
Acta Univ. Sapientiae, Informatica, 1, 1 (2009) 15–34

Meta programming on the proof level

Gergely Dévai
Eötvös Loránd University, Faculty of Informatics,

Department of Programming Languages and
Compilers

email: deva@elte.hu

Abstract. Computer aided proof generation is used for many reasons
from formalization of mathematics to formal computer program develop-
ment. Our research concentrates on completely declarative style proofs
used to develop imperative programs in a refinement-based model (i.e.
deriving the algorithm from the specification).

In this paper we investigate why and how to use meta programming
techniques for proof development. We examine techniques already used in
programming languages if they are applicable for proof construction and
point out the specialities caused by the different application area. It is
also shown that while meta programming techniques are often dangerous
when used to develop programs, they are safe tools for proof development.

1 Introduction

1.1 Human-readable proofs

There is a wide range of theorem provers from completely automatic ones to
proof checkers. Examining the history of formal program development and
automatic theorem proving, it seems hopeless to create a system that proves
the correctness of industrial sized programs without considerable human effort.
It is crucial that users of a proof system can easily understand the given proof
situations if the machine is not able to complete the proof automatically. For

AMS 2000 subject classifications: 68Q60
CR Categories and Descriptors: F.3.1. [Specifying and Verifying and Reasoning about
Programs]
Key words and phrases: formal program verification, meta programming, proof genera-
tion

15

16 G. Dévai

true() => abs(x) >= 0

select

{
x >= 0 => abs(x) >= 0

{
x >= 0 => x = abs(x);

x = abs(x) & x >= 0 => abs(x) >= 0;

}
!(x >= 0) => abs(x) >= 0

{
!(x >= 0) => 0-x = abs(x);

!(x >= 0) => 0-x >= 0;

0-x = abs(x) & 0-x >= 0 => abs(x) >= 0;

}
}

Figure 1: The non-negativity of the absolute value function

that reason, there is a growing interest in human-readable proof languages.
The proof language of the Mizar proof assistant [1] was designed to be similar
to textbook proofs. Similar style is used in the Isar [2] language for Isabelle

[3] and in a declarative style proof language for Coq [4].
In our case proofs are used mainly to specify the behaviour of imperative

programs and to develop the algorithm by refining the original specification.
When refining a specification statement, one gives a set of more detailed state-
ments. The refinement is sound, if every program that corresponds to the
detailed specification also fulfils the requirements of the original one. We can
say that the original specification is a theorem about the behaviour of the
resulting program and the refinement steps are the proof. In this proof style,
instead of indicating the proof actions, one breaks up the original theorem into
several smaller theorems.

As an example we show a toy proof about the non-negativity of the absolute
value function on figure 1. The first line states the theorem to prove. The
select keyword indicates case-distinction, the cases x ≥ 0 and ¬(x ≥ 0) are
inside the pair of curly braces. Each case is refined further: In the case where
x ≥ 0 holds we first conclude that x = abs(x) and from this (and the previous
knowledge x ≥ 0) we get that abs(x) ≥ 0. The second case is similar. The
unrefined statements are accepted by the proof checker based on previously

Meta programming on the proof level 17

defined axioms and tactics.
In this system there are two ways to refine a statement (both shown in

the previous example): sequence and case-distinction. Sequence introduces
intermediate steps in the reasoning, while case-distinction splits up the proof
into several cases. For more information on the refinements and the techniques
to check them the reader is referred to [5].

1.2 Programming by proof

According to the programming paradigm we use, one first writes the specifi-
cation of the program, then refines the specification in several steps. Unlike
traditional refinement systems [6], during the refinement process we do not
introduce program fragments. The proof tree (consisting of the specification
as the theorem and the refinements as the proof steps) is complete when one
reaches specifications of primitive instructions in the leaves.

In the following example on figure 2, the specification states that the pro-
gram swaps the values of the two variables x and y. Instead of the operator
=> that we used for classical logic statements in the previous example, here
we use the >> temporal operator to express that the program proceeds from
the first condition to the second one. We use the parameters xVal and yVal

to denote the values of x and y respectively in the pre-state. The variable
ip (instruction pointer or program counter) is used explicitly in specification
statements. (This makes the specification of control statements, like jumps
and procedure calls, much easier.)

