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Abstract. The coin tossing experiment is studied. The length of
the longest head run can be studied by asymptotic theorems [3, 4], by
recursive formulae [7, 11] or by computer simulations [1]. The aim of
the paper is to compare numerically the asymptotic results, the recursive
formulae, and the simulation results. Moreover, we consider also the
longest run (i.e. the longest pure heads or pure tails). We compare the
distribution of the longest head run and that of the longest run.

1 Introduction

The success-run in a sequence of Bernoulli trials has been studied in a large
number of papers. Consider the well-known coin tossing experiment. Let Rn

denote the length of the longest run of consecutive heads (longest head run).
Moreover, let R

′

n denote the longest run of consecutive heads or consecutive
tails (longest run). The asymptotic distribution of Rn is studied in several
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papers (see, e.g. [3, 4, 5, 6, 9, 10]). However, these results give approximations
being accurate for large enough n. Precise values of the distributions can be
calculated by certain recursive formulae (see, e.g. [2, 7, 11]). However it is
difficult and slow to calculate them numerically for large n. The distributions
of Rn and R

′

n can be calculated by simulations, as well. Simulations can be
applied both for small and large values of n, but they offer only approximations
(which can be improved by using large number of repetitions). The comparison
of the asymptotic theorems and the simulations are given in [1].

In this paper we compare numerically the asymptotic theorems, the recursive
formulae and the simulations. As the case of a fair coin is well-known, we focus
on a biased coin (i.e. when P(head) = p 6= 1

2
). Moreover, as our aim is to

obtain precise numerical results, we emphasize the importance of the recursive
formulae. We give detailed proofs for the (known) recursive formulae. Finally,
we remark that most results in the literature concern the longest head run
(i.e. Rn) but in practice people are interested in the longest run (i.e. R

′

n).
Therefore, we concentrate mainly on R

′

n.
The numerical results show that the asymptotic theorems give bad results

for small n (i.e. n ≤ 250) and give practically precise results for large n (i.e.
n ≥ 3000). It can also be seen that for large n the distribution of R

′

n is close
to that of Rn if p > 1

2
(p is the probability of a head).

We present recursion formulae offering the exact distribution of the longest
run of heads (Section 2), and the distribution of the longest whatever run
(Section 3). We consider the situation in which the probability of a head can
take any value in (0, 1).

2 The longest head run

Consider n independent tosses of a (biased) coin, and let Rn denote the length
of the longest head run. The (cumulative) distribution function of Rn is the
following

Fn(x) = P(Rn ≤ x) =

n∑

k=0

C
(k)
n (x)pkqn−k, (1)

where C
(k)
n (x) is the number of strings of length n where exactly k heads

occur, but not more than x heads occur consecutively. We have the following

recursive formula for C
(k)
n (x).
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Proposition 1 (See [11])

C
(k)
n (x) =






x∑

j=0

C
(k−j)

n−1−j(x), if x < k < n,

(

n
k

)

, if 0 ≤ k ≤ x,

0, if x < k = n.

(2)

Proof. If x < k = n, then Ck
n(x) = 0, because in this case all elements (being

more than x) are heads, so there is no series containing less than or equal to
x heads consecutively.

If 0 ≤ k ≤ x, then the value of Ck
n(x) is equal to the binomial coefficient. In

this case there are less than or equal to x heads among n elements and we have
to count those cases when the length of the longest head run is less than or

equal to x. All possible sequences have this property, therefore C
(k)
n (x) =

(

n
k

)

.

If x < k < n, then we need to consider the following. Our series may start
with j = 0, 1, 2, . . . , x heads, then must be one tail, then a sequence follows
containing k− j heads among the remaining n− j−1 objects. In this sequence
the length of the longest head run must be less than or equal to x. The number

of these sequences equals exactly C
(k−j)

n−1−j(x).

H . . . H︸ ︷︷ ︸
j heads

T . . . H . . . T . . .︸ ︷︷ ︸

n− j−1 elements, containing k− j heads,

and the length of the longest head run is less than or equal to x

�

The following table displays the values of Ck
n(3) for n ≤ 8.

8 0

7 0 0

6 0 1 10

5 0 2 12 40

4 0 3 12 31 65

3 1 4 10 20 35 56

2 1 3 6 10 15 21 28

1 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

k�n 0 1 2 3 4 5 6 7 8

The first four rows of the table (k = 0, 1, 2, 3) are part of Pascal’s triangle.
Entries above that four rows are computed by taking diagonal sums of four
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entries from the rows and columns below and to the left. The ’hockey stick’

(printed in boldface in the table) illustrates the case C
(5)

7 (3) = 2+3+4+3 = 12.

