesian product of two graphs G and H, G × H is the graph with
vertex set V(G) × V(H) and two vertices (u1, u2) and (v1, v2) are adjacent if
and only if u1 = v1 and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G).

Theorem 2 Let G be an r-regular graph of diameter at most 2 with an ad-

jacency matrix A and Spec(G) =

(
r λi
1 ni

)
, i = 2, 3, . . . , k. Then, the RDSL

spectrum of H = G× K2 is as follows, Spec(RQ(G)) =n+ r−
1

6

5n+ 4r+ 1

3

4λi + 5n+ 4r+ 2

6

2λi + 5n+ 4r− 1

6

1 1 ni ni


for i = 2, 3, . . . , k.
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Proof. Let V(G) = {v1, v2, . . . , vn}, V(K2) = {w1, w2}. Let A and Ā be the
adjacency matrix ofG and Ḡ respectively and J denotes the n×n square matrix
whose all entries are 1. From the fact dH((vi, wj), (vs, wt)) = dG(vi, vs) +
dK2

(wj, wt) = dG(vi, vs) + 1, one can see that all vertices of H have a same

reciprocal transmission and Tr ′H(vi, wj) =
1

6
(5n + 4r + 1). Then Tr ′(G) =

1

6
(5n + 4r + 1)I. Since G is a graph of diameter 1 or 2, diameter of H is 2 or

3 and H is r+ 1 regular. Thus the RD(H) is of the form

RD(H) =


A+

1

2
Ā J−

1

2
A−

2

3
Ā

J−
1

2
A−

2

3
Ā A+

1

2
Ā


and consequently the RDSL matrix of H is of the form

RQ(H) =


A+

1

2
Ā+ (

5

6
n+

2

3
r+

1

6
)I J−

1

2
A−

2

3
Ā

J−
1

2
A−

2

3
Ā A+

1

2
Ā+ (

5

6
n+

2

3
r+

1

6
)I

 .
Now, by Lemma 1 and the fact Ā = J − I −A, the spectrum of RQ(H) is the
union of the spectra

1

6
(4A+ 5J+ (5n+ 4r+ 2)I)

and
1

6
(2A+ J+ (5n+ 4r− 1)I).

�

The next considered graph operation is extended double cover graph of
a graph that is introduced by N. Alon [3] to studying networks. Spectra of
extended double cover graphs was investigated in [7]. Let G be a graph on the
vertex set {v1, . . . , vn}. The extended double cover graph of G, denoted by G∗,
is the bipartite graph with partitions X and Y where X = {x1, x2, . . . xn} and
Y = {y1, y2, . . . , yn}, in which xi and yj are adjacent if and only if i = j or vi
and vj are adjacent in G. Now, we obtain the RDSL spectrum of the G∗ of a
regular graph G with diameter 2.
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Theorem 3 Let G be an r-regular graph on n vertices with diameter 2 and

let Spec(G) =

(
r λi
1 ni

)
, i = 2, 3, . . . , k. Then, the RDSL spectrum of G∗ is

Spec(RQ(G∗)) =
5n+ 4r+ 1

3
n− 1

4λi + 5n+ 4r+ 2

6

−4λi + 5n+ 4r− 6

6

1 1 ni ni

 ,
i = 2, 3, . . . , k.

Proof. First note that G∗ is r + 1 regular graph with diameter 3 and any

vertex v ∈ V(G∗) has reciprocal transmission
1

6
(5n+ 4r+ 1). It is not difficult

to see that RD(G∗) has the form

RD(G∗) =


1

2
(J− I) A+

1

3
Ā+ I

A+
1

3
Ā+ I

1

2
(J− I)

 ,
and then we have

RQ(G∗) =


1

6
(3J+ (5n+ 4r− 2)I) A+

1

3
Ā+ I

A+
1

3
Ā+ I

1

6
(3J+ (5n+ 4r− 2)I)

 .
Then, by Lemma 1, the spectrum of RQ(G) is the union of the spectra

1

6
(4A+ 5J+ (5n+ 4r+ 2)I)

and
1

6
(−4A+ J+ (5n+ 4r− 6)I).