The specification is refined by a sequence of three statements that describes
how do the values of variables change during the execution of the program.

The compiler of this proof language has two tasks: it first checks the sound-
ness of the proof, then it collects the primitive instructions whose specifications
are used in the proof, and generates the program in the target language. In
case of the current example the following instructions are extracted from the
proof.

A: t = x;

B: x = y;

C: y = t;

D:

The resulting program is guaranteed to be correct with respect to the spec-
ification, provided that the specifications of the primitive instructions were
sound.

18 G. Dévai

variable(x,Integer);

variable(y,Integer);

parameter(xVal,Integer);

parameter(yVal,Integer);

ip = A & x=xVal & y=yVal > > ip = D & x=yVal & y=xVal

{
variable(t,Integer);

ip = A & x = xVal > > ip = B & t = xVal;

ip = B & y = yVal > > ip = C & x = yVal;

ip = C & t = xVal > > ip = D & y = xVal;

}

Figure 2: Swapping the values of two variables

The system is independent of the target language. One can add support for
a new programming language by specifying (part of) its instruction set in the
system and writing a code generator module for that language.

This paradigm differs from the classical program extraction from proofs [7].
In that case by developing a constructive proof for the existence of a mathe-
matical object M, one can extract a program that evaluates M. In our case the
program is extracted from its own correctness proof and there is no restriction
on the logic used.

2 Meta programming

2.1 Minimal trusted base

Is the output program really sound? It depends on the correctness of the
proof checking algorithm used by the compiler and on the correctness of the
specifications of primitive instructions. This is called the trusted base of the
system. To reduce the risk of errors in it, the trusted base should be minimal.

Our currently supported target language is C++, a language that is ex-
tremly rich in high level language construts like different kinds of loops, vari-
able scopes, argument passing modes, classes, inheritance and a lot more. If
we wanted a formal system supporting all these features using built-in rules,
the programming model would be very complex, harly exendable and target
language dependent.

Meta programming on the proof level 19

In order to keep the trusted base of our system minimal and general, we
elected to reduce the programming model as much as possible. We consider
a program as a set of simple state transitions. Instructions that perform a
simple state transition are easy to specify.

Although this programming model is very simple, it is expressive enough.
We were able to specify for example pointer instructions [8] and vector oper-
ations [9] of C++ in it.

2.2 Motivation for meta programming

Formal program development in the model presented above is like program-
ming in assembly languages: No high-level language constructs are available,
only a set of elementary instructions. We have discussed above that hard-
wiring the verification conditions for high level constructs in the system is
not desirable. The questions is, how to enable the user to extend the system
with these high level constructs without affecting the minimality of the trusted
base?

A possible answer is meta programming, which was already used in case of
assembly languages in the form of macros. For assembly programmers macros
are useful to emulate instructions that are not part of the instruction set,
generalize often-used program fragments using arguments and emulate high-
level language constructs (loops, conditional branching, etc.). We use meta
programming techniques for the same reasons on the proof level : We generalize
often used proof parts. We call these proof fragments proof templates and
they may be both classical logic proofs (like the schema of indirect proofs) or
temporal logic proofs (like the schema of proving the correctness of a loop).

While meta programming techniques in assembly languages are quite low
level features (simple text-based replacement of arguments, for example), the
techniques we use are more sophisticated. We apply type checking for ar-
guments and perform their substitutions in the syntax tree instead of the
error-prone text-based replacement.

The user is also allowed to define own proof templates and it is possible to
build libraries of them to help the work of other users. In traditional program
development, a library consisting of a great number of functions can help the
developer to make the code shorter and more understandable while it also
rises the efficiency of the development process. The same is true for proof
development: It is a general observation that proof systems with a huge set of
tactics are more efficient.

If the user defines a proof template, it does not become part of the trusted

20 G. Dévai

base. The compiler checks the proofs inside templates. This check occurs
either when the template is defined or when it is instantiated depending on
the type of the template. If the template was wrong or was used in an inap-
propriate situation, an error report is generated during proof checking.

