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email: vrakoc@sbb.rs (corresponding author)

Abstract. In 1968, M. G. Maia [16] generalized Banach’s fixed point
theorem for a set X endowed with two metrics. In 2014, Ansari [2] in-
troduced the concept of C-class functions and generalized many fixed
point theorems in the literature. In this paper, we prove some Maia’s
type fixed point results via C-class function in the setting of two met-
rics space endowed with a binary relation. Our results, generalized and
extended many existing fixed point theorems, for generalized contractive
and quasi-contractive mappings, in a metric space endowed with binary
relation.

1 Introduction and preliminaries

The classical Banach contraction mapping is one of the most useful in metric
fixed point theory. It is very popular tool for solving existence and uniqueness
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problems in many different fields of mathematics. Due to its importance and
applications potential, the Banach Contraction Principle has been investigated
heavily by many authors. Consequently, a number of generalizations of this
celebrated principle have appeared in the literature. For some recent significant
book from fixed point theory, we refer to ([1, 7, 11, 14, 17, 24, 26]).

We first recall Maia’s fixed point theorem:

Theorem 1 [16] Let (X, d, δ) be a bimetric space and T : X→ X. Assume that
the following conditions are satisfied:

(i) d(x, y) ≤ δ(x, y) for all x, y ∈ X,

(ii) X is complete with respect to d,

(iii) T is continuous with respect to d,

(iv) there exists a constant α ∈ [0, 1) such that

δ(Tx, Ty) ≤ αδ(x, y), for all x, y ∈ X.

Then T has a unique fixed point in X.

Singh [28] proved that the above theorem is true under much less restricted
condition, that is we do not need the continuity of T with respect to d on X,
but only the continuity at a point. Many papers deal with fixed point theorems
of Maia type and with applications (see eg.,[6, 5, 19, 23, 22, 25, 20, 30]) and
references therein). In these direction, in 2019. Petrusel and Rus [20] consider
the following: Let X be nonempty set endowed with a metric d, an order
relation � and an operator f : X→ X, which satisfies two main assumptions:

(1) f is generalized monotone with respect to �;
(2) f is a (generalized) contraction with respect to d on a certain subset Y

of X× X.
Then, they apply these results to study some problems related to integral

and differential equations, and several open questions are discussed. We point
out that Turinici [30] have showed that the Ran-Reurings [21] fixed point
theorem is but a particular case of Maia’s.

In 2012. Samet and Turinici [27] introduced the notion of contractive map-
ping in a metric space endowed with amorphous binary relation. They showed
a theorem subsumes many known results in the literature. For further study
about contractive mappings in a metric space endowed with binary relation,
we refer the reader to [8] [27] and [31].
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In the sequel let (X, d, δ) be a bimetric space and T : X→ X be a mapping.
Denote by

Fix(T) = {x∗ ∈ X : x∗ = Tx∗}.

the set of all fixed points of T in X.
Let R be a binary relation on X and let S be the symmetric binary relation

defined by

x, y ∈ X, xSy ⇐⇒ xRy or yRx.

For x0 ∈ X we define the sequence {xn} by

xn = Txn−1 for all n ∈ N.

Definition 1 Let (X, δ) be metric space and n ∈ N∪{0}. For A ⊂ X we denote
by diam(A) := sup{δ(a, b) : a, b ∈ A} the diameter of A. For each x0 ∈ X the
orbit sets of T at x0 are defined as following

On(x0) = {x0, x1, ..., xn} and O∞(x0) = {x0, x1, , x2, ...}.

We say that (X, δ) is T -orbitally complete iff every δ-Cauchy sequence from
O∞(x) for some x ∈ X converges in X.

Definition 2 [27] A subset D of X is called R-directed if for every x, y ∈ D,
there exists z ∈ X such that zRx and zRy.

Definition 3 A mapping T : X→ X is called R-preserving mapping if

x, y ∈ X, xRy =⇒ TxRTy.

Next, we define the set Φ of functions ϕ : [0,+∞)→ [0,+∞) satisfying:

(I) ϕ is nondecreasing,

(II)

∞∑
n=1

ϕn(t) <∞ for each t > 0, where ϕn is the n-th iterate of ϕ.

Remark 1 Let ϕ ∈ Φ. We have ϕ(t) < t for all t > 0.

