

Malmquist-Takenaka functions on local fields

Ilona Simon

University of Pécs
Institute of Mathematics and Informatics
Pécs, Hungary
email: simoni@gamma.ttk.pte.hu

Abstract. The complex variant of the discrete Malmquist-Takenaka system plays an important role in system identification. We introduce the analogue of these functions on two dyadic local fields using the analogue of the Blaschke-functions on these fields. This results a generalization of the discrete Laguerre system. Properties of these systems, Fourier expansion and summability questions are presented.

1 Introduction

The discrete Laguerre functions and their generalizations, the Malmquist-Takenaka and Kautz systems are often used in control theory to identify the transfer function. Let us recall, that the discrete Laguerre functions $L_n^{(\mathfrak{a})}$ ($\mathfrak{n} \in \mathbb{N}$) contain a complex parameter $\mathfrak{a} \in \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and can be expressed by the Blaschke functions

$$B_{\mathfrak{a}}(z) := \frac{z - \mathfrak{a}}{1 - \bar{\mathfrak{a}}z} \quad (z \in \mathbb{C}, \mathfrak{a} \in \mathbb{D}).$$

The discrete Laguerre functions $L_n^{(\alpha)}$ associated to B_α on $\mathbb C$ are defined by

$$L_k^{(\alpha)}(z) := m_\alpha(z) B_\alpha^k(z), \ \mathrm{where} \ m_\alpha(z) := \frac{\sqrt{1-|\alpha|^2}}{1-\bar{\alpha}z} \quad (z \in \mathbb{C}, k \in \mathbb{Z})$$

2010 Mathematics Subject Classification: 43A25,43A55,11F85,42C10,33C47 Key words and phrases: abstract harmonic analysis, p-adic theory, local fields, orthogonal functions, Fourier series, summability

for $\alpha \in \mathbb{D}$. The boundary of \mathbb{D} is denoted by $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$.

The discrete Malmquist-Takenaka functions $\Psi_n^{(p)}$ on \mathbb{C} are defined by

$$\Psi^{p}_{0}(z) := \frac{\sqrt{1 - |\alpha_{0}|^{2}}}{1 - \bar{\alpha}_{0}z}, \qquad \Psi^{(p)}_{n}(z) := \frac{\sqrt{1 - |\alpha_{n}|^{2}}}{1 - \bar{\alpha}_{n}z} \prod_{i=0}^{n-1} B_{\alpha_{i}}(z), \quad (z \in \mathbb{C}, k \in \mathbb{Z})$$

 $\mathrm{for}\ (\alpha_j\in\mathbb{D}, j\in\mathbb{N})\ \mathrm{and}\ p=(\alpha_0,\alpha_1,\alpha_2,\dots).$

The discrete Malmquist-Takenaka system is orthogonal with respect to the scalar product $\langle F,G\rangle=\frac{1}{2\pi}\int_{-\pi}^{\pi}F(e^{it})\overline{G}(e^{it})$ dt. Note, that using the same parameters $a_j=a$ $(j\in\mathbb{N}),$ the $\Psi_n^{(p)}$ functions give the discrete Laguerre system $(L_n^{(a)},n\in\mathbb{N}).$ For more on these systems see [1].

The analogue of the discrete Laguerre function is constructed in [4] as a composition of the corresponding characters and the Blaschke functions, inspired by the fact, that if $\mathfrak a$ belongs to $\mathbb D$, then $B_{\mathfrak a}$ is a bijection on $\mathbb T$, and $B_{\mathfrak a}$ can be written in the form (see [1])

$$B_{\alpha}(e^{is}) = e^{i\beta_{\alpha}(s)}(s \in \mathbb{R}, \alpha \in \mathbb{D}) \tag{1}$$

with some bijection $\beta_{\alpha}: [-\pi, \pi] \to [-\pi, \pi]$. Obviously $L_k^{(0)}(z) = z^k$ ($k \in \mathbb{Z}$) coincides with the trigonometric system on \mathbb{T} . Thus the discrete Laguerre system except the factor \mathfrak{m}_{α} can be obtained from the trigonometric system by an argument transformation $T(z) = B_{\alpha}(z)(z \in \mathbb{T})$.

We will construct the analogue of the discrete Malmquist-Takenaka functions starting from the generator system of the characters of the dyadic and 2-adic group and using an argument transformation. This is a UDMD product system, thus also a complete orthonormal system, which gives the discrete Laguerre system for identical parameters $a_n = a$ $(n \in \mathbb{N})$. Fourier expansion with respect these systems and summability questions are examined.