2.3 Naming conventions

Meta programming is a general notion. In this paper we use it to name
techniques to define meta language entities that are transformed to object level
entities during a preprocessing phase after which some kind of compilation of
the object language entities takes place. In case of traditional programming,
assembly macros or C++ templates (meta language) are first transformed to
pure assembly or C++ (object language) and compiled further by an assembler
or a C++ compiler. In our case, the meta language consists of proof templates.
Template calls are transformed to pure proofs which are then checked and
compiled to a traditional programming language.

In the literature the terms proof schema, proof sketch, proof template are
used in various senses. In [10] formal proof sketches are defined to be short-
ened formal proofs which have gaps from the point of view of mechanical proof
checking but are easier to understand. In formal program verification it hap-
pens quite often that the proof attempt fails because the program is wrong.
In that case, after correcting the program, one can reuse parts of the previous
proof attempt. In [11] these reused proofs are called proof templates and in
[12] generalized proofs to replay are called proof schemas. Our proof tem-
plates are similar to these techniques in the sense that they are generalized
and reusable proof fragments with the goal making proofs shorter and more
understandable, but are completely different in the way of their definition and
application.

2.4 Overview of techniques

In the following we examine the meta programming techniques that we have
found useful for the purposes of proof-development.

2.4.1 Arguments

We can generalize a proof fragment by giving it a name and replacing parts of
it by arguments. This way we obtain a meta-proof that we call a template. It
turned out to be useful to syntactically distinguish formal template arguments

Meta programming on the proof level 21

from program variables and parameter variables. (We start them by a sharp
symbol: #.)

To define a template called example having two arguments of types Integer
and Character we write:

template example(Integer #arg1, Character #arg2)

{
// template body

}

In the body of the template we can write a proof fragment containing the for-
mal template arguments. We instantiate the template using actual arguments
in the following way:

example(x+2, ’a’);

The template call is type checked. The compiler instantiates the template by
replacing the formal arguments in the body by the actual ones.

Simple text-based replacement of arguments would lead to surprising re-
sults in some cases. A well-known example of low level macros is the expres-
sion #arg1*3 which becomes x+2*3 in the previous template call. By the
precedence rules of operators this means x+(2*3) instead of (x+2)*3 which,
supposedly, was the intention of the programmer. To avoid this pitfall in our
system, instantiation of templates takes place after parsing. As shown in the
figure below, the replacement is done in the syntax tree of the expression and
produces the correct result.

expr

expr

#arg1

* expr

3

expr

expr

expr

x

+ expr

2

* expr

3

An other common feature of low level macros is that symbols used inside
the macro may not be declared at the point of the macro definition. The

22 G. Dévai

meaning of the symbols depend on the declarations visible at the point of the
instantiation. This can induce many errors that are hard to recover. In case of
our templates any symbol inside the template body must be declared and they
are bound to the declaration visible at the point of the template definition.
Even if an other declaration hides the original declaration of the symbol at
the point where one calls the template, the symbol in the instantiated proof
will belong to the original declaration.

It is quite important that the proofs obtained by instantiating a template
may not be sound in general. Templates should be thought of as proof at-
tempts or proof schemas instead of theorems with their proofs. That is, when
a template is defined, the soundness of its body is not checked. But, each
time the template is called, the resulting proof is verified and the errors are
reported. In section 2.4.5 we introduce a special kind of template that is ver-
ified as soon as it is defined, so that there is no need for further checks when
one instantiates it.

2.4.2 Compile time conditions

Meta programming makes it possible to perform computations in compile time.
The result of the meta-level computations can influence the generated object-
level code. For example, conditions expressed in the meta language can decide
whether a piece of code is included or omitted. These techniques turned out
to be useful also in case of proof generation.

A common situation is that different proofs are needed depending on the
form of a template argument. In the following example the argument of the
template is examined by compile time conditions. These conditions decide
which variant of the proof should be used.

template variants(Integer #arg)

{
constant(#arg) :

// proof in case of a constant argument

variable(#arg) :

// proof in case of a variable argument

}

In case the template call is variants(2), the first proof is the result of the
instantiation, while the call variants(x) results in the second one.