Remark 2 Let ϕ ∈ Φ. We have limn→∞ϕn(t) = 0 for all t > 0.
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Definition 4 [15] Assume that for T : X→ X there exists ϕ ∈ Φ such that

δ(Tx, Ty) ≤ ϕ(Mδ(x, y)) for all x, y ∈ X with xSy.

A mapping T is called a generalized contractive with respect to δ if

Mδ(x, y) = max

{
δ(x, y),

δ(x, Tx) + δ(y, Ty)

2
,
δ(x, Ty) + δ(Tx, y)

2

}
.

A mapping T is called a generalized quasi-contractive (see [10, 11, 17]) with
respect to δ if

Mδ(x, y) = max{δ(x, y), δ(x, Tx), δ(y, Ty), δ(x, Ty), δ(Tx, y)}.

Lemma 1 (Lemma 1 of [15]) Let (X, δ) be a metric space, and R a transitive
binary relation over X. Assume that for T : X → X, the following conditions
are satisfied:

(b1) there exists x0 ∈ X such that x0RTx0,

(b2) T is R-preserving mapping,

(b3) T is generalized quasi-contractive with respect to δ.

Then,

δ(xi, xj) ≤ ϕ(diam(On(x0))),

for all i; j ∈ {1, ..., n}.

In 2014 the concept of C-class functions were introduced by A.H.Ansari
[2]. By using this concept we can generalize many fixed point theorems in
the literature. C-class functions have been studied by many authors.and some
fixed point results with applications (see eg., [3, 12, 18, 4, 13]).

Definition 5 [2] A mapping F : [0,∞)2 → R is called C-class function if it is
continuous and satisfies following axioms:

(1) F(s, t) ≤ s,
(2) F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Note for some F we have that F(0, 0) = 0.
We denote C-class functions as C.
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Example 1 [2] The following functions F : [0,∞)2 → R are elements of C,
for all s, t ∈ [0,∞):

(1) F(s, t) = s− t, F(s, t) = s⇒ t = 0;

(2) F(s, t) = ms, 0<m<1, F(s, t) = s⇒ s = 0;

(3) F(s, t) = s
(1+t)r , r ∈ (0,∞), F(s, t) = s ⇒ s = 0 or t = 0;

(4) F(s, t) = log(t+ as)/(1+ t), a > 1, F(s, t) = s ⇒ s = 0 or t = 0;

(5) F(s, t) = ln(1+ as)/2, a > e, F(s, 1) = s ⇒ s = 0;

(6) F(s, t) = (s+ l)(1/(1+t)
r) − l, l > 1, r ∈ (0,∞), F(s, t) = s ⇒ t = 0;

(7) F(s, t) = s logt+a a, a > 1, F(s, t) = s⇒ s = 0 or t = 0;

(8) F(s, t) = s− ( 1+s2+s)(
t
1+t), F(s, t) = s⇒ t = 0;

(9) F(s, t) = sβ(s), β : [0,∞) → [0, 1), and is continuous, F(s, t) = s ⇒
s = 0;

(10) F(s, t) = s− t
k+t , F(s, t) = s⇒ t = 0;

(11) F(s, t) = s − ϕ(s), F(s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0⇔ t = 0;

(12) F(s, t) = sh(s, t), F(s, t) = s⇒ s = 0, here h : [0,∞)× [0,∞)→ [0,∞)
is a continuous function such that h(t, s) < 1 for all t, s > 0;

(13) F(s, t) = s− ( 2+t1+t)t, F(s, t) = s⇒ t = 0;

(14) F(s, t) = n
√

ln(1+ sn), F(s, t) = s⇒ s = 0;

(15) F(s, t) = φ(s), F(s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a upper
semicontinuous function such that φ(0) = 0, and φ(t) < t for t > 0;

(16) F(s, t) = s
(1+s)r , r ∈ (0,∞), F(s, t) = s ⇒ s = 0 ;

(17) F(s, t) = ϑ(s), ϑ : R+ × R+ → R is a generalized Mizoguchi-Takahashi
type function, F(s, t) = s ⇒ s = 0;

(18) F(s, t) = s
Γ(1/2)

∫∞
0

e−x
√
x+t

dx, where Γ is the Euler Gamma function.