�

Next graph operation is InduBala product. InduBala product of graphs in-
troduced in [16], where the distance spectrum of InduBala product of graphs
is determined. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs on disjoint
sets of n1 and n2 vertices, respectively, then their union is the graph G1∪G2 =
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(V1 ∪ V2, E1 ∪ E2). Their join is denoted by G1∇G2 and consists of G1 ∪ G2
and all lines joining V1 and V2. The InduBala product of graphs is defined
as follows. Let V(G1) = {u1, u2, . . . , un1

} and V(G2) = {v1, v2, . . . , vn2
}. Take

a disjoint copy G′1∇G′2 of G1∇G2 with vertex sets V(G′1) = {u′1, u
′
2, . . . , u

′
n1
}

and V(G′2) = {v′1, v
′
2, . . . , v

′
n2
}. Now make vi adjacent with v′i for each i =

1, 2, . . . , n2. Structure of InduBala product of two graphs P4 and K3 is illus-
trated in Figure 1. Occasionally, it so happens that for certain families of

Figure 1: The graph K3HP4.

graphs it is possible to identify a graph by looking at the spectrum. Now, we
describe the RDSL spectrum of the join of a regular graph with the union of
two regular graphs of distinct vertex degrees.

Theorem 4 For i = 0, 1, 2, let Gi be an ri-regular graph of order ni and
eigenvalues λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni

of the adjacency matrix A(Gi). Then
the RDSL spectrum of G0∇(G1 ∪G2) consists of eigenvalues

1

2
(2m− n0 + λ0,j + r0 − 2), j = 2, . . . , n0,

and
1

2
(m+ n0 + λi,j + ri − 2), i = 1, 2 and j = 2, 3, . . . , ni,

where m =
∑2
i=0 ni, and three more eigenvalues which are the eigenvalues of

the following matrix
m+ r0 − 1 n1 n2

n0 m−
1

2
n2 + r1 − 1

1

2
n2

n0
1

2
n1 m−

1

2
n1 + r2 − 1

 . (1)
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Proof. The reciprocal distance signless Laplacian matrix F = G0∇(G1 ∪ G2)
has the form 

S0 J J

J S1
1

2
J

J
1

2
J S2

 ,
where

S0 =
1

2
((2m− n0 + r0 − 2)I+ J+A(G0))

and for i = 1, 2

Si =
1

2
((m+ n0 + ri − 2)I+ J+A(Gi)) .

As a regular graph, G0 has the all-one vector 1 as an eigenvector corre-
sponding to the eigenvalue r0, while all the other eigenvectors are orthogonal
to 1. Let λ be an arbitrary eigenvalue of the adjacency matrix of G0 with
corresponding eigenvector X, such that 1TX = 0, then [XT 0 0]T is an eigen-

vector of RQ(F) corresponding to the eigenvalue
1

2
(2m−n0+ r0−2+λ). Now,

let µ, ξ be arbitrary eigenvalues of the adjacency matrix of G1 and G2 with
corresponding eigenvector Y and Z, respectively. In a similar way the vectors
[0 XT 0]T and [0 0 XT ]T are eigenvectors of RQ(F) with corresponding

eigenvalues
1

2
(m+ n0 + r1 − 2+ µ) and

1

2
(m+ n0 + r2 − 2+ ξ), respectively.

In this way we obtain eigenvectors of the form [XT 0 0]T , [0 XT 0]T

and [0 0 XT ]T and these account for a total of m− 3 eigenvectors. All these
eigenvectors are orthogonal to [1T 0 0]T , [0 1T 0]T and [0 0 1T ]T . Thus
the remaining three eigenvectors of RQ(F) are of the form [α1 β1 γ1]T for
some (α,β, γ) 6= (0, 0, 0).

