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Abstract. The n-dimensional hyper-octahedral group is the group of
the distance-preserving transformations of the n-dimensional cube. This
group, denoted by Tn, is the semi-direct product of Sn2 and Sn, where for
any positive integer k, Sk is the symmetric group of degree k. On this
group a metric can be defined in the following way. Let us consider the
set of the distances between the images under the two transformations
of every vertex of the hypercube. Then the distance between the two
transformations is the maximum of this set. If we consider the vertices
of the cube as the points of the n-dimensional Boolean space, that is,
if we represent the vertices of the n-dimensional cube by the elements
of the set of {0, 1}

n
, then a particular element of Tn can be given in the

form of (π, α), where α ∈ {0, 1}
n
, and π is a permutation of the set of

{k ∈ N |k < n } (N denotes the set of the non-negative integers, and the
elements of {0, 1}

n
are indexed from 0). By this representation the metric

defined on Tn can be determined by an inner manner, that is, the distance
of two transformations is determined by α and the decomposition of π
into disjoint cycles (see for instance in [2]).

This metric involves a norm on the group, the norm of a transfor-
mation being its distance from the identity of the group. This norm is a
maximum, being the maximum of the set of distances between a vertex
and its transformed image, for every vertex of the hypercube. However,
sometimes the minimum of these distances can be interesting. In this
paper we deal with this value.
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1 Introduction

Let Bn denote the set of the n-dimensional Boolean vectors. Bn is a metric
space with the Hamming-distance, that is, with d

(
x, y

)
=

∑n−1
i=0 (xi ⊕ yi)

[1] where x ∈ Bn, y ∈ Bn, xi and yi are the i-th coordinates of x and y,
respectively, and ⊕ denotes the modulo 2 sum. Bn is a representation of the
abstract notion of the n-dimensional cube. The cardinality of Bn is equal
to 2n, this being the number of the vertices of an n-dimensional cube. Two
vertices of the n-dimensional cube are neighbouring if and only if they are
connected by an edge of the cube. We can define a similar relation, the relation
of neighbourhood, between the elements of the n-dimensional Boolean vectors
as follows. Let two Boolean vectors be neighbouring if and only if they differ
from each other in exactly one component, that is, if and only if the Hamming-
distance of the two Boolean vectors is 1. A vertex of an n-dimensional cube has
n neighbouring vertices, and this is the number of the Boolean vectors having
a Hamming-distance of 1 from a fixed Boolean vector. If we define the distance
of two vertices of an n-dimensional cube as the minimum number of edges we
have to pass from one to the other, then it is easy to see that this rule defines
a distance function. There are 2nn! distance-preserving bijections between the
the vertices of the n-dimensional cube and the vectors of the n-dimensional
Boolean space. Indeed, let us fix an arbitrary vertex of the n-dimensional
cube, denoted by v0. We have 2n different choices for a corresponding Boolean
vector. Every Boolean vector has n neighbouring vectors in the same way as
every vertex of the cube has n neighbouring vertices. There are altogether n!
one to one mappings between these two sets of n elements, so we have a total
of 2nn! different bijections between n+ 1 elements of the corresponding sets.
Till now we have given the image of an arbitrarily chosen vertex, together with
its neighbours. Let us denote this mapping by ϕ and let A be the set of these
n+ 1 vertices. Then it can be proved that there is exactly one extension ψ of
ϕ such that d (ψ (v′) , ϕ (v)) = d̃ (v′, v) for all pairs of vertices v′ of the cube
and v ∈ A (see for instance [1]).
From the previously mentioned facts follows that we can study the effects

of the n-dimensional hyper-octahedral group on Bn. Let Tn denote the group
of the congruences of the n-dimensional cube acting on Bn. In this case Tn =

{(π, α) |π ∈ Sn and α ∈ {0, 1}n }, where Sn is the symmetric group of degree n
acting on the set of the non-negative integers less than n. If x = (x0, . . . xn−1) ∈

Bn, u = (π, α) ∈ Tn and α = (α0, . . . , αn−1), then x
u =

(
x
α0

π(0)
, . . . , x

αn−1

π(n−1)

)
so

that xα = α ⊕ x. Among all transformations on Bn, only the elements of Tn
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preserve the distances between the elements of Bn, so this group is the isometric
group of Bn. Tn is the wreath product of S2 and Sn, that is, Tn = S2 ≀Sn, where
Sn is the symmetric group of degree n [5], [6], [7], [8].
In [2] we have dealt with an inner characterization of the metric and the

norm of the hyper-octahedral group. In the following we shortly summarize
the results of that article, and then, in the next section, we deal with the
minimal value of the effect of a transformation of the hyper-octahedral group.