Denote by Ψ the family of continuous and monotone nondecreasing functions
ψ : [0,∞) → [0,∞) such that ψ(t) = 0 if and only if t = 0 and by Φu the
family of continuous functions ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 for all
t > 0.



232 A. H. Ansari, M. S. Khan, V. Rakočević

Definition 6 Assume that for T : X → X there exists ϕ ∈ Φu, ψ ∈ Ψ, F ∈ C
such that

ψ(δ(Tx, Ty)) ≤ F(ψ(Mδ(x, y)), ϕ(Mδ(x, y))), for all x, y ∈ X with xSy. (1)

A mapping T is called a generalized Fψϕ-contractive with respect to δ, if

Mδ(x, y) = max

{
δ(x, y),

δ(x, Tx) + δ(y, Ty)

2
,
δ(x, Ty) + δ(Tx, y)

2

}
.

A mapping T is called a generalized quasi-Fψϕ-contractive with respect to δ,
if

Mδ(x, y) = max{δ(x, y), δ(x, Tx), δ(y, Ty), δ(x, Ty), δ(Tx, y)}.

Lemma 2 [9] Suppose (X, δ) be a metric space. Let {xn} be a sequence in X
such that δ(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence then
there exist an ε > 0 and sequences of positive integers {m(k)} and {n(k)} with
m(k) > n(k) > k such that δ(xm(k), xn(k)) ≥ ε, δ(xm(k)−1, xn(k)) < ε and

(i) limk→∞ δ(xm(k)−1, xn(k)+1) = ε,

(ii) limk→∞ δ(xm(k), xn(k)) = ε,

(iii) limk→∞ δ(xm(k)−1, xn(k)) = ε,

(iv) limk→∞ δ(xm(k)+1, xn(k)+1) = ε,

(v) limk→∞ δ(xm(k), xn(k)−1) = ε.

Definition 7 We say (ψ,φ, F) is monotone if x ≤ y =⇒ F(ψ(x), φ(x)) ≤
F(ψ(y), φ(y)).

Example 2 Let F(s, t) = s− t, φ(x) =
√
x

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2, if x > 1.

Then (ψ,φ, F) is monotone.

Example 3 Let F(s, t) = s− t, φ(x) = x2

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2, if x > 1.

Then (ψ,φ, F) is not monotone.
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In this paper we prove some Maia type fixed point results via C-class func-
tion in the setting of two metrics space endowed with a binary relation. Our
results generalized and extended many existing fixed point theorems for gener-
alized contractive and quasi-contractive mappings in a metric space endowed
with binary relation.

2 Main results

Our first main result is the following theorem.

Theorem 2 Let (X, d, δ) be a bimetric space and T : X→ X. Assume that the
following conditions are satisfied:

(A1) d(x, y) ≤ δ(x, y) for all x, y ∈ X,

(A2) (X, d) is T -orbitally complete,

(A3) T is continuous with respect to d,

(A4) T is S-preserving,

(A5) there exists x0 ∈ X with x0STx0,

(A6) T is a generalized Fψϕ-contractive with respect to δ.

Then T has a fixed point x∗ in X. Moreover, if in addition Fix(T) is S-directed
then x∗ is the unique fixed point of T in X.

Proof. From (A5), there exists x0 ∈ X with x0STx0 and from (A4) T is S-
preserving, we get

xnSTxn for all n ∈ N. (2)

If xn = Txn then xn is a fixed point of T . Suppose that xn 6= Txn for all n.
Since (2) is satisfied for all n ≥ 1, by applying the contraction condition (A6),
and note that ψ is nondecreasing, we have

ψ(δ(xn, xn+1) = ψ(δ(xn, Txn)) ≤ F(ψ(Mδ(xn−1, xn)), ϕ(Mδ(xn−1, xn))
< ψ(Mδ(xn−1, xn))
≤ ψ(max{δ(xn−1, xn), δ(xn, xn+1)}).