If ν is an eigenvalue of RQ(F) with an corresponding eigenvector (α1, β1, γ1)T ,
then from RQ(F)(α1, β1, γ1)T = ν(α1, β1, γ1)T , and A(Gi)1 = ri1 for i =
0, 1, 2, we get the system of equations:

(m+ r0 − 1)α+ n1β+ n2γ = να,

n0α+ (m−
1

2
n2 + r1 − 1)β+

1

2
n2γ = νβ,

n0α+
1

2
n1β+ (m−

1

2
n1 + r2 − 1)γ = νγ,

which have a nontrivial solution if and only if ν is an eigenvalue of (1). Further,
it is obvious from above that any nontrivial solution of above system forms
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an eigenvector of RQ(F) corresponding to eigenvalue ν. Since all 3 remaining
eigenvectors of RQ(F) must be formed in this way, we conclude that each
eigenvalue of (1) is an eigenvalue of RQ(F) as well. �

Theorem 5 For i = 1, 2, let Gi be an ri-regular graph of order ni and let
λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni

be the eigenvalues of the adjacency matrix A(Gi).
Then the RDSL spectrum of G1HG2 is the set consisting of eigenvalues

1

2

(
5

3
n1 + 3n2 + λ1,j + r1 − 2

)
, j = 2, 3, . . . , n1 each with multiplicity 2,

and

1

2

(
3n1 +

5

3
n2 +

4

3
λ2,j +

4

3
r2 +

2

3

)
j = 2, 3, . . . , n2

and

1

2

(
3n1 +

5

3
n2 +

2

3
λ2,j +

4

3
r2 − 2

)
, j = 2, 3, . . . , n2,

also four more eigenvalues which are the eigenvalues of the matrix



m1 n2
1

2
n2

1

3
n1

n1 m2
1

3
(n2 +

1

6
r2 +

2

3
)
1

2
n1

1

2
n1

1

3
(n2 +

1

6
r2 +

2

3
) m2 n1

1

3
n1

1

2
n2 n2 m1


, (2)

where m1 =
1

2

(
8

3
n1 + 3n2 + 2r1 − 2

)
and m2 =

1

2

(
8

3
n2 + 3n1 +

7

3
r2 −

2

3

)
.
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Proof. The RDSL matrix H = G1HG2 has the form

RQ(H) =



S1 J
1

2
J

1

3
J

J S2
1

3
J+

2

3
I+

1

6
A(G2)

1

2
J

1

2
J
1

3
J+

2

3
I+

1

6
A(G2) S3 J

1

3
J

1

2
J J S4


,

where

Si =
1

2

(
J+A(G1) + (

5

3
n1 + 3n2 + r1 − 2)I

)
, i = 1, 4

and

Si =
1

2

(
J+A(G2) + (3n1 +

5

3
n2 +

4

3
r2 −

2

3
)I

)
, i = 2, 3.

By analogy to the proof of Theorem 4, let λ be an arbitrary eigenvalue
of the adjacency matrix of G1 with corresponding eigenvector X, such that
1TX = 0. Then [XT 0 0 0]T is an eigenvector of RQ(H) corresponding

to the eigenvalue
1

2
(
5

3
n1 + 3n2 + λ + r1 − 2). In a similar way the vector

[0 0 0 XT ]T is an eigenvector of RQ(H) corresponding to the eigenvalue
1

2
(
5

3
n1 + 3n2 + λ + r1 − 2). Now let µ be an arbitrary eigenvalue of the ad-

jacency matrix of G2 with corresponding eigenvector Y, such that 1TY = 0.