2 The Blaschke functions on the 2-series and on the 2-adic field

We use the basic notations, definitions and the description of the algebraic structure of the handbooks [3] and [2]. Denote by

$$\mathbb{B} := \left\{\alpha = (\alpha^{(j)}, j \in \mathbb{Z}) \mid \alpha^{(j)} \in \{0,1\} \text{ and } \lim_{j \to -\infty} \alpha^{(j)} = 0\right\}$$

the set of bytes, and by $\mathbb{A} := \{0,1\}$ the set of bits. The numbers $\mathfrak{a}^{(j)}$ are called the additive digits of $\mathfrak{a} \in \mathbb{B}$. Also use the notion: $\mathbb{P} := \mathbb{N} \setminus \{0\}$. The zero element of \mathbb{B} is $\theta := (x^{(j)} \in \mathbb{Z})$ where $x^{(j)} = 0$ for $j \in \mathbb{Z}$, that is, $\theta = (\cdots, 0, 0, 0, \cdots)$. The order of a byte $x \in \mathbb{B}$ is defined in the following way: For $x \neq \theta$ let $\pi(x) := \mathfrak{n}$ if and only if $x^{(\mathfrak{n})} = 1$, and $x^{(j)} = 0$ for all $j < \mathfrak{n}$, furthermore set $\pi(\theta) = +\infty$. The norm of a byte x is introduced by the following rule: $\|x\| := 2^{-\pi(x)}$ for $x \in \mathbb{B} \setminus \{\theta\}$, and $\|\theta\| := 0$.

The sets $I_n(x) := \{y \in \mathbb{B} : y^{(k)} = x^{(k)} \text{ for } k < n \}$ are the intervals in \mathbb{B} of rank $n \in \mathbb{Z}$ and center $x \in \mathbb{B}$. Consider $\mathbb{I}_n := \{x \in \mathbb{B} : \|x\| \leqq 2^{-n}\} \ (n \in \mathbb{Z})$. $\mathbb{I} := \mathbb{I}_0$ can be identified with the set of sequences $\mathbb{I} = \{\alpha = (\alpha^{(j)}, j \in \mathbb{N}) | \ \alpha^{(j)} \in \mathbb{A}\}$ via the map $(\dots, 0, 0, \alpha^{(0)}, \alpha^{(1)}, \dots) \to (\alpha^{(0)}, \alpha^{(1)}, \dots)$.

The 2-series (or logical) sum $\mathfrak{a} \stackrel{\circ}{+} \mathfrak{b}$ and product $\mathfrak{a} \circ \mathfrak{b}$ of elements $\mathfrak{a},\mathfrak{b} \in \mathbb{B}$ are defined by

$$\begin{split} \alpha \overset{\circ}{+} b &:= \left(\alpha^{(n)} + b^{(n)} \pmod{2}, \ n \in \mathbb{Z}\right) \\ \alpha \circ b &:= (c^{(n)}, n \in \mathbb{Z}), \ \mathrm{where} \ c^{(n)} &:= \sum_{k \in \mathbb{Z}} \alpha^{(k)} b^{(n-k)} \pmod{2} \ (n \in \mathbb{Z}). \end{split}$$

 $\begin{array}{l} (\mathbb{B}, \overset{\circ}{+}, \circ) \text{ is a non-Archimedian normed field, i.e. } \|\alpha \overset{\circ}{+} b\| \leqq \max\{\|\alpha\|, \|b\|\}, \\ |\alpha \circ b\| = \|\alpha\| \|b\| \quad (\alpha, b \in \mathbb{B}). \text{ The multiplicative identity of } \mathbb{B} \text{ is the element } e := (\delta_{n0}, n \in \mathbb{N}). \end{array}$

The (logical) Blaschke function with parameter $a \in \mathbb{I}_1$ is defined in [4] by:

$$B_{\mathfrak{a}}(x) := \frac{x \stackrel{\circ}{+} \mathfrak{a}}{\stackrel{\circ}{e +} \mathfrak{a} \circ x} \quad (x \in \mathbb{I}).$$