Now, we will show that {xn} is a Cauchy sequence in (X, δ). If for some n ≥ 1
we have δ(xn−1, xn) ≤ δ(xn, xn+1), then we get

ψ(δ(xn, xn+1)) = F(ψ(δ(xn, xn+1)), ϕ(δ(xn, xn+1))).
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Thus, ψ(δ(xn, xn+1)) = 0 or ϕ(δ(xn, xn+1)) = 0, and therefore δ(xn, xn+1) = 0
which is contradiction. We get δ(xn−1, xn) > δ(xn, xn+1) and

ψ(δ(xn, xn+1)) = F(ψ(δ(xn−1, xn)), ϕ(δ(xn−1, xn))). (3)

Hence {δ(xn, xn+1)} is a non-increasing sequence of positive real numbers. Thus
there exist L ≥ 0 such that

lim
n→∞ δ(xn, xn+1) = L. (4)

Taking the limit in equation (3) as n → ∞ and using (4) and the properties
of F and ϕ, we have

ψ(L) ≤ F(ψ(L), ϕ(L)).

Thus ψ(L) = 0 or ϕ(L) = 0, and so L = 0. Therefore

lim
n→∞ δ(xn, xn+1) = 0. (5)

Let us show that {xn} is a Cauchy sequence. Suppose to the contrary that {xn}
is not a Cauchy sequence.

By Lemma 2 there exists ε >0 for which we can find subsequences {xn(k)}

and {xm(k)} of {xn} with n(k) > m(k) > k such that

δ(xm(k), xn(k)+1), δ(xm(k), xn(k)), δ(xm(k)−1, xn(k)+1), δ(xm(k)−1, xn(k))→ ε.

Now from (1) we have

ψ(δ(xm(k), xn(k))) = ψ(δ(Txm(k)−1, Txn(k)−1))

≤ F(ψ(Mδ(xm(k)−1, xn(k)−1)), ϕ(Mδ(xm(k)−1, xn(k)−1)))
(6)

where

Mδ(xm(k)−1, xn(k)−1) = max

{
δ(xm(k)−1, xn(k)−1),

δ(xm(k)−1, Txm(k)−1) + δ(xn(k)−1, Txn(k)−1)

2
,

δ(xm(k)−1, Txn(k)−1) + δ(Txm(k)−1, xn(k)−1)

2

}
.

From above and (6), as k→∞ we have

ψ(ε) ≤ F(ψ(ε), ϕ(ε)).
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Thus ψ(ε) = 0 or ϕ(ε) = 0and therefore ε = 0 which is contradiction. Conse-
quently the sequence {xn} is δ-Cauchy, so by (A1), {xn} is d-Cauchy too. Since
from (A2), we have that the metric space (X, d) is T -orbitally complete, then
there exists x∗ ∈ X such that

lim
n→∞ δ(xn, x∗) = 0. (7)

From (A3), we have that T is continuous with respect to d, and, so it follows
that x∗ = lim

n→∞ Txn = T( lim
n→∞ xn) = Tx∗, that is, x∗ is a fixed point of T .

Next suppose that Fix(T) is S-directed, and we will show that x∗ is the
unique fixed point of T in X. Suppose that y∗ ∈ Fix(T) is another fixed point
of T . Then, there exists z0 ∈ X such that z0Sx∗ and z0Sy∗. Define the sequence
{zn} in X by zn+1 = Tzn for all n ≥ 0. Since T is S-preserving, for all n ≥ 0 we
have znSx∗ and znSy∗. Applying (A6), for all n ≥ 0 and note δ(zn, zn+1) ≤
δ(zn, x

∗) + δ(zn+1, x
∗) we get

ψ(δ(zn+1, x
∗)) = ψ(δ(Tzn, Tx

∗)) = F(ψ(Mδ(zn, x
∗)), ϕ(Mδ(zn, x

∗)))

≤ F
(
ψ

(
max

{
δ(zn, x

∗),
δ(zn, Tzn) + δ(x

∗, Tx∗)

2
,
δ(zn, Tx

∗) + δ(x∗, Tzn)

2

})
,

ϕ

(
max

{
δ(zn, x

∗),
δ(zn, Tzn) + δ(x

∗, Tx∗)

2
,
δ(zn, Tx

∗) + δ(x∗, Tzn)

2

}))
= F

(
ψ

(
max

{
δ(zn, x

∗),
δ(zn, zn+1) + δ(x

∗, x∗)

2
,
δ(zn, x

∗) + δ(x∗, zn+1)

2

})
,

ϕ

(
max

{
δ(zn, x

∗),
δ(zn, zn+1) + δ(x

∗, x∗)

2
,
δ(zn, x

∗) + δ(x∗, zn+1)

2

}))
≤ F(ψ(max{δ(zn, x

∗), δ(zn+1, x
∗)}), ϕ (max{δ(zn, x

∗), δ(zn+1, x
∗)})).

