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Abstract. In an earlier work [6] the concept of splitting partition of a
graph was introduced in connection with the maximum clique problem.
A splitting partition of a graph can be used to replace the graph by
two smaller graphs in the course of a clique search algorithm. In other
words splitting partitions can serve as a branching rule in an algorithm
to compute the clique number of a given graph. In the paper we revisit
this branching idea. We will describe a technique to construct not nec-
essary optimal splitting partitions. The given graph can be viewed as a
metric space and the geometry of this space plays a guiding role. In or-
der to assess the performance of the procedure we carried out numerical
experiments.

1 Introduction

Throughout this note the word graph is used for in the restricted meaning of
finite simple graph, that is, each graph will have finitely many vertices and
finitely many edges. Further, neither loops nor double edges may occur. Let
G = (V,E) be a finite simple graph, where V is the node set and E is the edge
set of G. The set of edges E consists of unordered pairs of elements of V. The
simplicity of the graph G means that it has neither double edges nor loops.
The finiteness of the graph G means that the sets V and E have finitely many
elements.
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A subgraph A of G is called a clique in G if two distinct nodes of A are always
adjacent in G. If the clique A has k nodes we will say that A is a k-clique in
G. A node of G as a subgraph of G is of course a 1-clique and an edge of G as
a subgraph can be viewed as a 2-clique. A k-clique A is maximal if it cannot
be extended to a (k + 1)-clique in G by adding a further node of G to A. A
k-clique A in G is a maximum clique if G does not contain any (k + 1)-clique.
A maximum clique in G is always maximal in G but a maximal clique in G is
not necessarily a maximum clique in G. For each finite simple graph G there
is a number k such that G contains a k-clique but G does not contain any
(k + 1)-clique. This well defined number k is called the clique number of G
and it is denoted by w(G).

Problem 1 Given a finite simple graph G = (V,E). Determine w(G).

Problem 2 Given a finite simple graph G = (V, E) and given a positive integer
k. Decide if G contains a k-clique.

Problem 3 Given a finite simple graph G = (V, &) list all mazimum cliques
that appear in G.

Problem 4 Given a finite simple graph G = (V, &) list all mazximal cliques
that appear in G.

Problem 1 is referred to as the maximum clique problem. It is an optimiza-
tion problem and by the complexity theory of the algorithms it belongs to the
NP-hard complexity class. (For further details see [2].)

Problem 2 is referred to as the k-clique problem. It is a decision problem
and by the complexity theory of the algorithms it belongs to the NP-complete
complexity class. (For further details see [4].) The four problems above all have
important applications in discrete applied mathematics.

Some of the clique search problems are optimization problems and many of
these algorithms have the following outline. Using computationally affordable
techniques upper and lower bounds for the clique number of the given graph are
established. If the lower and upper estimates agree, then the clique number of
the graph is computed. If there is a gap between the upper and lower estimates,
then we divide the clique search instance into smaller instances. In other words
one carries out an optimality test and when this test is inconclusive a branching
takes place.

Let G = (V,E) be a finite simple graph and let P, Q, R be subsets of the
set of nodes of G. The ordered triplet (P, Q,R) is called a splitting partition
of the graph G if the following conditions are all satisfied.
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1) PUQUR=V.

)
2) P£0, R+#0.
)
)

(
(
(3) PNQ=PNR=QNR=0.

(4) p € P, r € R implies that the unordered pair {p,r} is not an edge of the
graph G.

Let H be the subgraph of G induced by the set of nodes PUQ and let K be the
subgraph of G induced by the set of nodes Q UR. Let us suppose that A be a
clique in G. In [6] it was proved that either A is a clique in H or A is a clique
in K. This result is in an intimate relation with clique search procedures.

Let us suppose that we are looking for a maximum clique in the graph G.
By the observation above we may restrict our attention to look for a maximum
clique in the smaller graphs H and K. The larger are the sizes of the sets P
and R the smaller are the subgraph H and K. Thus setting up a computation-
ally economic branching rule in a maximum clique or in a k-clique algorithm
depends on our ability to locate a splitting partition in a computationally
economic manner.