We can increase the expressive power of these conditions if we enable pattern
matching for their arguments. In the following example, the condition checks

Meta programming on the proof level 23

whether the argument is a compound expression with addition as the top level
operator and bounds the two sub-expressions to the arguments #left and
#right. These can be used in the proof.

template patternMatcher(Integer #arg)

{
equals(#arg, #left + #right) :

// proof that can use #left and #right

}

In case of the template call patternMatcher(x+2), the compiler replaces
#arg, #left and #right by x+2, x and 2 respectively in the proof.

In the current implementation of our system there is a fixed set of such
conditions. We have noticed that it would be useful to give the user the
ability to define new conditions based on the old ones. We plan to carry out
a Prolog-style implementation of this feature.

2.4.3 Axioms and instruction specifications

It seems natural to use the template features of the language to define the
axioms that are used to close the branches of proof trees. We mark these
templates with special keywords so that the compiler accepts the statements
obtained by instantiating these templates without any further refinement.

There are two kinds of axioms in the system: One states properties of
mathematical functions used in specifications and the other describes temporal
properties of instructions in the target language. We call the former ones
axioms and the latter ones atoms.

For example we show the temporal axiom of the instruction incrementing
a variable. The arguments of the template will be the variable to increment
(#var), an expression describing the value of the variable before the instruction
(#val), and the labels before and after the instruction (#before and #after).
The temporal axiom is basically the following:

ip = #before & #var = #val & #val < maxInt()

> > ip = #after & #var = #val + 1;

But this statement is not sound for all the possible combinations of the tem-
plate arguments. For example, if we instantiate the template using the variable
x both for the arguments #var and #val, the statement becomes invalid. The
following conditions should be checked: the labels #before and #after have

24 G. Dévai

atom increment(Integer #var, spec Integer #val,

Label #before, Label #after)

{
constant(#before) & constant(#after) & variable(#var)

& independent(#var,#val) & independent(ip,#val) :

ip = #before & #var = #val & #val < maxInt()

> > ip = #after & #var = #val + 1;

}

Figure 3: Specification of the increment operation

to be label constants (this is needed for code generation), #var must be a
variable and #val must not depend on ip and #var. These checks can be
easily implemented using compile time conditions introduced in the previous
section. The definition of the temporal axiom1 is on figure 3.

There is one more thing to mention about this template: The spec keyword
before the template argument #val. This marking informs the compiler that
#val is not used for code generation, it is needed for specification purposes
only. This means that the generated instruction does not depend on the actual
expression provided for the argument #val in the template call. In section
2.4.5 we will see that it is sometimes important for the compiler to know
which arguments does and which does not affect the generated instructions.

2.4.4 Proof fragments as arguments

Arguments of macros or templates are usually expressions or types in most
systems using meta programming. In this section we show that allowing com-
plete chunks of object level code (proofs in our case) as arguments rises the
flexibility of the meta language.

To demonstrate this feature we construct a template that generates indirect
proofs. To prove P ⇒ Q by induction, we have to show P ∧ ¬Q ⇒ false().
In our system, indirect proof is not a refinement possibility, we have sequence
and case distinction only. We have to implement the indirect proof with these
tools.

1Here we give only a progress property of this instruction. To make the axiom more useful,
we could add a safety property describing which variables are affected by this operation. As
the formal programming model behind this specification is not the main topic of this paper,
we elected to simplify the example by omitting the safety property.

Meta programming on the proof level 25

P => Q

select

{
Q & P => Q

{}
!(Q) & P => Q

{
!(Q) & P => false()

{
// proof of contradiction

}
}

}

Figure 4: An indirect proof

The trick, shown on figure 4, is to perform a case distinction on Q. The
case where Q holds is trivial, so an empty refinement is enough to complete it.
In the second case we can use the proof of contradiction. As soon as false()

is proved, the compiler also accepts Q.
As any indirect proof can be transformed to the same form, it is worth

creating a template that does this transformation. Such a template must get
the proof of contradiction as an argument. We use the block keyword in the
argument list of a template to denote that a proof fragment has to be passed
for that argument. Using this feature we can write our template shown on
figure 5.

The proof inside the template is organised as we have discussed above. The
argument marked by the block keyword can appear in any position where a
proof is needed.