Then by a similar argument we see that the vectors [0 YT YT 0]T and
[0 − YT YT 0]T are eigenvectors of RQ(H) with corresponding eigenval-

ues
1

2

(
3n1 +

4

3
µ+

5

3
n2 +

4

3
r2 +

2

3

)
and

1

2

(
3n1 +

2

3
µ+

5

3
n2 +

4

3
r2 − 2

)
re-

spectively. In this way we obtain eigenvectors of the form [XT 0 0 0]T ,
[0 0 0 XT ]T , [0 YT YT 0]T and [0 − YT YT 0]T and these account
for a total of 2(n1 + n2) − 4 eigenvectors. All these eigenvectors are orthog-
onal to [1T 0 0 0]T , [0 1T 0 0]T , [0 0 1T 0]T and [0 0 0 1T ]T .
This means that these four vectors span the space spanned by the remaining
four eigenvectors of RQ(H). Thus the remaining four eigenvectors of RQ(H)
are of the form [α1 β1 γ1 δ1]T for some (α,β, γ, δ) 6= (0, 0, 0, 0). If ν
is an eigenvalue of RQ(H) with an eigenvector (α1 β1 γ1 δ1)T , from
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RQ(H)(α1 β1 γ1 δ1)T = ν(α1 β1 γ1 δ1)T , and A(Gi)1 = ri1 for
i = 1, 2, we get the system of equations:

1

2

(
8

3
n1 + 3n2 + 2r1 − 2

)
α+ n2β+

1

2
n2γ+

1

3
n1δ = να,

n1α+
1

2

(
8

3
n2 + 3n1 +

7

3
r2 −

2

3

)
β+

1

3
(n2 +

1

6
r2 +

2

3
)γ+

1

2
n1δ = νβ,

1

2
n1α+

1

3
(n2 +

1

6
r2 +

2

3
)β+

1

2

(
8

3
n2 + 3n1 +

7

3
r2 −

2

3

)
γ+ n1δ = νγ

1

3
n1α+

1

2
n2β+ n2γ+

1

2

(
8

3
n1 + 3n2 + 2r1 − 2

)
δ = νδ,

which have a nontrivial solution if and only if ν is an eigenvalue of (2). Further,
it is obvious from above that any nontrivial solution of above system forms an
eigenvector of RQ(H) corresponding to eigenvalue ν. Since all four remaining
eigenvectors of RQ(H) must be formed in this way, we conclude that each
eigenvalue of (2) is an eigenvalue of RQ(H) as well. �

3 MCRDSL energy of some standard graphs

In this section, ERQC
is computed for some standard graphs such as complete

graph, complete bipartite graph and cocktail party graph.

Example 6 Complete graph Kn.
For n ≥ 2, the eigenvalues of the minimum covering Harary matrix of complete
graph Kn was determined in [1, 22] as Spec(RDC(Kn)) =

 0
n− 1+

√
(n+ 3)(n− 1)

2

n− 1−
√
(n+ 3)(n− 1)

2

n− 2 1 1

 .
Easily one can see that for complete graph Kn with vertex set V(Kn) = {v1, v2, . . . , vn}

and minimum covering set C = {v1, v2, . . . , vn−1},

RQC(Kn) = (n− 1)I+AC(Kn).
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Therefore, the eigenvalues of the matrix RQC(Kn) are as Spec
(
RQC(Kn)

)
=n− 1

3(n− 1) +
√
(n+ 3)(n− 1)

2

3(n− 1) −
√

(n+ 3)(n− 1)

2

n− 2 1 1


and consequently ERQC

(Kn) = n2 − 1. Another simpler way to compute the
ERQC

(Kn) is as follows

ERQC
(Kn) = trace(RQC(Kn)) = |C|+

n∑
i=1

Tr ′(vi) = n− 1+ n(n− 1) = n2 − 1.

Complete bipartite graph Km,n.
Let V(Km,n) = {v1, v2, . . . , vm}

⋃
{w1, w2, . . . , wn} and C = {v1, v2, . . . , vm} be

the minimum covering set of Km,n, (m ≤ n). Then,

ERQC
(Km,n) = |C|+

m∑
i=1

Tr ′(vi) +

n∑
i=1

Tr ′(wi) = 2mn+
1

2
(m2 + n2 +m− n).