As the main result of this paper we will propose a method to speedily locate
splitting partitions in a given graph. The procedure we propose is rather my-
opic and so there is no any guarantee that the procedure provides splitting sets
with optimal P and R sets. Unfortunately we do not possess theoretical tools
to establish performance measurements of the splitting set spotting algorithm.
We will carry out numerical experiments to demonstrate that the procedure
works reasonably well.

2 Metric spaces and splitting partitions

Let G = (V,E) be a finite simple graph and let u and v be two nodes of G.
Set d(u,Vv) to be the length of a shortest path leading from node u to node
v. If there is no path from node u to node v we set d(u,v) to be co. It may
happen that there are more than one shortest paths leading from u to v. But
their lengths must be the same. The quantity d(u,v) can play the role of a
distance between the nodes of G and the graph G can be viewed as a metric
space equipped with this distance function.

For a vertex v of G the set of nodes adjacent to v is called the set neighbors
of v and it is denoted by N(v). In notation N(v) ={u: u eV, {v,u} € E}. The
number of the elements of the set N(v) is referred to as the degree of the node
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v and it is denoted by deg(v). In a more general setting for a vertex v of G and
for a subset U of V we define the degree of v with respect to the subset U as
the number of neighbors of v in the subset U. We denote this restricted degree
of v by degy(v). Plainly, degy(v) = [N(v) N U| and further deg(v) = degg(v) .

Set ballj (v) = {v}UN(v) and note that it is a ball of radius 1 centered at the
point v in the metric space. For a subset U of V we define U° to be the union
of ball;(u) as u ranges over the elements of U. We may call the set U° the
closure of the set U. Condition (4) in the definition of the splitting partition
can be expressed coveniently in terms of closure of the sets involved.

Lemma 5 Let G = (V,E) be a finite simple graph and let P, Q, R be subsets
of V such that the ordered triplet (P, Q,R) is a splitting partition of G. Then

P°AR=0, PNR =0 (1)
must hold.

Proof. Let us assume assume on the contrary that the ordered triplet (P, Q, R)
is a splitting partition of G and in addition P N R # () holds. In this situation
there is a p € P and an v € R such that r € ball;(p). It follows that the
unordered pair {p, } is an edge of G. This contradicts condition (4) in the def-
inition of the splitting partition. Assuming that PN R # () a similar reasoning
gives the contradiction again that the unordered pair {p, 1} is an edge of G. OJ

Lemma 6 Let G = (V,E) be a finite simple graph and let P, R be subsets of
V. Suppose that beside condition (1) in Lemma 5 the condition

P40, R#(D (2)

also holds. Then setting Q = V \ (P UR) the ordered triplet (P,Q,R) is a
splitting partition of G.

Proof. It is easy to see that each of the conditions (1), (3) in the definition
of the splitting partition holds. Clearly, condition (2) in the definition of the
splitting partition holds as a consequence of condition (2) in Lemma 6.

It remains to show that condition (4) in the definition of the splitting par-
tition also holds. In order to do so assume on the contrary that condition (4)
does not hold, that is, there is a p € P and an r € R such that the unordered
pair {p,r} is an edge of G. In this situation r € ball;(p) and consequently
P N R # (. This is in contradiction with the first part of condition (1) in
Lemma 5. O
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Lemma 7 Let G = (V,E) be a finite simple graph and let P be a subset of V.
If P satisfies the condition

P40, PCAV, (3)

Then setting R = V' \ P¢ for the sets P and R condition (1) in Lemma 5 and
condition (2) in Lemma 6 hold.

Proof. As P # () holds by assumption, we need to prove only R # 0 to get
condition (2) in Lemma 6. But R # () is a consequence of the assumption
PC £ V.

The way the set R is constructed from P¢ shows that the equation P NR =)
must hold. The equation P N R¢ = ) follows from P N R = (). This gives that
condition (1) in Lemma 5 is satisfied. O

By Lemmas 5, 6, 7, constructing a splitting partition (P, Q,R) for G can be
reduced to finding a subset P of V satisfying condition (3) in Lemma 7. This
condition can be satisfied easily. For example the choice P = {v} is a suitable
choice whenever v is node of G that is not adjacent to at least one node of G. In
this case P = {v}, Q = N(v), R=V\ ({v}UN(v)). In fact, the splitting partition
(P, Q,R) constructed in this way is the most commonly used branching rule
in clique search algorithms. It is part of the Carraghan-Pardalos algorithm [1]
and it is part of the Ostergard algorithm [3]. A splitting partition (P, Q, R) for
which either |P| = 1 or |R| = 1 is coming free of charge. From this reason we
call such splitting partition of G a trivial splitting partition.