Tossing a biased coin 8 times, we now have the probability of obtaining not

more than three consecutive heads: F8(3) = C
(0)

8 (3)p0q8 + C
(1)

8 (3)p1q7 + . . . +

C
(7)

8 (3)p7q1+C
(8)

8 (3)p8q0 = 1q8+8pq7+28p2q6+56p3q5+65p4q4+40p5q3+

10p6q2 + 0 + 0. Knowing the value of p we can calculate the exact result.

The asymptotic behaviour is described by the following theorem.

Theorem 1 (See [5].) Let µ(n) = − log n
log p

, q = 1 − p and let W have a double
exponential distribution (i.e. P(W ≤ t) = exp(− exp(−t))), then uniformly
in t:

P (Rn − µ(qn) ≤ t) − P

([

W

− log p
+ {µ(qn)}

]

− {µ(qn)} ≤ t

)

→ 0 (3)

as n → ∞ where [a] denotes the integer part of a and {a} = a − [a].

We emphasize that the above theorem does not offer a limiting law for
Rn − µ(qn) but it gives a sequence of accompanying laws. The distances
of the laws in the two sequences converge to 0 (as n → ∞). So the above
theorem is a merge theorem. Observe, the periodic property in the sequence
of the accompanying laws.

3 The longest run

For a coin with p 6= 0.5 the (cumulative) distribution function F ′
n(x) is com-

plicated. Let R ′
n denote the length of the longest run in the sequence of n coin

tossings. That is the maximum of the longest head run and the longest tail
run. Let F ′

n be the distribution function of R ′
n.

F ′
n(x) = P(R ′

n ≤ x) =

n∑

k=0

C
(k)

n (x)pkqn−k (4)

where C
(k)

n (x) is the number of strings of length n with exactly k heads, but
not more than x of heads and not more than x of tails occur consecutively (p
is the probability of a head and q = 1 − p). First consider

C
(k)

m+k(x) = Cx+1(m, k). (5)
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Here Ct(m, k) denotes the number of strings of m indistinguishable objects
of type A and k indistinguishable objects of type B in which no t-clump (run
of length t) occurs. (A and B may interpret head and tail, respectively.) We
have the following recursive formulas for Ct(m, k).

Proposition 2 (See [2].)

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) −

t−1∑

i=1

Ct(m − t, k − i) + et(m, k), (6)

where

et(m, k) =






1, if m = 0 and 0 ≤ k < t,

−1, if m = t and 0 ≤ k < t,

0, in all other cases
,

moreover if m = k = 0, then Ct(0, 0) = 1, if m or k is negative, then
Ct(m, k) = 0.

We give a detailed proof which is not contained in [2].

Proof.

Case m = 0.
If 0 ≤ k < t, then Ct(0, k) = 1, because this means that there is only one

type of the elements but the number of objects is less than the length of the
run. So there can not be any t run. As the elements are indistinguishable,
this means only one order. In this case (6) means 1 = 0 − 0 + 1. For example:
C3(0, 2) = C3(−1, 2) + C3(−1, 1) + C3(−1, 0) − [C3(−3, 1) + C3(−3, 0)] + 1 =

0 + 0 + 0 − [0 + 0] + 1 = 1.

If k ≥ t, then Ct(0, k) = 0, because there is only one type of the elements,
but the number of objects is greater or equal to the length of the run. So
there is no one sequence in which there is no t run. For example: C3(0, 4) =

C3(−1, 4) + C3(−1, 3) + C3(−1, 2) − [C3(−3, 3) + C3(−3, 2)] + 0 = 0 + 0 + 0 −

[0 + 0] + 0 = 0.

In case of 0 < m < t our formula (6) is the following.

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) − 0 + 0.

Because this case means the following

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run among them
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The number of these sequences is: Ct(m, −1, k − i). As m < t, so there can
not be t run from A, so we do not need to subtract anything. For example:
C3(2, 2) = C3(1, 2)+C3(1, 1)+C3(1, 0)− [C3(−1, 1)+C3(−1, 0)]+ 0 = 3+ 2+

1 − [0 + 0] + 0 = 6.

The case of m = t and 0 ≤ k < t.

This means that there are less than t of B elements, and the number of A
elements is equal to t. In this case our formula is the following: Ct(m, k) =∑t−1

i=0 Ct(m − 1, k − i) −
∑t−1

i=1 Ct(0, k − i) − 1. The first sum consists of k + 1

positive terms (not t), when the i-th term starts with i of B objects, then
follows A, then follows a sequence consisting of m − 1 A and k − i B and not
containing t run.