Set $y = B_a(x)$ with $x \in \mathbb{I}$, $a \in \mathbb{I}_1$. Then we have $y = x \stackrel{\circ}{+} a \stackrel{\circ}{+} y \circ a \circ x$ and consequently for the n-th digit of y we get

$$\begin{cases} y^{(n)} = 0, \text{ for } n < 0, \\ y^{(n)} = x^{(n)} + a^{(n)} + (y \circ a \circ x)^{(n)} \pmod{2}, \text{ for } n \geqq 0. \end{cases}$$

This is recursion for the bits of $y = B_a(x)$, since to compute $(y \circ a \circ x)^{(n)}$ we only need $y^{(k)}$ -s with k < n. The bits $y^{(n)} = (B_a(x))^{(n)}$ can be written in the form

$$y^{(n)} = x^{(n)} + a^{(n)} + f_n(x^{(0)}, \cdots, x^{(n-1)}) \pmod{2}$$
 (2)

where the functions $f_n : \mathbb{A}^n \to \mathbb{A}$ $(n = 1, 2, \cdots)$ depend only on the bits of a. The definition of the logical Blaschke functions and details about the recursion are considered in [4].

The 2-adic (or arithmetic) sum a + b of elements $a = (a^{(n)}, n \in \mathbb{Z}), b = (b^{(n)}, n \in \mathbb{Z}) \in \mathbb{B}$ is defined by $a + b := (s_n, n \in \mathbb{Z})$, where the bits $q_n, s_n \in \mathbb{A}$ ($n \in \mathbb{Z}$) are obtained recursively as follows: $q_n = s_n = 0$ for $n < m := \min\{\pi(a), \pi(b)\}$, and

$$a^{(n)} + b^{(n)} + q_{n-1} = 2q_n + s_n$$
 for $n \ge m$.

The 2-adic (or arithmetic) product of $a,b \in \mathbb{B}$ is $a \bullet b := (\mathfrak{p}_n, n \in \mathbb{Z})$, where the sequences $\mathfrak{q}_n \in \mathbb{N}$ and $\mathfrak{p}_n \in \mathbb{A}$ $(n \in \mathbb{Z})$ are defined recursively by $\mathfrak{q}_n = \mathfrak{p}_n = 0$ $(n < m := \pi(a) + \pi(b))$ and

$$\sum_{j=-\infty}^{\infty} a^{(j)} b^{(n-j)} + q_{n-1} = 2q_n + p_n \qquad (n \ge m).$$

Note, that $\pi(a \bullet b) = \pi(a) + \pi(b)$ and $(\mathbb{B}, \stackrel{\bullet}{+}, \bullet)$ is a non-Archimedian normed field

For $x \in \mathbb{I}$ and $a \in \mathbb{I}_1$ we have that $e - a \cdot x \neq \theta$, thus $e - a \cdot x$ has a multiplicative inverse in \mathbb{B} . The (arithmetical) Blaschke function with parameter $a \in \mathbb{I}_1$ is defined in [4] by:

$$B_{\mathfrak{a}}(x) := (x - \mathfrak{a}) \bullet (e - \mathfrak{a} \bullet x)^{-1} = \frac{x - \mathfrak{a}}{e - \mathfrak{a} \bullet x} \qquad (x \in \mathbb{I}). \tag{3}$$

The Blaschke function $B_{\alpha}: \mathbb{I} \to \mathbb{I}$ is a bijection for any $\alpha \in \mathbb{I}_1$ on \mathbb{I} and on \mathbb{S}_0 . The maps B_{α} ($\alpha \in \mathbb{I}_1$) form a commutative group with respect to the function composition. The byte $y = B_{\alpha}(x)$ can be given in a recursive form (2) like on the logical field. The definition of the arithmetical Blaschke functions and details about the recursion are considered in [4].

Consider the Haar-measure μ on the fields $(\mathbb{B}, \stackrel{\bullet}{+}, \bullet)$ and $(\mathbb{B}, \stackrel{\circ}{+}, \circ)$. More details on the algebraic structure can be found in [3].