If (P,Q,R) is a splitting partition for G we may construct a new splitting
partition (P’,Q’,R’) for G. We set U = Q UR and locate a node u of U for
which degg(u) is a minimum. Then we move u from U to P and move the
neighbors of u in R to Q to get the sets P/, Q’, R’. For the sake of simplicity
we may use the initial setting P =0, Q = (), R = V and construct new triplets
(P, Q, R) while the condition |P| < |R| holds.

3 Two small size examples

In order to illustrate the results presented so far we work out a small size
example in details.

Example 8 Let us consider the graph G = (V,E). Here V. = {1,...,6}. The
adjacency matrix of G is depicted in Table 2. Figure 1 shows a geometric
representation of G.
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Figure 1: A graphical representation of the graph G in Example 8 and the
steps of the procedure of spotting a splitting partition.
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1234567 34512 7 8 9
1 |x|e|e® ° ° 3|x|e|e|e]|e
2|e|X|0|e|e ° 4 |e|X|® °
3|eje|xX|e|e Hle|le|xX|e|e
4 oo |x|eo I o |X|e® o|o|e
H5|e|e|e|e]|x 2|00 |0|0|X °
6 oo ° ° 6|o|e ° °
7 ° o(xX|o|e 7 elo x| oo
8 o (X|e® 8 o (X|e®
9 e|o|0|X 9 ° eo|o|0|X

Table 1: The adjacency matrices of the graph in Example 8. In the second
adjacency matrix we rearranged the rows and columns to make the splitting
partition more apparent.

The reader can verify easily that the triplet (P, Q,R) of the subsets
P:{33435}> Q:{]>2>6}a R:{7a8a9} (4)

is a splitting partition of the graph G. Note that upper right and the lower
left three by three submatrices are unfilled in the second adjacency matrix in
Table 2.

We try to construct a splitting partition (P, Q,R) for the graph G. We set
P=0, Q=0, R={1,...,9%.

The conditions (1), (3), (4) in the definition of splitting partition are satisfied.
Condition (2) is not satisfied. We compute the degree of each node in U = QUR
with respect to the set R.

node

1 2 3
degree 6 5 5

45 6 7 89

4 4 4 5 3 4

Node 8 has a minimum degree. We move node 8 from set R to set P. We move
the neighbors of 8 from set R to set Q. In this way we get

P :{8}) Q :{1>7)9}) R :{2)3)4)5)6}'

The conditions (1), (2), (3), (4) in the definition of splitting partition are
satisfied and consequently we have a genuine splitting partition of G. The
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Figure 2: The graph G in Example 9.

sizes of the sets P and R are far from each other. We try to enlarge |P| even if
this results a smaller |R|.
We compute the degree of each node in U = Q U R with respect to the set

R.
6

3 5

4 3 2
Node 9 has a minimum degree. We move node 9 from set Q to set P. We move
the neighbors of 9 from set R to set Q. In this way we get

P :{839}3 Q :{]>7>6}» R :{2)3»4)5}-

node 1 7 9 2
1 3

4
degree 3 2 4

The conditions (1), (2), (3), (4) in the definition of splitting partition are sat-
isfied and consequently we have a splitting partition of G where the difference
between |P| and |R| is reduced.

We compute the degree of each node in U = Q U R with respect to the set

R.
node

176 2 3 45
degree 2 1 1

3 3 4 3

Node 7 has a minimum degree. We move node 7 from set Q to set P. We
move the neighbors of 7 from set R to set Q. In this way we get the splitting
partition

P ={7,8,%}, Q ={1,2,6}, R={3,4,5}
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Table 2: The adjacency matrix of the graph G in Example 9.

of G. This splitting partition is essentially the same as (4). The steps of the
procedure can be followed on the geometric version of the graph G. Figure 1
shows these steps. The elements of the set R are marked with a double circle
and the elements of the set Q are marked with a simple circle. Finally the
elements of the set P are left unmarked.