We also need a bit of special syntax to pass these special arguments when
the template is called. It is done by writing the proof fragment to pass between
curly braces after the template call (which is not terminated by a semicolon).
The indirect proof calling the template we have just constructed is on figure
6. This template call results in the same proof shown on figure 4, but this
variant is shorter and easier to understand.

In section 2.1 we have mentioned the advantages of the minimalistic pro-
gramming model without built-in rules for programming constructs like con-
ditional branching or loops. As a result, a simple if-then-else construct consist

26 G. Dévai

template indirect(Boolean #hypothesis, Boolean #goal,

block #proof)

{
#hypothesis => #goal

select

{
#goal & #hypothesis => #goal

{}
!(#goal) & #hypothesis => #goal

{
!(#goal) & #hypothesis => false()

{
#proof;

}
}

}

Figure 5: Template for indirect proofs

of several instructions: First the condition is to be evaluated, then a condi-
tional jump instruction follows to jump to the label of the then-branch if the
condition was true or to continue at the label of the else-branch otherwise. At
the end of both branches an instruction is needed to jump to the instruction
that follows the branching.

It is possible to prove the correctness of such a low-level branching algorithm
in the system, however, it is not desirable to force the programmer to develop
a rather complex proof each time when using an if-then-else construct. Fortu-
nately it is possible to generalise the proof and hide the details (that are same
for every conditional branch) using a template. The condition of the branch
and the proofs for the branches will be the arguments of the template, which
can be called in the following way.

if(condition)

{
// proof of the then-branch

}
{
// proof of the else-branch

}

Meta programming on the proof level 27

P => Q

{
indirect(P, Q)

{
// proof of contradiction

}
}

Figure 6: Indirect proof calling the indirect template

This means that there is no need to hard-wire techniques like indirect proofs
or verification conditions for programming constructs into the system core.
It is possible to define templates that provide the same convenience, without
making the kernel of the proof system unnecessarily complex.

2.4.5 ’Check once, use many times’

The templates we have seen so far could generate completely different proofs
for different actual arguments and there was no guarantee that these proofs
were sound. That is why the compiler had to instantiate and check the tem-
plates every time. If a template can be checked independently of the actual
arguments, it is possible to validate it when it is defined. When such a template
is called, the compiler can accept its top-level statement without instantiating
and re-validating the whole proof inside it. Practically, a template of this kind
contains a theorem and its proof.

As these templates are not dynamically instantiated and checked at every
call, we call them static templates, and use the static keyword to introduce
them. Arguments of static templates are not allowed to appear in compile
time conditions, because that would make it impossible to validate the proof
regardless of the actual arguments.

No matter how many times we call a static template, it is validated only
once, and this is not only an efficiency issue. We can use it to implement
induction: If a static template calls itself recursively, the recursive call is not
expanded and checked, but its specification is used as an induction hypothesis.
The well-foundness of the induction is ensured by the first argument of the
recursive call: It must be an integer expression proved to be non-negative and
strictly less then the first argument of the template containing the recursive
call.

28 G. Dévai

axiom p0(Integer #n)

{
#n = 0 => p(#n);

}

axiom pNext(Integer #n)

{
#n > 0 & p(#n-1) => p(#n);

}

Figure 7: Axioms for an inductive proof

For showing this recursive schema, let us have a logical function p on integers
with the axioms on figure 7.

The static template on figure 8 proves p for all non-negative integers by
induction. As in a usual induction proof, we have a base case (#n=0, solved by
the first axiom) and an inductive case (#n>0). In the inductive case we first
make it explicit that the induction is well-founded, then use the induction
hypothesis by calling the template recursively with the argument #n-1. Then,
by the second axiom we complete the proof.

Static templates are meaningful also for temporal logic proofs. In this case,
not only the soundness of the refinements inside the template has to be inde-
pendent of the actual template arguments, but also the instructions extracted
from the proof. This additional condition practically means, that arguments
of static templates must not be passed as arguments to atoms, if that argu-
ment influences the generated instruction. In section 2.4.3 we have introduced
the spec keyword to denote that an argument of an atom is not used for code
generation. That is, static template arguments are allowed to be passed to
atoms only in spec arguments.