Definition 1 Let n ∈ N, u ∈ Tn, v ∈ Tn. Then d (u, v) = max
x∈Bn

{d (xu, xv)}.

d defines a metric on Tn (see for instance in [9]).
d is left and right invariant on Tn, that is, for any u ∈ Tn, v ∈ Tn and

w ∈ Tn,
d (uw, vw) = d (u, v) (1)

and
d (wu,wv) = d (u, v) . (2)

d can be determined in an inner manner. Let w = (π, α) ∈ Tn be an arbitrary
element, let

π =

s−1∏

t=0

ct (3)

be the disjoint cycle decomposition of the permutation π. Further, let ck =(
ck0 , . . . , ckmk−1

)
be the k-th member of the product in (3), where 0 ≤ k < s,

mk is the length of the k-th cycle of the previous product for 0 ≤ k < s, and

α = (α0, . . . , αn−1) ∈ {0, 1}n, furthermore let tk =
(
mk +

∑mk−1
i=0 αcki

)
mod 2

and τ (w) =
∑s−1
k=0 tk.

Theorem 1 Let u and v be two arbitrary elements from Tn. Then d (u, v) =

n− τ
(
uv−1

)
.

Using the metric studied above, one can define the norm of the elements of
Tn [2].

Definition 2 Let Tn be the isometric group of the n-dimensional Boolean

space. Then ∥u∥ = d (e, u) is the norm of u ∈ Tn.

From this definition immediately follows that

1. ∥u∥ = 0 if and only if u = e;
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2. ∥u∥ =
∥∥u−1

∥∥ for every u ∈ Tn;

3. d (u, v) =
∥∥uv−1

∥∥ for every (u, v) ∈ T 2n.

Theorem 2 Let ϕ : u 7→ ∥u∥. Then Im (ϕ) = Nn = {k ∈ N |k < n }.

In Theorem 2 N denotes the set of the non-negative integers.

2 New results

In the previous section we characterized an element of the hyper-octahedral
group by its maximal effect regarded as the distance between a vector of the
Boolean space and its transformed image. But sometimes the expectation is
the opposite, that is, we wish that the effect of the transformation be as little
as possible. This expectation leads to the following notion.

Definition 3 Let Tn be the isometric group of the n-dimensional Boolean

space and let u ∈ Tn. Then ⟨⟨u⟩⟩ = min
x∈Bn

{d (x, xu)}.

⟨⟨u⟩⟩ shows the minimal effect of u ∈ Tn. By the definition it seems, that
⟨⟨u⟩⟩ depends not only on u, but on the elements of the Boolean space. How-
ever, the next statement proves that ⟨⟨u⟩⟩ can be given in a form depending
only on u.

Theorem 3 Let u = (π, α) ∈ Tn, where π ∈ Sn and α ∈ {0, 1}n. If π =∏s−1
t=0 ct is the disjoint cycle decomposition of the permutation π, for 0 ≤ k < s

ck =
(
ck0 , . . . , ckmk−1

)
is the k-th member of the previous product, then

⟨⟨u⟩⟩ =

s−1∑

k=0

t
′

k, (4)

where t
′

k denotes the remainder of
∑mk−1
i=0 αcki by modulo 2.

Before the precise verification of the theorem we would like to highlight the
idea of the proof.
For the sake of the simplicity let us suppose that π in u = (π, α) ∈ Tn is

a cycle, for instance the cycle of the first k elements of the indices, that is,
π = (0, 1, . . . , k − 1), where n > k ∈ N, and for n > i ≥ k, i ∈ N, αi = 0. In
this case for an arbitrary element x of Bn,

(
x

xu

)
=

(
x0 x1 . . . xk−2 xk−1 xk . . . xn−1
x
α0

1 x
α1

2 x
αk−2

k−1 x
αk−1

0 xk . . . xn−1

)
.
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Now the number of the positions where the original and the transformed
vectors differ from each other can be calculated as follows. If n > i ≥ k, i ∈ N,
then xi = x

αi

π(i)
= (xu)i, so in that part of the vector there is no position where

the two vectors differ, the number of the different positions of that domain is
equal to 0. Now let us consider the first part of the vectors, that is, the first k
positions. We try to get as few different positions as possible. The best result
is, if xi = x

αi

π(i)
= x

αi

(i+1) mod k
for every k > i ∈ N. Then

x0 = x
α0

1

x0 = x
α0

1 =
(
x
α1

2

)α0 = x
α1⊕α0

2
...

...
...

...
...

...
...

x0 = x
αk−3⊕···⊕α0

k−2 =
(
x
αk−2

k−1

)αk−3⊕···⊕α0 = x
αk−2⊕αk−3⊕···⊕α0

k−1

and finally

x0 = x
αk−2⊕αk−3⊕···⊕α0

k−1 =
(
x
αk−1

0

)αk−2⊕···⊕α0 = x
αk−1⊕αk−2⊕···⊕α0

0
(⊕ denotes the modulo 2 sum).
All but the last conditions can be easily satisfied. As ab = a⊕ b, so

x0 = x
αk−1⊕αk−2⊕···⊕α0

0

= x0 ⊕ αk−1 ⊕ αk−2 ⊕ · · · ⊕ α0.

