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Lower bounds for finding the maximum

and minimum elements with k lies
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Abstract. In this paper we deal with the problem of finding the smallest
and the largest elements of a totally ordered set of size n using pairwise
comparisons if k of the comparisons might be erroneous where k is a
fixed constant. We prove that at least (k+ 1.5)n+Θ(k) comparisons are
needed in the worst case thus disproving the conjecture that (k+1+ε)n
comparisons are enough.

1 Introduction

Search problems with lies have been studied in many different settings (see
surveys Deppe [2] and Pelc [5]). In this paper we deal with the model when a
fixed number, k, of the answers may be false, which we call lies. There are also
several models depending on what kind of questions are allowed as well, the
most famous being the Rényi-Ulam game. In this paper we deal with the case
when we are given n different elements and we can use pairwise comparisons
to decide which element is bigger from the two.

The problem of finding the maximum (or the minimum) element with k lies
was first solved by Ravikumar et al. [8]. They have shown that (k + 1)n − 1

comparisons are necessary and sufficient. The topic of this paper is finding
the maximum and the minimum. If all answers have to be correct then the
minimum number of comparisons needed is d3n

2 e − 2 (see [6]). Aigner in [1]
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proved that (k + Θ(
√
k))n + Θ(k) comparisons are always sufficient∗. It was

proved by Gerbner et al. [3] that if k = 1, then 87n
32 + Θ(1) comparisons are

necessary and sufficient. We also made the conjecture that for general k, there
is an algorithm using only (k + 1 + ck)n comparisons where ck tends to 0
as k tends to infinity. Hoffmann et al. [4] showed that (k + 1 + C)n + O(k3)

comparisons are sufficient for some absolute constant C (whose value is less
than 10 but no attempts to optimize it were made yet). Until now the best
lower bound on ck was Ω((1 +

√
2)−k) by Aigner [1]. The main result of this

paper is the following theorem.

Theorem 1 At least d(k+ 1.5)(n− 1) − 0.5e = (k+1.5)n+Θ(k) comparisons
are needed in the worst case to find the largest and the smallest element if there
might be k erroneous answers.

This bound is tight for k = 0 (see Theorem 4) but not for k = 1 as shown in
[3] and using a slightly more involved argument than the one presented here
it is easy to see that the bound can be simply improved for any k ≥ 1. The
reason why the theorem is presented in this “weak” form is that it already
disproves the conjecture and the argument is simply, yet gives a perfectly
matching bound for k = 0. To find a stronger version would involve a thor-
ough case analysis, similar to the one in [3] and improving the constant a bit
is uninteresting at the moment. It would be more interesting to study the
behavior of ck in future works. Now we know that 1.5 ≤ ck ≤ C ∼ 10. But
is ck monotonously increasing as k grows? This would imply, of course, the
existence of a limit, which is likely to exist.

The rest of the paper is organized as follows. In Section 2 we develop a
method to increase the lower bound by k for many search problems and give
proofs using it for some known results. In Section 3 we prove our main result,
Theorem 1.

2 k more questions

In this section, as a warm-up, we prove a very general result that holds for
all search problems and generally gives an additional constant to the lower
bounds that are proved using a consistent adversary.

Claim 2 Suppose we have a search problem where we want to determine the
value of some function f using (not necessarily yes-no) questions from a family

∗He also obtained asymptotically tight results in another model.
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of allowed questions. The answers are given by an adversary who can lie at
most k times. Suppose that we have already asked some questions and the
answers we got are consistent, i.e. it is possible that none of them is a lie. If
we do not yet know the value of f, then we need at least k+1 further questions
to determine it.

This claim has an immediate, quite weak corollary.

Corollary 3 If there is a search problem as in Claim 2 with a non-trivial f,
then we need at least 2k+ 1 questions to determine f.

Although it is not too standard, we first give a proof of the Corollary, as it
is a simplified version of the proof of the Claim.

Proof. Take two possible elements of the universe, x and y, for which f(x) 6=
f(y). The adversary can answer the first k questions according to x and the
next k questions according to y, thus after 2k questions both are still possible.