In the following we will present UDMD systems, which are considered in [3]. Denote with \mathcal{A} the σ -algebra generated by the intervals $I_n(\mathfrak{a})$ ($\mathfrak{a} \in \mathbb{I}, \mathfrak{n} \in \mathbb{N}$). Let $\lambda(I_n(\mathfrak{a})) := 2^{-n}$ be the measure of $I_n(\mathfrak{a})$. Extending this measure to \mathcal{A} we get a probability measure space $(\mathbb{I}, \mathcal{A}, \lambda)$. Let \mathcal{A}_n be the sub- σ -algebra of

 \mathcal{A} generated by the intervals $I_n(\mathfrak{a})$ ($\mathfrak{a} \in \mathbb{I}$). Let $L(\mathcal{A}_n)$ denote the set of \mathcal{A}_n -measurable functions on \mathbb{I} . The conditional expectation of an $f \in L^1(\mathbb{I})$ with respect to \mathcal{A}_n is of the form

$$(\mathcal{E}_n f)(x) := \frac{1}{\lambda(I_n(x))} \int_{I_n(x)} f d\lambda.$$

A sequence of functions $(f_n, n \in \mathbb{N})$ is called a dyadic martingale if each f_n is \mathcal{A}_n -measurable and

$$(\mathcal{E}_n f_{n+1}) = f_n \qquad (n \in \mathbb{N}).$$

The sequence of martingale differences of f_n $(n \in \mathbb{N})$ is the sequence

$$\phi_n := f_{n+1} - f_n \qquad (n \in \mathbb{N}).$$

We notice that every dyadic martingale difference sequence has the form $\phi_n = r_n g_n \ (n \in \mathbb{N})$ where $(g_n, n \in \mathbb{N})$ is a sequence of functions such that each g_n is \mathcal{A}_n -measurable and $(r_n, n \in \mathbb{N})$ denotes the Rademacher system on \mathbb{I} :

$$r_n(x) := (-1)^{x^{(n)}} \ (n \in \mathbb{N}).$$

The martingale difference sequence $(\phi_n, n \in \mathbb{N})$ is called a unitary dyadic martingale difference sequence or a UDMD sequence if $|\phi_n(x)| = 1$ $(n \in \mathbb{N})$. Thus $(\phi_n, n \in \mathbb{N})$ is a UDMD sequence if and only if

$$\phi_n = r_n g_n, \ g_n \in L(\mathcal{A}_n), \ |g_n| = 1 \ (n \in \mathbb{N}). \tag{4}$$

A system $\psi=(\psi_m,m\in\mathbb{N})$ is said to be a UDMD product system if it is a product system generated by a UDMD system, i.e., there is a UDMD system $(\phi_n,n\in\mathbb{N})$ such that for each $m\in\mathbb{N}$, with binary expansion is given by $m=\sum_{i=0}^\infty m^{(i)}2^j \ (m^{(j)}\in\mathbb{A},j\in\mathbb{N})$, the function ψ_m satisfies

$$\psi_{\mathfrak{m}} = \prod_{i=0}^{\infty} \varphi_{i}^{\mathfrak{m}^{(i)}} \qquad (\mathfrak{m} \in \mathbb{N}).$$

The author constructed orthonormal systems in this way inspired by martingales in [4, 5].

3 The discrete Malmquist-Takenaka functions on the 2-series and 2-adic field

Let us define the discrete Malmquist-Takenaka functions with parameters $\mathfrak{p}=(\mathfrak{a}_0,\mathfrak{a}_1,\ldots)$ $(\mathfrak{a}_i\in\mathbb{I}_1,i\in\mathbb{N})$ on the 2-series field $(\mathbb{I},\overset{\circ}{+},\circ)$ in the following way: the system $\left(\Psi_k^{(\mathfrak{p})},k\in\mathbb{N}\right)$ is the product system generated by

$$(\Phi_{n,a_n} := r_n \circ B_{a_n}, n \in \mathbb{N}) \tag{5}$$

That is, $\Psi_k^{(p)}(x) = \prod_{j=0}^\infty \left[r_j(B_{\alpha_j}(x)) \right]^{k^{(j)}}$.

Theorem 1 For every $a_n \in \mathbb{I}_1$ $(n \in \mathbb{N})$ the functions $\Phi_{n,a_n}(x) = r_n(B_{a_n}(x))$ $(x \in \mathbb{I}, n \in \mathbb{N})$ form a UDMD system on $(\mathbb{I}, \stackrel{\circ}{+}, \circ)$.

Proof. Using recursion form (2) of $y = B_{a_n}(x)$ we get

$$\Phi_{n,a_n}(x) = (-1)^{y^{(n)}} = (-1)^{x^{(n)}} (-1)^{(a_n)^{(n)} + f_n(x^{(0)}, \dots, x^{(n-1)})} = r_n(x)g_n(x)$$

where $g_n(x) := (-1)^{(a_n)^{(n)} + f_n(x^{(0)}, \dots, x^{(n-1)})}$ is \mathcal{A}_n -measurable, $g_n \in L(\mathcal{A}_n)$. Clearly, $|g_n(x)| = 1$ $(x \in \mathbb{I})$, thus $(\Phi_{n,a_n}, n \in \mathbb{N})$ is a UDMD sequence.