Cocktail party graph.
The Cocktail party graph of order n, Kn×2 is formed from the complete graph
K2n by removing n disjoint edges. Note that all vertices of Kn×2 have a same

reciprocal transmission
3

2
(n−1) and a minimum covering set is of order 2n−2.

Therefore,

ERQC
(Kn×2) = 2n− 2+ 2n

(
3

2
(n− 1)

)
= 3n2 − n− 2.

4 Extremal graphs with respect to ERQC

In this section, we are concerned with the extremal graphs with respect to the
minimum covering reciprocal distance signless Laplacian energy.

Theorem 7 Let G be a simple graph with n vertices and m edges. If C is the
minimum covering set of G, then

ERQC(G) = τ(G) + 2H(G).



Minimum covering reciprocal distance signless Laplacian energy 231

Proof. Let ρ1, ρ2, . . . , ρn be the eigenvalues of the matrix RQC(G). The result
follows from the well known fact that

∑n
i=1 ρi = Trace(RQC(G)) and the

eigenvalues of RQC(G) are non-negative. �

Corollary 8 Let G be a graph of order n, then ERQC
(G) ≤ n2−1. The equality

holds if and only if G ∼= Kn.

Proof. It is a well known fact that adding any edge to graph G, increase
the Harary index of G and do not decrease the vertex covering number of G.
Consequently, Kn has the maximum Harary index among all graphs of order
n. Clearly, τ(G) ≤ n− 1. Therefore

ERQC
(G) = τ(G) + 2H(G) ≤ n− 1+ n(n− 1) = n2 − 1,

and the equality holds if and only if G ∼= Kn. �

Corollary 9 Let G 6= Kn be a graph of order n. Then

ERQC(G) ≤ n2 − 3,

with equality holds if and only if G ∼= Kn − e, where e is an edge of Kn.

Let G(n,β) denotes the constructed graph by join of Kβ and Kn−β. Note
that τ(G(n,β)) = β. Let T(n,β) be a tree obtained from K1,n−β by attaching
a pendant vertex to its β− 1 pendant vertices. In [15] and [9] lower and upper
bounds on Harary index were obtained in terms of independence number and
matching number. It was proved that graphs G(n,β) and T(n,β) have the
maximum value of Harary index among all graphs and trees of a same order
n and same independence number n− β, respectively. Consequently, G(n,β)
and T(n,β) get the maximum value of ERQC among graphs of order n and
vertex covering number β as well. Hence we conclude that:

Theorem 10 Let G be a graph of order n and vertex cover number β. Then,

ERQC(G) ≤ 2
(
β

2

)
+

(
n− β

2

)
+ β(2n− 2β+ 1).

The equality holds if and only if G ∼= G(n,β).

In [10], it is proved that of all trees of order n, star graph Sn is the unique
graph of maximum value of Harary index. But it is not true for ERQC. For
example, see the figure 2, two graphs S5 and T(5, 2) where ERQC(T(5, 2)) >
ERQC(S5).

In the following, an upper bound is given for trees of order n and vertex
cover β.
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Figure 2: Graphs S5 and T(5, 2), ERQC(T(5, 2)) > ERQC(S5)

Theorem 11 Let T be a tree of order n and vertex cover number β. Then,

ERQC(T) ≤
1

12

(
6n2 + (10− 4β)n+ β2 + 21β− 22

)
.

The equality holds if and only if T ∼= T(n,β).

It is a well known fact that for any bipartite graph G of order n, α(G) +
β(G) = n, (see [5]). Therefore, the following corollary is immediate.

Corollary 12 Let T be a tree of order n. If T has perfect matching, then

ERQC(T) ≤
1

48
(15n2 + 82n− 88),

with equality holding if and only if T ∼= T(n,
n

2
).