When should one place a piece of temporal proof into a static template?
Every time the specification of that code is used more that once. For example,
the proof of a procedure should be implemented in a static template. Each
time the procedure is called, one can call the static template to use the specified
properties of the procedure. An other example is the proof of a loop, as we
usually need induction for that. The refinements describing the loop body
form the static template, and when the program jumps back to the beginning
of the loop, we call the template recursively.

Meta programming on the proof level 29

static pAll(Integer #n)

{
#n >= 0 => p(#n)

select

{
#n = 0 => p(#n)

{
p0(#n);

}
#n > 0 => p(#n)

{
#n > 0 => #n-1 >= 0 & #n-1 < #n;

pAll(#n-1);

p(#n-1) & #n-1 >= 0 => p(#n)

{
pNext(#n);

}
}

}
}

Figure 8: A template implementing an inductive proof

2.4.6 Templates defined in templates

In section 2.4.4 we have seen a template that generates indirect proofs. We
want to create a similar one for inductive proofs by generalising the example
in the previous section. That is, we will pass the function p, the proof of
the base case as well as the proof of the inductive case as arguments to that
template, and it will generate the inductive proof seen in the previous section.

Our template will generate a name for the static template to define, using
the compile time condition templatename(#name). When evaluating this con-
dition, the compiler will bound a fresh templatename to #name. The static
template defined inside our template is the same as in the previous section,
except the proofs of the base and the inductive cases, because these are argu-
ments.

30 G. Dévai

block(Integer #x)

{
p0(#x);

}

Figure 9: An unnamed proof accepting an argument

Let us have a look on these proofs, that should now be passed as arguments.
In the previous section we used

p0(#n);

as the base case and

pNext(#n);

as the inductive case. Notice that we use the argument #n of the static tem-
plate in these proofs. That is, we can not pass these proofs ’as is’, because the
argument #n is not usable outside the static template. A solution is to pass
these proofs accepting an argument. The syntax for this2 is shown on figure
9. We will pass this block as an argument to our template and that will use
it inside the static template and pass #n to it as an argument.

When the static template is defined, our template should also immediately
call it to use the theorem just proved in the static template. This template-

defining-template, called induction, can be seen on figure 10.
Having the induction template defined, we can write our inductive proof

in a much more elegant way. For arbitrary parameter value k, we can prove
p(k) as on figure 11.

3 Safety considerations

There are several programming errors that make the careless application of
meta programming techniques dangerous, when the object-level code is a tra-
ditional programming language. This is especially true for low-level meta
programming features.

A common example is, when one repeats a piece of code many times in the
program using meta programming techniques instead of writing a loop. This

2The ability to write proofs accepting arguments (i.e. unnamed templates) is currently
under development.

Meta programming on the proof level 31

template induction(Integer --> Boolean #fun, Integer #arg

block(Integer #p) #base,

block(Integer #p) #induct)

{
templatename(#name) :

block

{
static #name(Integer #n)

{
#n >= 0 => #fun(#n)

select

{
#n = 0 => #fun(#n)

{
#base(#n);

}
#n > 0 => #fun(#n)

{
#n > 0 => #n-1 >= 0 & #n-1 < #n;

#name(#n-1);

#fun(#n-1) & #n-1 >= 0 => #fun(#n)

{
#induct(#n);

}
}

}
}
#name(#arg);

}
}

Figure 10: Template for induction

32 G. Dévai

k >= 0 => p(k)

{
induction(p)

block(Integer #x)

{
p0(#x);

}
block(Integer #x)

{
pNext(#x);

}
}

Figure 11: An inductive proof using the induction template

can result in an extremely large program. The same happens when the pro-
grammer inserts the same instructions at several points in the code instead of
defining a procedure and calling that each time it is needed. Confusing pro-
cedures with syntactically similar meta programming features can also mess
up the code so that it produces erroneous behaviour. Compilers of traditional
programming languages does not complain on these errors or inefficient solu-
tions, because the program is syntactically correct.