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run

But there is a ’bad’ term in each of them, when the m = t A objects are
consecutive. As the second sum consists of k terms, so the above k + 1 bad
cases are subtracted. For example: C3(3, 2) = C3(2, 2) + C3(2, 1) + C3(2, 0) −

[C3(0, 1) + C3(0, 0)] − 1 = 6 + 3 + 1 − [1 + 1] − 1 = 7.

In the case of m = t and k ≥ t, our formula is the following

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) −

t−1∑

i=1

Ct(0, k − i) + 0.

If i = 0 in the first sum, then our possibility is the following

A . . . A . . . B . . .︸ ︷︷ ︸

k of B, (m−1) of A

and there is no t-run

The number of these sequences is Ct(m − 1, k). Seemingly there is one ’bad’
event among them, when in the second part starts with m − 1 A objects and
they make a t run with the very first A object. But the k B objects are in
the end of the second part and they would make a t run, so the above ’bad’
situation is not included in Ct(m − 1, k).

If i = 1, 2, . . . , t − 1, then we have

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run
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The number of these sequences is Ct(m − 1, k − i). But there can be a ’bad’
event in this situation, when all objects A (m = t) are next to each other, so
we have to subtract Ct(0, k − i) (it can be equal to 0 as well). For example:
C3(3, 4) = C3(2, 4) + C3(2, 3) + C3(2, 2) − [C3(0, 3) + C3(0, 2)] + 0 = 6 + 7 +

6 − [0 + 1] + 0 = 18.

Case m > 0 and m > t.
Our sequence may start with i (i is less than t) same type objects (for

example with B) then follows a different one (A) and ends with a string without
t run.

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run

The number of these sequences is:
∑t−1

i=1 Ct(m − 1, k − i).
But among them there may be sequences when there are same A objects

after the individual A, so that together there are t consecutive A objects and
after them there is no t run

B . . . B︸ ︷︷ ︸
i of B

A . . . A︸ ︷︷ ︸
t of A

. . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−t) of A and

there is no t-run

The number of these strings is
∑t−1

i=1 Ct(m− t, k− i), that we have to subtract
from the previous sum. But in these there can be such sequences, when A
object stands after the t run of A, so there can be another t run. The number
of these can be denoted by

∑t−1
i=1 C∗

t(m − t, k − i).
What happens is if i = 0, so our sequence starts with A? In this case the

first object is A and then there is no t run

A . . . A . . . B . . .︸ ︷︷ ︸

k of B, (m−1) of A

and there is no t-run

The number of these strings is Ct(m − 1, k). But in these strings there can be
some sequences starting with t run and then there is no t run

A . . . A︸ ︷︷ ︸
t of A,

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(m−t) of A, (k− i) of B

and there is no t-run

(1 ≤ i ≤ (t−1))



222 I. Fazekas, Zs. Karácsony, Zs. Libor

The numbers of these strings is
∑t−1

i=1 C∗
t(m−t, k−i), that we have to subtract

from the previous sum.
Summarizing our results we get the following

Ct(m, k) =

t−1∑

i=1

Ct(m−1, k−i)−

{
t−1∑

i=1

Ct(m − t, k − i) −

t−1∑

i=1

C∗
t(m − t, k − i)

}

+

+

{

Ct(m − 1, k) −

t−1∑

i=1

C∗
t(m − t, k − i)

}

+ et(m, k).

For example: C3(5, 2) = C3(4, 2)+C3(4, 1)+C3(4, 0)−[C3(2, 1)+C3(2, 0)]+0 =

6 + 1 + 0 − [3 + 1] + 0 = 3.

So recursive formula (6) is satisfied. �

Proposition 3 (See [2].) Let t ≥ 2. Then

Ct(m, k) = Ct(m−1, k)+Ct(m, k−1)−Ct(m−t, k−1)−Ct(m−1, k−t) (7)

+Ct(m − t, k − t) + e∗t(m, k),

where

e∗t(m, k) =






1, if (m, k) = (0, 0) or (m, k) = (t, t),

−1, if (m, k) = (0, t) or (m, k) = (t, 0),

0, in all other cases,

moreover if m = k = 0, then Ct(0, 0) = 1, if m or k is negative, then
Ct(m, k) = 0.

Here we give a proof being different from the one in [2].
Proof. Our sequence may start either with A or B

A . . . A . . . B . . .︸ ︷︷ ︸
(m−1) of A and k of B





The number of these sequences is Ct(m − 1, k).

B . . . A . . . B . . .︸ ︷︷ ︸
m of A and (k−1) of B





The number of these sequences is Ct(m, k − 1).
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We have to subtract the number of those sequences in which after the first A
element there are t − 1 consecutive A’s (so there is a t-clump) and then there
is a different element and there is a string with no t-clump

A . . . A︸ ︷︷ ︸
t of A

B . . . A . . . B . . .︸ ︷︷ ︸
(m−t) of A and (k−1) of B






The number of these sequences is
Ct(m − t, k − 1).