Corollary 1 The logical Malmquist-Takenaka system, that is the product system $(\Psi_k^{(p)}, k \in \mathbb{N})$ generated by the system $(\Phi_{n,a_n}, n \in \mathbb{N})$ is a UDMD product system, consequently it is a complete orthonormal system on $(\mathbb{I}, \stackrel{\circ}{+}, \circ)$.

We consider $\varepsilon(t) := \exp(2\pi i t)$ $(t \in \mathbb{R})$. We will use the functions $(\nu_{2^n}(x), n \in \mathbb{N})$:

$$\nu_{2^{n}}(x) := \varepsilon \left(\frac{x^{(n)}}{2} + \frac{x^{(n-1)}}{2^{2}} + \dots + \frac{x^{(0)}}{2^{n+1}} \right) \qquad (x \in \mathbb{I}, n \in \mathbb{N}), \tag{6}$$

known as a generator system of the characters of the group $(\mathbb{I},\stackrel{\bullet}{+})$. Let us define the arithmetical Malmquist-Takenaka functions with parameters $\mathfrak{p}=(\mathfrak{a}_0,\mathfrak{a}_1,\ldots)$ $(\mathfrak{a}_n\in\mathbb{I}_1,n\in\mathbb{N})$ on the 2-adic field $(\mathbb{I},\stackrel{\bullet}{+},\bullet)$ in the following way: the system $\left(\Psi_k^{(\mathfrak{p})},k\in\mathbb{N}\right)$ is now the product system generated by

$$(\Phi_{n,a_n} := \nu_{2^n} \circ B_{a_n}, n \in \mathbb{N}) \tag{7}$$

That is, $\Psi_n^{(p)}(x)=\prod_{j=0}^\infty \left[\nu_{2^j}(B_{\alpha_j}(x))\right]^{n^{(j)}}.(x\in(\mathbb{I},\stackrel{\bullet}{+}, \bullet))$

Theorem 2 For every $a_n \in \mathbb{I}_1$ $(n \in \mathbb{N})$ the functions $\Phi_{n,a_n}(x) = \nu_{2^n}(B_{a_n}(x))$ $(x \in \mathbb{I}, n \in \mathbb{N})$ form a UDMD system on $(\mathbb{I}, +, \bullet)$.

The proof is similar like on the 2-series field.

Corollary 2 The arithmetical Malmquist-Takenaka functions, the product system $(\Psi_k^{(p)}, k \in \mathbb{N})$ generated by the system $(\Phi_{n,a_n}, n \in \mathbb{N})$ is a UDMD product system, consequently it is a complete orthonormal system on $(\mathbb{I}, +, \bullet)$.

In the following we consider the corresponding Malmquist-Takenaka-systems on both fields $(\mathbb{I}, +, \bullet)$ and $(\mathbb{I}, +, \circ)$.

4 Summability

The Malmquist-Takenaka-Fourier coefficients of an $f\in L^q(\mathbb{I})\ (1\leq q\leq \infty)$ are defined by

$$\widehat{\mathsf{f}^{(p)}}(\mathsf{n}) := \int_{\mathbb{T}} \mathsf{f}(\mathsf{x}) \Psi^{(p)}_\mathsf{n}(\mathsf{x}) \mathsf{d} \mu(\mathsf{x}). \quad (\mathsf{n} \in \mathbb{N})$$

The n-th partial sums of the Malmquist-Takenaka-Fourier series $S^{(p)}f$ is now

$$S_n^{(p)} f := \sum_{k=0}^{n-1} \widehat{f^{(p)}}(k) \Psi_k^{(p)} \ (n \in \mathbb{N}^*).$$

Furthermore, the Malmquist-Takenaka-Cesaro (or (MT-C,1)) means of $S^{(p)}f$ are defined by $\sigma_0^{(p)}f:=0$ and

$$\sigma_n^{(p)} f := \frac{1}{n} \sum_{k=1}^n S_k^{(p)} f, \qquad (n \in \mathbb{N}^*)$$

for $p = (a_0, a_1, ...)$ with $a_n \in \mathbb{I}_1$ $(n \in \mathbb{N})$, $f \in L^q(\mathbb{I})$.