�

Proof of Claim 2. Suppose we have already asked some consistent questions,
i.e. there is an x such that they are all true for x. However, if we do not yet
know f, there is a y for which at most k of these questions would be false, such
that f(x) 6= f(y). We can answer the next k questions according to y. �

To show the power of this simple claim, let us prove the following theorem.

Theorem 4 (Ravikumar et al. [8]) To find the maximum among n ele-
ments using comparisons of which k might be incorrect, we need (k+ 1)n− 1

comparisons in the worst case.

Proof. The upper bound follows from using any tournament scheme and com-
paring any two elements until one of them is bigger than the other k+1 times.
This is (k+ 1)(n− 1) plus the possible k lies that might prolong our search.

To prove the lower bound, answer the first (k + 1)(n − 1) − 1 questions
consistently. Now we have an element that was always bigger, and another
that was the smaller one at most k times, thus the conditions of Claim 2 are
satisfied, so we need k+ 1 more questions. �
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3 Proof of Theorem 1

We start with defining some standard terminology. Define the actual compar-
ison graph as a directed graph whose vertices are the elements and it has an
edge for every comparison between the compared elements, directed from the
bigger towards the smaller. We say that the comparison graph is consistent
if there is no directed cycle in the comparison graph. In this case any vertex
with in-degree at most k can still be the maximum element and any vertex
with out-degree at most k can still be the minimum element. We also denote
the comparison graph after the first t questions by Gt. So if there are no lies
among the first t answers, then they are necessarily consistent and there is no
directed cycle in Gt.

Now we prove Theorem 1, which states that d(k+ 1.5)(n− 1) − 0.5e com-
parisons are needed to find the largest and the smallest element if there might
be k erroneous answers.

Proof of Theorem 1. We have to give an adversary argument, i.e., for every
possible comparing algorithm, we have to give answers such that it is not
possible to determine with less than (k+1.5)(n−2)+1 questions the maximum
and the minimum. Our answers will be always consistent, i.e., that there will
be no directed cycle in the comparison graph.

First, we suppose that n is even and the (undirected) edges of Gn/2 (the
graph of the first n/2 questions) form a perfect matching, i.e., every element
is compared exactly once during the first n/2 comparisons. Denote the set of
elements that were bigger in their first comparison by TOP and the ones that
were smaller by BOTTOM. Whenever in the future an element from TOP is
compared to an element from BOTTOM, we always answer that the one from
TOP is bigger. This way the problem reduces to finding the maximum from
n/2 elements and the minimum from n/2 other elements. Every vertex but
one from TOP must have in-degree at least k + 1 at the end and, similarly,
every vertex but one from BOTTOM must have out-degree at least k+1 at the
end. Therefore after n/2 + 2(k + 1)(n/2 − 1) − 1 comparisons we still cannot
know both the maximum and the minimum, and the answers we got are all
consistent, thus we need k+1 more questions because of Claim 2. This implies
that at least (k+ 1.5)(n− 1) − 0.5 comparisons are needed in the worst case.

In general, define the sets TOP and BOTTOM to be empty at the beginning
and whenever an element is first compared, put it to TOP if it is bigger and
to BOTTOM if it is smaller than the element it is compared to. Whenever we
compare and element from TOP with an element from BOTTOM, always the
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TOP one will be bigger, so the maximum will be in TOP and the minimum
in BOTTOM. At the end of the algorithm every element must be assigned
to TOP or BOTTOM. Denote the number of elements that are put to TOP
by n1 and the number of the ones that are put to BOTTOM by n2 (so we
have n1 + n2 = n). It is clear that there are at least dn/2e questions that
compare at least one element that was not compared before. Also note, that if
we compare two elements one of which is not in TOP, then the in-degree of the
vertices in TOP will not increase. Therefore we need at least (k + 1)(n1 − 1)

comparisons inside TOP. We similarly need at least (k+1)(n2−1) comparisons
inside BOTTOM. Therefore after dn/2e + (k + 1)(n − 2) − 1 comparisons we
still cannot know both the maximum and the minimum, and the answers we
got are all consistent, thus we can apply Claim 2. This implies that at least
d(k+ 1.5)(n− 1) − 0.5e comparisons are needed in the worst case. Note that
this equals d(k+ 1.5)ne− k− 2, which for k = 0 is d3n/2e, matching the best
algorithm and the result of [6]. �
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