B . . . B︸ ︷︷ ︸
t of B

A . . . A . . . B . . .︸ ︷︷ ︸
(m−1) of A and (k−t) of B






The number of these sequences is
Ct(m − 1, k − t).

But these cases contain the following sequences as well.
The sequence starts with t consecutive A’s followed with t consecutive B’s

and ends with a string containing m − t A and k − t B elements and not
containing t clump but starting with A. The number of these sequences is

C
(A)
t (m−t, k−t). Changing the role of A and B we get again C

(B)
t (m−t, k−t)

sequences. But for the sum of them we have C
(A)
t (m − t, k − t) + C

(B)
t (m −

t, k − t) = Ct(m − t, k − t).

Summarizing the above statements we can get our formula

Ct(m, k) = Ct(m − 1, k) + Ct(m, k − 1)−

− {Ct(m − t, k − 1) + Ct(m − 1, k − t) − Ct(m − t, k − t)} + e∗t(m, k).

�

To see how these work, let us calculate some data in case where t = 3 and
m and k are less than 10:

m�k 0 1 2 3 4 5 6 7 8 9

0 1 1 1 0 0 0 0 0 0 0

1 1 2 3 2 1 0 0 0 0 0

2 1 3 6 7 6 3 1 0 0 0

3 0 2 7 14 18 16 10 4 1 0

4 0 1 6 18 34 45 43 30 15 5

5 0 0 3 16 45 84 113 114 87 50

6 0 0 1 10 43 113 208 285 300 246

7 0 0 0 4 30 114 285 518 720 786

8 0 0 0 1 15 87 300 720 1296 1823

9 0 0 0 0 5 50 246 786 1823 3254
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For example C3(6, 5) = (84 + 45 + 16) − (18 + 14) = 113. (See the numbers
in bold style in the above table.)

The number of terms on the right hand side of (6), increases with t, but in
formula (7), the right hand side has only six terms no matter how large t is.

Let p denote the probability of a head. To find the asymptotic behaviour of
R ′

n, denote by Vn(p) the probability that the longest run in n trials is formed
by heads. Then, by Theorem 5 of [8],

lim
n→∞

Vn(p) =

{
0, if 0 ≤ p < 1/2,

1, if 1/2 < p ≤ 1.
(8)

Therefore, if p > 1/2, the asymptotic behaviour of R ′
n is the same as that of

Rn.
It means that ”the one with lower chances” will not intervene in the for-

mation of the longest run. When n is sufficiently large, the values that
F ′

n(x) are well approximated by the values of Fn(x) calculated for the case
of P(head) = max{p, 1−p}. The longest run will almost certainly be composed
of whichever is more likely between heads and tails.

4 Numerical results, simulations

For numerical calculation we used MATLAB software. The data of the com-
puter are INTEL Core2 Quad Q9550 processor, 4Gb, memory DDR3. The
following table shows some running times

p = 0.6

n repetition running time
3,100 20.000 172.6209 sec
1,000 20.000 15.4258 sec

250 20.000 2.8452 sec
30 20.000 2.0678 sec

We calculated the distributions of Rn and R ′
n. We considered the precise

values obtained by recursion, the asymptotic values offered by asymptotic
theorems, and used simulation with 20.000 repetitions. On the figures below
× denotes the result of the recursion, o belongs to the asymptotic result,
while the histogram shows the relative frequencies calculated by simulation.
If n is small, the recursive algorithm is fast, but it slows down if n increases.
For biased coin we used p = 0.6. We show the results for short trials (n = 30),
medium trials (n = 250), and long trials (n = 1000 and n = 3100). We can
see from the results that the asymptotic theorem does not give good (close to
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the recursive) results for small n. But we should say that if n > 3000, then the
results of the recursion and the results of the asymptotic theorem are almost
the same. As the algorithm is slowing down, we offer to use the asymptotic
theorem instead of the recursion in case of large n. The asymptotic value is a
good approximation if n ≥ 1000. The figures below show that the distribution
of R ′

n is far from that of Rn for small n (n = 30). However, they are practically
the same if n is large.

If p is much larger than 1/2, the distribution of R
′

n is quite close to Rn for
moderate values of n as well. These facts give numerical evidence of (8).

0 5 10 15 2000.050.10.150.20.25
f requency

simulationrecursiveasymptotic

0 5 10 15 20 2500.050.10.150.20.25
f requency

simulationrecursiveasymptotic

Distribution of the longest head run Distribution of the longest run
p = 0.6, n = 30. p = 0.6, n = 30.
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