Now we will show that lim
n→∞ δ(zn, x∗) = 0. Without the loss of generality sup-

pose that δ(zn, x
∗) > 0 for all n. Assume that for some n we have δ(zn, x

∗) ≤
δ(x∗, zn+1). Hence we get

ψ(δ(zn+1, x
∗)) = F(ψ(δ(zn+1, x

∗)), ϕ(δ(zn+1, x
∗))).

Hence ψ(δ(zn+1, x
∗)) = 0 or ϕ(δ(zn+1, x

∗)) = 0 and therefore δ(zn+1, x
∗) = 0,

which is a contradiction. Then, for all n ≥ 0 we have δ(zn, x
∗) > δ(x∗, zn+1).

Consequently, for all n we obtain

ψ(δ(zn+1, x
∗)) = F(ψ(δ(zn, x

∗)), ϕ(δ(zn, x
∗))) ≤ ψ(δ(zn, x∗)) (8)
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that is, {δ(zn, x
∗)} is a non-increasing sequence of positive real numbers. Thus

there exist L ≥ 0 such that

lim
n→∞ δ(zn, x∗) = L. (9)

Taking the limit in equation (8) as n → ∞ and using (9) and the properties
of F and ϕ we have

ψ(L) ≤ F(ψ(L), ϕ(L)).

Thus ψ(L) = 0 or ϕ(L) = 0 and therefore L = 0. Thus

lim
n→∞ δ(zn, x∗) = 0.

Similarly we can prove that lim
n→∞ δ(zn, y∗) = 0. Hence x∗ = y∗. �

To prove our next main result we need the following lemmas which will be
used in the sequel.

Lemma 3 Let n ∈ N, (X, δ) be a metric space, and R a transitive binary re-
lation over X Assume that for T : X→ X the following conditions are satisfied:

(a1) there exists x0 ∈ X such that x0RTx0,

(a2) T is R-preserving mapping,

(a3) T is generalized quasi-Fϕ-contractive with respect to δ and (ψ,ϕ, F) is
monotone.

Then
ψ(δ(xi, xj)) ≤ F(ψ(diam(On(x0))), ϕ(diam(On(x0)))), (10)

for all i, j ∈ {1, . . . , n}.
Proof. From (a1) there exists x0 ∈ X such that x0Rx1. Hence by (a2) we get
xkRxk+1 for all k. Since R is transitive, then

xi−1Rxj−1 for all 1 ≤ i < j ≤ n. (11)

We note that xi−1, xi, xj−1, xj ∈ On(x0). Now using (a3) and (11) we get

ψ(δ(Txi−1, Txj−1)) ≤ F(ψ(Mδ(xi−1, xj−1)), ϕ(Mδ(xi−1, xj−1)))

= F(ψ(max{δ(xi−1, xj−1), δ(xi−1, Txi−1),
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δ(xj−1, Txj−1), δ(xi−1, Txj−1), δ(Txi−1, xj−1)}),

ϕ(max{δ(xi−1, xj−1), δ(xi−1, Txi−1),

δ(xj−1, Txj−1), δ(xi−1, Txj−1), δ(Txi−1, xj−1)})),

which implies (10). �

Now we are ready to state our second main result.

Theorem 3 Let (X, d, δ) be a bimetric space, R a transitive binary relation
over X and T : X→ X. Assume that the following conditions are satisfied:

(B1) d(x, y) ≤ δ(x, y) for all x, y ∈ X,

(B2) (X, d) is T -orbitally complete,

(B3) T is continuous with respect to d,

(B4) T is R-preserving,

(B5) there exists x0 ∈ X with x0RTx0,

(B6) T is a generalized quasi-Fψϕ-contractive with respect to δ and (ψ,ϕ, F)
is monotone.

Then T has a fixed point x∗ in X. Moreover if in addition R is symmetric
and Fix(T) is R-directed then x∗ is the unique fixed point of T in X.