After all this, is it safe to use meta programming techniques for proof gen-
eration? Using the techniques presented in this paper carelessly can lead to
erroneous proofs. But all the errors in the proof are reported by the proof
checker, and in that case, there is no program generated that could be com-
piled further to an executable. That is, each time the checker accepts the
proof, the generated program conforms to its specification.

The difference between traditional program development and programming
by proofs is that in the latter case the compiler can check also the behavioural
semantics of our program, not just the syntax and static semantics. This
additional check makes meta programming a safe tool for proof development.

In addition to this, our meta programming features are high level language
constructs. As we have already discussed in section 2.4.1, instantiation of
templates is not text-based, but uses the syntax tree provided by the parser.
Visibility of arguments, variables and parameter variables are also correctly
handled in conformation with the block structure of the proof. Compile time
conditions use techniques usually applied in high-level declarative languages.

Meta programming on the proof level 33

These features help avoiding the common pitfalls of low level meta program-
ming and makes construction of sound proofs easier.

4 Conclusions and future work

We can conclude, that meta programming techniques are applicable for con-
struction of declarative style proofs. They make the proofs considerably
shorter and easier to understand and to maintain. A great advantage of this
solution is that there is no need to make the proof system complex in order
to provide rules for common proof patterns. Techniques like indirect prov-
ing, induction, or temporal logic patterns like proofs for loops or conditional
branches can be implemented using templates instead of hard-wiring them
into the system core. This improves the reliability of the proof system.

We have also shown that the dangers of meta programming are not a real
risk in case of proof development, as proofs are checked anyway and the errors
are discovered already in compile time.

We have implemented the features described in this paper, except the pos-
sibility of writing unnamed templates (see the footnote in section 2.4.6). The
current implementation is done in C++. We use the system to specify instruc-
tions of imperative programming languages (including more complex ones, like
vector or pointer operations) and to develop verified program code using the
refinement techniques of the system. The library of tactics is not yet compa-
rable with that of leading theorem provers available [3, 13], but the templates
of our language turned out to be useful techniques in building such libraries.

Our plans include further development of the language and to experiment
with refinement techniques not only for imperative programs, but also for
functional ones. We also intend to use our system to specify and to formally
develop DFA-s3 or Petri-nets.

References

[1] M. Muzalewski, An Outline of PC Mizar, Fondation Philippe le Hodey,
Brussels, 1993.

[2] M. Wenzel, F. Wiedijk, A Comparison of Mizar and Isar, Journal of Au-

tomated Reasoning, 29, 3–4 (2002) 389–411.

3Deterministic Finite Automaton

34 G. Dévai

[3] T. Nipkow, L. Paulson, M. Wenzel, Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, LNCS 2283, Springer, 2002.

[4] P. Corbineau, A declarative proof language for the Coq proof assistant,
Types for Proofs and Programs, LNCS 4941., Springer, 2008.

[5] G. Dévai, Programming language elements for correctness proofs, Acta

Cybernetica 18, (2008) 403–425.

[6] J.-R. Abrial, The B-book: assigning programs to meanings, Cambridge

University Press, 1996.

[7] U. Berger, H. Schwichtenberg, Program extraction from classical proofs,
LNCS 960, Springer, (1995) 77–97.

[8] G. Dévai, Z. Csörnyei, Separation logic style reasoning in a refinement
based language, Proceedings of the 7th International Conference on Applied

Informatics, 2007.

[9] G. Dévai, N. Pataki, Towards verified usage of the C++ Standard Tem-
plate Library, Proceedings of the 10th Symposium on Programming Lan-

guages and Software Tools, (2007) 360–371.

[10] Freek Wiedijk, Formal proof sketches, LNCS 3085, Springer, (2004) 378–
393.

[11] B. Beckert, V. Klebanov, Proof reuse for deductive program verification,
Proceedings of Second International Conference on Software Engineering

and Formal Methods, (2004) 77–86.

[12] C. Hunter, P. Robinson, P. Strooper, Flexible Proof Reuse for Software
Verification, LNCS 3116, Springer, (2004) 211–225.

[13] Y. Bertot, P. Castéran, Interactive theorem proving and program devel-
opment. Coq’Art: The calculus of inductive constructions, Texts in Theo-

retical Computer Science, Springer, 2004.

Received: October 1, 2008