Lemma 13 Let T be a tree of order n and diameter d. Then dd+ 1

2
e ≤

α(T) ≤ dn−
d

2
e.

Proof. Notice that T has Pd+1 as subgraph. The proof follows from the fact

that α(T) ≥ α(Pd+1) = d
d+ 1

2
e and τ(T) ≥ τ(Pd+1) = b

d

2
c. �

A lower bound for Harary index among trees of diameter d and order n is
obtained by Xu et al. [9] as follow.

Lemma 14 Let T be a tree of order n and diameter d. Then

H(T) ≤ 1

24
(M1(G) + 2M2(G) + 3n

2 + 11n− 24),

with equality holds if and only if T is of diameter at most 4.
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Now, an upper bound for ERQC of trees is obtained by using Lemmas 13
and 14 as:

Corollary 15 Let T be a tree of order n and diameter d. Then

ERQC(T) ≤
1

12
(M1 + 2M2 + 3n

2 + 23n− 24) − bd+ 1

2
c,

with equality holds if and only if T = Pn where 2 ≤ n ≤ 5 or T is a graph
constructed by P5 and attaching a vertex to the central vertex of P5.

Proof. From Lemma 13, we get τ(T) ≤ n− bd+ 1

2
c. Among trees of diameter

d ≤ 4, trees Pn, 2 ≤ n ≤ 5 and a graph constructed by P5 and attaching a

vertex to the central vertex of P5, have vertex cover τ(T) = n− bd+ 1

2
c. �

Let Γ(n, d) be the set of all graphs of order n and diameter d, obtained
from a path Pd+1 and a complete graph Kn−d−1 that each vertex of Kn−d−1 is
connected to a central vertex in Pd+1 and its two neighbors. In [10], some upper
and lower bounds were obtained for graphs of given diameter and number of
edges. In the following, we show that graphs of Γ(n, d) get the maximum value
of Harary index and ERQC among graphs of given order n and diameter d.

Let Hn =
∑n
k=1

1

k
denotes the n-th harmonic number. It is easy to see that

H(Pn) = nHn−1 − n+ 1.

Theorem 16 Let G be a graph on n vertices and diameter d. Then

H(G) ≤ (d+ 1)Hd − d+

(
n− d− 1

2

)
+ (n− d− 1)(H

b
d

2
c
+H

b
d+ 1

2
c
+ 1),

with equality holds if and only if G ∈ Γ(n, d).

Proof. Let Pd+1 be a path connecting two vertices of distance d. Let W1 =
V(Pd+1) and W2 = V(G) −V(Pd+1). Note that each vertex of W2 is connected
to at most 3 vertices of W1. It is not difficult to see that in a path Pm, a central
vertex x has maximum reciprocal transmission Tr ′(x) = H

b
m− 1

2
c
+ H

b
m

2
c
.

Let x be a central vertex of Pd+1. Then

H(G) = H(Pd+1) +
∑

{u,v}⊆W2

1

d(u, v)
+

∑
u∈W1

∑
v∈W2

1

d(u, v)

≤ H(Pd+1) +

(
n− d− 1

2

)
+ (n− d− 1)(Tr ′Pd+1

(x) + 1).
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The equality holds if and only if all vertices in W2 are adjacent and for each

vertex v ∈ W2, the equality
∑
u∈W1

1

d(u, v)
= Tr ′Pd+1

(x) + 1 holds if and only

if v is adjacent to x and its two neighbors in Pd+1. Thus G ∈ Γ(n, d). �

5 More bounds on ERQC and largest eigenvalue of
RQC matrix

The following lemmas refer to the real non-negative numbers, and will be
helpful in the sequel.

Lemma 17 [18] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i −
( n∑
i=1

aibi

)2
≤ n

2

4
(M1M2 −m1m2)

2,

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 =
min1≤i≤n bi.