Proof. Let x0 ∈ X and x0RTx0. Define a sequence {xn} in X by xn+1 = Txn, for
all n ≥ 0. Since T is an R-preserving, then xnRxn+1 for all n. Let n and m,
n < m be any positive integers. From (B6) and Lemma 3 it follows

ψ(δ(Tnx0, T
mx0)) = ψ(δ(TT

n−1x0, T
m−n+1Tn−1x0))

F(ψ(diam(Om−n+1(T
n−1x0))), ϕ(diam(Om−n+1(T

n−1x0)))).

From Remark 1 there exists an integer k1, 1 ≤ k1 ≤ m− n+ 1 such that

diam(Om−n+1(T
n−1x0))) = δ(T

n−1x0, T
kTn−1x0).

Using Lemma 3 again we get combining the above inequalities

ψ(δ(Tnx0, T
mx0)) = ψ(δ(TT

n−1x0, T
m−n+1Tn−1x0))

F(ψ(diam(Om−n+1(T
n−1x0))), ϕ(diam(Om−n+1(T

n−1x0))))

ψ(diam(Om−n+1(T
n−1x0))) = ψ(δ(T

n−1x0, T
kTn−1x0))
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≤ F(ψ(diam(Ok1+1(T
n−2x0))), ϕ(diam(Ok1+1(T

n−2x0))))

≤ F(ψ(diam(Om−n+2(T
n−2x0))), ϕ(diam(Om−n+2(T

n−2x0)))).

Continue this process we obtain

ψ(δ(Tnx0, T
mx0)) = ψ(δ(TT

n−1x0, T
m−n+1Tn−1x0))

F(ψ(diam(Om−n+1(T
n−1x0))), ϕ(diam(Om−n+1(T

n−1x0))))

ψ(diam(Om−n+1(T
n−1x0))) = ψ(δ(T

n−1x0, T
kTn−1x0))

≤ F(ψ(diam(Ok1+1(T
n−2x0))), ϕ(diam(Ok1+1(T

n−2x0))))

≤ F(ψ(diam(Om−n+2(T
n−2x0))), ϕ(diam(Om−n+2(T

n−2x0))))

...

≤ F(ψ(diam(Om(x0))), ϕ(diam(Om(x0))))

≤ F(ψ(δ(Tn−1x0, Tm−1x0)), ϕ(δ(T
n−1x0, T

m−1x0))).

Hence

ψ(ε) ≤ F(ψ(ε), ϕ(ε)).
Thus ψ(ε) = 0 or ϕ(ε) = 0, that is ε = 0. It follows that the sequence {Tnx0}

is a δ-Cauchy sequence. Therefore by (B1) the sequence {Tnx0} is a d-Cauchy
sequence too. Since the metric space (X, d) is T -orbitally complete we deduce
that the sequence {Tnx0} converges to some x∗ in X. From (B3) T is continuous
with respect to d, so x∗ = lim

n→∞ Txn = T( lim
n→∞ xn) = Tx∗ and x∗ is a fixed point

of T .
Now suppose that Fix(T) is R-directed. We claim that the fixed point is

unique. Let x∗ and y∗ be two fixed points of T . Suppose that x∗ 6= y∗. Since
Fix(T) is R-directed, then there exists z ∈ X such that zRx∗ and zRy∗. By
the transitivity of R we have x∗Ry∗. Then we apply the contraction condition
(B6) and get

ψ(δ(x∗, y∗)) = ψ(δ(Tx∗, Ty∗))

≤ F(ψ(max{δ(x∗, y∗), δ(x∗, Tx∗), δ(y∗, Ty∗), δ(x∗, Ty∗), δ(Tx∗, y∗)}),

ϕ(max{δ(x∗, y∗), δ(x∗, Tx∗), δ(y∗, Ty∗), δ(x∗, Ty∗), δ(Tx∗, y∗)})).

Hence
ψ(δ(x∗, y∗)) ≤ F(ψ(δ(x∗, y∗)), ϕ(δ(x∗, y∗)))

and ψ(δ(x∗, y∗)) = 0 or ϕ(δ(x∗, y∗)) = 0. Therefore δ(x∗, y∗) = 0 and x∗ = y∗.
�
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The following results are an immediate consequences of Theorems 2 and 3.

Corollary 1 Theorem 1 is a particular case of Theorem 2.