We exhibit now an example to illustrate that the algorithm for spotting
splitting partition described in the paper is a myopic one. Let A, B, C be
pair-wise disjoint sets and let u be an element such that uw ¢ (A UB U C).
Let us assume that |A| = |[C| = n and |B| = n + 1. Using the sets A, B, C,
{u} we construct a graph G = (V,;E). We set V= AU B U CU{u}. We draw
edges between nodes such that the subgraph induced by the set A UB is a
clique in G and similarly the subgraph induced by the set B U C is a clique in
G. Finally, we connect node u to each node in A U C. The reader can verify
that with the P = A, Q = B, R = C choices the ordered triplet (P, Q,R)
is a splitting partition of G. Here |P| = n and |R| = n. On the other hand,
the greedy algorithm proposed by the paper will locate the splitting partition
(P,Q,R), where P={u}, Q=AUC,R=B. Here [P|=1and [Rl=n+1. We
can see that for n > 2 the graph G has a non-trivial splitting partition. But
the greedy algorithm locates a trivial splitting partition. The n = 2 particular
case of the above construction is the content of the next example.

Example 9 Set A ={2,3}, B ={4,5,6}, C={7,8}, u=1. Let us consider the
graph G = (V,E), where V ={1,...,8}. The adjacency matriz of G is depicted
in Table 3. Figure 2 shows a possible geometric representation of G.
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4 Numerical experiments

For testing purposes we have selected three infinite families of graphs that are
connected to the existence and construction of certain error detecting and error
correcting codes. The so-called monotonic matrices are in intimate connection
with codes over the alphabet {1,...,n}. Each code words has length three. The
problem is to find a code whose inner distance is at least two. (See [6], [8].) The
deletion error detecting codes are consisting of binary code words of length
n. These words are sent over a noisy channel. Due to transmission error on
the receiver side a shorter word may arrive. The task is to devise a code that
makes possible to detect a one bit deletion error. (For further details see [5].)
The Johnson codes we are considering here are binary codes with word length
n. Each code word consists of 4 1’s and n —4 0’s. The Hamming distance of
two distinct code words is at least 3.

Monoton H Deletion H Johnson ‘
n VI| | Bl n Vi|lax| B n VI | | p
3 27| 4| 4 3 812 4
4 64| 5| 7 4 16| 4| 4
5 125 7| 8 5 32| 4| 5
6 216 | 9| 9 6 64| 4| 5 6 15 2| 4
7 343 | 10 | 12 7| 128 | 4| 7 7 351215
8 512 | 12 | 13 8| 256 | 5| 5 8 701 2|6
9 729 | 14 | 14 9| 512 | 5| 8 9 126 | 3| 3
10 [ 1000 | 15|17 || 10 | 1024 | 6 | 6 | 10 210 | 3| 4
11 [ 1331 | 17 | 18 || 11 | 2048 | 6 | 10 || 11 330 | 4| 4
12 11728 |19 | 19 || 12 | 4096 | 7| 7 | 12 495 | 4| 5
13 2197 | 20 | 22 13 7151 5|5
14 | 2744 | 22 | 23 141001 | 5|6
15 [ 3375 | 24 | 24 15[1365| 6| 6
16 | 4096 | 25 | 27 16 [ 1820 6| 7
17 | 4913 | 27 | 28 1712380 | 7| 7
18 [ 3060 | 7| 8
19 [ 3876 | 8| 8
2014845 | 8| 9

Table 3: Numerical results in connection with graphs coming from coding
theory.
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The results of the numerical experiments are summarized in the Table 3.
We describe the meaning of the entries using the 10-th row of Table 3 as an
illustration. A graph G is associated with a monotonic matrix of parameter
n = 10. The graph has |V| = 1000 vertices. These values are in the first two
columns of the table. The splitting partition (P, Q,R) we have spotted has the
parameters |P| = o« = 15, |[R| = 3 = 17 and the next two columns contain these
«, 3 values.

At this stage we may conclude that the algorithm spots splitting partitions
rapidly and works reliably in connection with non-trivial size graphs. Only
after working with the algorithm for a longer period of time involving a much
wider variety and range of graphs would enable us to assess the merits of the
proposed procedure.
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