Properties of UDMD product systems are valid for the Malmquist-Takenaka system $(\Psi_k^{(p)}, k \in \mathbb{N})$, thus applying the general theorem on convergence presented in [3], holds the following:

Theorem 3 For any $f \in L^q(\mathbb{I})$ $(1 \le q < \infty)$ we have

$$\begin{split} &\lim_{n\to\infty}\|S_{2^n}^{(p)}f-f\|_q=0,\quad \text{and}\\ &\lim_{n\to\infty}\|\sigma_n^{(p)}f-f\|_q=0. \end{split} \tag{8}$$

Moreover, (8) holds for $q = \infty$ when f is continuous on \mathbb{I} .

Clearly, a.e. convergence holds for $S_{2^n}^{(p)}f$ for any integrable f and for $S_m^{(p)}f$, $(m \in \mathbb{P})$ if $f \in L^q(\mathbb{I})$ and q > 1. This is a consequence of a general theorem in [3], pp.101-105 or [2]. This holds for q = 1 with identical parameters $a_n = a \in \mathbb{I}_1$ $(n \in \mathbb{N})$, that is, in the case of the discrete Laguerre system $L_n^{(a)}(x)$. See [4].

We will see in the next proposition, that the Malmquist-Takenaka system is a generalization of the discrete Laguerre system on both fields defined in [4] as follows.

The functions corresponding the trigonometric system mentioned in the Introduction, are the characters of the corresponding groups. Namely, the Walsh-Paley functions $(w_k, k \in \mathbb{N})$ defined by

$$w_{k}(x) = \prod_{n=0}^{\infty} r_{n}(x)^{k^{(n)}} = (-1)^{\sum_{j=0}^{+\infty} k^{(j)} \chi^{(j)}} (x \in \mathbb{I}, k = \sum_{j=0}^{\infty} k^{(j)} 2^{j} \in \mathbb{N} (k^{(j)} \in \mathbb{A})),$$
(9)

are the characters of $(\mathbb{I}, \stackrel{\circ}{+})$. In particular, the Walsh-Paley functions form a product system generated by the Rademacher system $(r_n, n \in \mathbb{N})$.

And the functions $(\nu_k, k \in \mathbb{N})$ are the characters of $(\mathbb{I}, +)$ defined as the product system generated by the functions $(\nu_{2^n}(x), n \in \mathbb{N})$ defined in (6).

The discrete Laguerre functions associated to B_{α} are defined in the following way:

$$L_k^{(\mathfrak{a})}(x) := w_k(B_{\mathfrak{a}}(x)) \ (k \in \mathbb{N}, x \in (\mathbb{I}, \overset{\circ}{+}))$$

and

$$L_k^{(\alpha)}(x) := \nu_k(B_\alpha(x)) \ (k \in \mathbb{N}, x \in (\mathbb{I}, \overset{\bullet}{+}))$$

for any $a \in \mathbb{I}_1$.

Proposition 1 Using identical parameters $a_n = a \in \mathbb{I}_1$ $(n \in \mathbb{N})$ the Malmquist-Takenaka functions $\Psi_n^{(p)}(x)$ give the discrete Laguerre system $L_n^{(a)}(x)$ on both fields $(\mathbb{I}, +, \bullet)$ and $(\mathbb{I}, +, \circ)$.

Clearly, with the special identical parameters $a_n = \theta$ ($n \in \mathbb{N}$) this method gives the characters of the corresponding field. Thus the Malmquist-Takenaka system is also a generalization of the character system of the corresponding additive group.

References

- [1] J. Bokor, F. Schipp, Approximate linear H^{∞} identification in Laguerre and Kautz basis, *Automatica J. IFAC*, **34** (1998), 463–468.
- [2] F. Schipp, W. R. Wade, P. Simon, J. Pál, Walsh Series, An Introduction to Dyadic Harmonic Analysis, Adam Hilger Ltd., Bristol and New York, (1990).
- [3] F. Schipp, W. R. Wade, *Transforms on normed fields*, Leaflets in Mathematics, Janus Pannonius University Pécs, 1995.
- [4] I. Simon, Discrete Laguerre functions on the dyadic fields, Pure Math. Appl. (PU.M.A.), 17 (2006), 459–468.
- [5] I. Simon, The characters of the Blaschke-group, Stud. Univ. Babes-Bolyai Math., **54** (2009), 149–160.

Received: July 23, 2010