This last equality is true if and only if αk−1 ⊕ αk−2 ⊕ · · · ⊕ α0 = 0, that is,
if and only if αk−1 + αk−2 + · · · + α0 is an even number. In this case the two
vectors are identical, there is no differences, the distance of the two vectors is
equal to 0. In the other case, that is, if the sum of the exponents is an odd
number, then there is exactly one position where the two vectors differ, so, the
distance of the two vectors, and then ⟨⟨u⟩⟩ is equal to 1. That means that the
minimal number of the differences, in another words, the minimal deviation
caused by this transform is either 0 or 1, depending on the parity of the sum
of the exponents.
Now we prove exactly the statement.

Proof. Let xck1 = x
αck0
ck0

= xck0 ⊕ αck0 . Then

(xu)ck0
= x

αck0

π(ck0)
= xπ(ck0)

⊕ αck0 = xck1 ⊕ αck0

=
(
xck0 ⊕ αck0

)
⊕ αck0 = xck0 . (5)
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For every 1 ≤ i < mk we have that

xcki = x
αcki−1
cki−1

= xcki−1
⊕ αcki−1

= xck0 ⊕

(
i−1
⊕
j=0
αckj

)
. (6)

Then we get that

xckmk−1
= xck0 ⊕

(
mk−2
⊕
j=0

αckj

)
. (7)

The equality (xu)ckmk−1
= xckmk−1

holds if and only if x
αckmk−1

π
(

ckmk−1

) = xckmk−1
,

or, in another way, if and only if

xck0 ⊕ αckmk−1
= xckmk−1

= xck0 ⊕

(
mk−2
⊕
j=0

αckj

)
. (8)

From the equation above we get that

mk−1
⊕
j=0

αckj = 0. (9)

If this condition is fulfilled then all of the components of x and xu belonging
to the k-th cycle of the decomposition of π are the same. In the opposite case
they differ exactly in one position, and then

mk−1
⊕
j=0

αckj = 1. (10)

These results mean that if we construct a vector x0 taking into consideration
the above-mentioned conditions, then the number of the different coordinates

of the vectors x0 and x
u
0 is exactly

∑s−1
k=0

(
⊕mk−1
j=0 αckj

)
, and this is the minimal

value of the Hamming-distances between the elements of the Boolean space
and their transformed images under u, according to the statement of the
theorem. �

The range of the values of the function u 7→ ⟨⟨u⟩⟩, where u ∈ Tn, is as
follows.

Theorem 4 The set of the values of the function u 7→ ⟨⟨u⟩⟩, defined on Tn,

is equal to A = {k ∈ N |k ≤ n }.
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Proof. It is obvious that the set of the values of the function is a subset of the
set of A = {k ∈ N |k ≤ n }. We have to show that for every element of that set
there is at least one element in Tn so, that ⟨⟨u⟩⟩ is equal to the given integer.
Let us consider the following transformation:

u =


ε,


1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k




 , (11)

where ε is the identity of Sn. Then for any x = (x0, . . . , xn−1) ∈ Bn we have
that

xu = (x0, . . . , xn−1)
u

= (x0, . . . , xk−1, xk, . . . , xn−1) . (12)

As d ((x0, . . . , xk−1, xk, . . . , xn−1) , (x0, . . . , xk−1, xk, . . . , xn−1)) = k, that is,
d (x, xu) = k for every x ∈ Bn, so ⟨⟨u⟩⟩ = min

x∈Bn
{d (x, xu)} = k. �

3 Conclusion

Considering two Boolean functions of the same variables, they are not essen-
tially different if they differ only in the ordering of the variables and in assign-
ing the 0 and 1 to the variables that is in the case when f2 (x0, . . . , xn−1) =

f1

(
x
α0

π(0)
, . . . , x

αn−1

π(n−1)

)
, where π is a permutation of the indices of the variables,

αi ∈ {0, 1} and xα = α⊕ x =

{
x , if α = 0

x , if α = 1
. For instance, let us suppose

that we want to describe the statement
“Now it is either raining or the sky is blue, and yesterday MU won again”

by the help of mathematical formalism. Then we can denote the first part of
the sentence by A (A = “it is raining”), the second part of the sentence by
B (B = “the sky is blue”) and the third part of it by C (C = “Yesterday
MU won again”). By these notations our statement is F = (A ∨ B) ∧ C, if
∨ denotes the disjunction and ∧ denotes the conjunction. But the meaning
of B ∧ (¬A ∨ C) is the same as the meaning of the previous form, if now B

denotes the sentence “yesterday MU won again”, C denotes “the sky is blue”
and A stands for “Now it is not raining”. As this simple example shows, the
two forms of (A∨B)∧B and B∧ (¬A∨C) do not differ essentially, they differ
only in the assignment of the variables to the original statements.
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This fact explains, why the hyper-octahedral group is so important when
we investigate the Boolean functions. And if it is so, then it is understandable
that it is important to know, what is the maximal and the minimal impact
of an element of the group on the Boolean functions. In another article [2] we
examined the maximal effect, and now the minimal effect of the transforma-
tions, and stated, that this effect depends only on the transformation given,
and that every possible value can be achieved by a transformation chosen in
an appropriate way.
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