Lemma 18 [20] If ai and bi, 1 ≤ i ≤ n, are positive real numbers, then

n∑
i=1

a2i

n∑
i=1

b2i ≤
1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2(
n∑
i=1

aibi

)2
,

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 =
min1≤i≤n bi.

Lemma 19 [8] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers for

which there exist real numbers r and R, so that r ≤ bi
ai
≤ R, ai 6= 0, for each

i = 1, 2, . . . , n. Then
n∑
i=1

b2i + rR

n∑
i=1

a2i ≤ (r+ R)

n∑
i=1

aibi.

Equality holds if and only if bi = air or bi = aiR for at least one i, where
1 ≤ i ≤ n.

Lemma 20 Let G be a graph of order n and C be a minimum vertex covering
set. If ρ1, ρ2, . . . , ρn are the eigenvalues of RQC(G), then

n∑
i=1

ρ2i = σ2(G) + 2H2(G) + τ(G) + 2
∑
v∈C

Tr ′(v).
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Proof. We have

n∑
i=1

ρ2i =

n∑
j=1

n∑
i=1

qijqji =

n∑
i=1

(qii)
2 + 2

∑
1≤i<j≤n

(qij)
2

=
∑
v/∈C

(Tr ′(v))2 +
∑
v∈C

(1+ Tr ′(v))2 + 2
∑

1≤i<j≤n
(qij)

2

= σ2(G) + τ(G) + 2H2(G) + 2
∑
v∈C

Tr ′(v).

�

Corollary 21 Let G be an (n,m) graph with diameter at most 2 and C be a
minimum covering set. If ρ1, ρ2, . . . , ρn are the eigenvalues of RQC(G), then

n∑
i=1

ρ2i =
1

2
(n+ 1)

(
n

2

)
+
1

4
M1(G) + nm+ nτ(G) +

∑
v∈C

deg(v),

where M1(G) =
∑n
i=1 deg(vi)

2 is known as the first Zagreb index.

Proof. Let V(G) = {v1, v2, . . . , vn}. Since diam(G) ≤ 2, hence we get Tr ′(v) =
1

2
(n+deg(v)−1). Let RQC(G) = (qij). From the fact

∑n
i=1 ρ

2
i = trace(RQC(G))

2,

we get

n∑
i=1

ρ2i = σ2(G) + τ(G) + 2H2(G) + 2
∑
v∈C

Tr ′(v)

=
∑
v∈V(G)

(Tr ′(v))2 + τ(G) + 2
∑
v∈C

Tr ′(v) +m+

(
n

2

)

=
1

4

(
n(n− 1)2 +M1(G) + 4(n− 1)m

)
+ nτ(G)

+
∑
v∈C

deg(v) +m+

(
n

2

)
=

1

2
(n+ 1)

(
n

2

)
+
1

4
M1(G) + nm+ nτ(G) +

∑
v∈C

deg(v),

and the proof is complete. �

In the following, some bounds are presented for ERQC
(G).
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Theorem 22 Let G be a simple graph of order n. If C is the minimum vertex
covering set and ∆ = det(RQC(G)), then√

σ2(G) + 2H2(G) + τ(G) + 2
∑
v∈C

Tr ′(v) + n(n− 1)∆
2
n

≤ ERQC
(G)

≤

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
.

Proof. Let ρ1, ρ2, . . . , ρn be the eigenvalues of RQC(G). First, we show the
right-hand side inequality. Setting ai = 1 and bi = ρi in the Cauchy Schwarz
inequality, (

∑n
i=1 aibi)

2 ≤
(∑n

i=1 a
2
i

) (∑n
i=1 b

2
i

)
and using Lemma 20, we get(

n∑
i=1

ρi

)2
≤

(
n∑
i=1

1

)(
n∑
i=1

ρ2i

)
(
ERQC

(G)

)2
≤ n

(
σ2(G) + 2H2(G) + τ(G) + 2

∑
v∈C

Tr ′(v)

)
.