Corollary 2 Let (X,�) be a partially ordered set and (X, d, δ) be a bimetric
space and T : X→ X. Assume that the following conditions are satisfied:

(C1) d(x, y) ≤ δ(x, y), for all x, y ∈ X,

(C2) X is complete with respect to d,

(C3) T is continuous with respect to d,

(C4) T is monotone nondecreasing mapping,

(C5) there exists x0 ∈ X with x0 � Tx0,

(C6) there exists ϕ ∈ Φ such that

ψ(δ(Tx, Ty)) ≤ ψ(Mδ(x, y)) −ϕ(Mδ(x, y))), for all x, y in X.

Then T has a unique fixed point in X.

Corollary 3 Let (X,�) be a partially ordered set and (X, d) be a complete
metric space. Assume that for T : X→ X, the following conditions are satisfied:

(D1) T is continuous;

(D2) T is monotone nondecreasing mapping;

(D3) there exists x0 ∈ X with x0 � Tx0;

(D4) there exists a constant α ∈ [0, 1) such that

ψ(δ(Tx, Ty)) ≤ αψ(Mδ(x, y)), for all x, y in X.

Then T has a unique fixed point in X.

Corollary 4 Let (X, d) be a complete metric space and T : X→ X be contin-
uous mapping. Suppose there exists ϕ ∈ Φ such that

ψ(δ(Tx, Ty)) ≤ ψ(Mδ(x, y))

1+ϕ(Mδ(x, y))
, for all x, y in X.

Then T has a unique fixed point in X.
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Remark 3
(1) If in Theorem 2 we put F(s, t) = mt, 0 ≤ m < 1, ψ(t) = φ(t) = t, then

we obtain Maia’s Theorem 1.

(2) If we use the same notations as in (1), and if we define relation S by
xSy if and only if αd(xTx) ≤ d(x, y) implies d(Tx, Ty) ≤ βd(x, y), where
α ∈ (0, 1/2), β ∈ (0, 1), then when T is continuous Theorem 2 implies Theorem
2.2 in [29].

(3) Our results, when we put F(s, t) = mt, 0 ≤ m < 1, imply results from
[15].

(4) Using Theorem of Singh [28] we note that our results are true under
much less restricted condition, that is we do not need the continuity of T with
respect to d on X, but only the continuity at a point.

3 Application to Cauchy problem

In this section, we study the Cauchy problem for a class of nonlinear differential
equations, using the results obtained in the previous section. We just state the
application part and we point out that the proof is on the lines of M.S. Khan
at all [15]. So we omit it.

Example 4 Consider the nonlinear differential equation

ψ(x) =

{
x́(t) = f(t, x(t)) t ∈ [a, b],

x(t0) = x0
(12)

where a, b, t0 ∈ R and f : [a, b] × R → R. Let X = C([a, b],R) denotes the
space of all continuous R-valued functions on [a, b] with the metric d given by

d(u, v) = sup
t∈[a,b]

|f(u(t), v(t))|, for all u, v ∈ X

It is well known that (X, d) is a complete metric space. We define an order
relation � on X by

u � v⇔ u(t) ≤ v(t), for all t ∈ [a, b]

Consider the mapping T : C([a, b],R)→ C([a, b],R) defined by

Tx(t) = x0 +

∫ t
t0

f(s, x(s))ds ; t ∈ [a, b]
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for all x ∈ C([a, b],R). Clearly, x∗ ∈ C([a, b],R) is a solution of (12) if and
only if x∗ is a fixed point of T .
Furthermore, we consider the following assumptions:

(H1) f : [a, b]× R→ R is continuous;

(H2) f : [a, b]× R→ R is nondecreasing with respect to the second variable;

(H3) |f(t, x(t)) − f(t, y(t))| ≤ L|x(t) − y(t)| for all x(t) ≤ y(t) and t ∈ [a, b].

It is worth noting that condition (H3) is weaker compared to those used by
Maia for studying Cauchy problem in [16], that is, f is L-Lipschitzien function
on the whole space.

By the proof of Theorem 6 in [15] we have

δ(x, y) ≤ exp(L(b− a))d(x, y)

and for λ =
√
1− exp(L(a− b)), then we have

d(Tnx, Tny) ≤ exp(L(b− a))d(x, y) for all x � y. (13)

We deduce by using Corollary 3 (see also [15]) that T has a unique fixed point
x∗ ∈ C([a, b],R).
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