For the left inequality, consider the AM-GM inequality (which says that arith-
metic mean of a set of non-negative real number is greater than or equal to
geometric mean of them), on the set of {ρiρj|1 ≤ i < j ≤ n}, then

1(
n
2

) ∑
1≤i<j≤j

ρiρj ≥
( ∏
1≤i<j≤n

ρiρj

) 1(
n
2

)

=

( n∏
i=1

ρi

)
n− 1(
n
2

) =

( n∏
i=1

ρi

) 2
n

= ∆

2

n .

Now, we get

E2RQC
(G) =

(
n∑
i=1

ρi

)2
=

n∑
i=1

ρ2i + 2
∑

1≤i<j≤n
ρiρj

≥ σ2(G) + 2H2(G) + τ(G) + 2
∑
v∈C

Tr ′(v) + n(n− 1)∆

2

n .
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Theorem 23 If ρ1 is the largest eigenvalue of RQC(G), then ρ1 ≥
4H(G) + τ(G)

n
.

Proof. Let X = (1, 1, . . . , 1)︸ ︷︷ ︸
n

T be the all one vector. Then, by the Rayleigh

Principle (see [4]),

ρ1 ≥
XTRQC(G)X

XTX
=

∑n
i=1

∑n
j=1 qij

n

=

2
∑
1≤i<j≤n

1

d(vi, vj)
+

n∑
i=1,vi /∈C

Tr ′vi +

n∑
i=1,vi∈C

(1+ Tr ′i)

n

=
4H(G) + τ(G)

n
.

�

Using Lemmas 17, 18 and setting ai = 1 and bi = ρi, we get the following
two lower bounds for ERQC

of a graph G.

Theorem 24 Let G be a connected graph which ρ1 ≥ ρ2 ≥ . . . ≥ ρn are the
eigenvalues of MCRDSL matrix of G. Then

ERQC
(G) ≥

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
−
n2

4
(ρ1 − ρn)

2, (3)

and

ERQC
(G) ≥

2
√
ρ1ρn

ρ1 + ρn

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
. (4)

Lemma 25 [6] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers for
which there exist real numbers a, b,A and B, so that for each i = 1, . . . , n, we
have a ≤ ai ≤ A and b ≤ bi ≤ B. Then∣∣∣∣∣n

n∑
i=1

aibi −

n∑
i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B− b),

where α(n) = n[
n

2
](1−

1

n
[
n

2
]), while [x] denotes integer part of a real number

x. Equality holds if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn.
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Another lower bound is obtained for ERQC
of a graph by applying Lemma

25 and setting ai = bi = ρi, a = b = ρn and A = B = ρ1.

Theorem 26 Let G be a connected graph and ρ1 ≥ ρ2 ≥ . . . ≥ ρn be the
eigenvalues of RQC(G). Then

ERQC
(G) ≥

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
− α(n)(ρ1 − ρn)2. (5)

Corollary 27 Since α(n) = n[
n

2
](1−

1

n
[
n

2
]) ≤ n

2

4
, then according to (5), we

have that

ERQC
(G) ≥

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
− α(n)(ρ1 − ρn)2

≥

√√√√n(σ2(G) + 2H2(G) + τ(G) + 2∑
v∈C

Tr ′(v)

)
−
n2

4
(ρ1 − ρn)

2.

This means that inequality (5) is stronger than inequality (3).

Theorem 28 Let G be a connected graph and ρ1 ≥ ρ2 ≥ . . . ≥ ρn be the
eigenvalues of RQC(G). Then

ERQC
(G) ≥

nρ1ρn + σ2(G) + 2H2(G) + τ(G) + 2
∑
v∈C Tr

′(v)

ρ1 + ρn
. (6)

Proof. The result follows by setting ai = 1, bi = ρi R = ρ1 and r = ρn in the
Lemma 19. �
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