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Abstract. In this paper, after presenting the results of the generalization
of Pascal triangle (using powers of base numbers), we examine some prop-
erties of the 112-based triangle, most of all regarding to prime numbers.
Additionally, an effective implementation of ECPP method is presented
which enables Magma computer algebra system to prove the primality of
numbers with more than 1000 decimal digits.

1 Generalized Pascal triangles using the powers of
base numbers

As it is a well-known fact, the classic Pascal triangle has served as a model for
various generalizations. Among the broad variety of ideas of generalizations
we can find e.g.: the generalized binomial coefficients of s** order (leading to
generalized Pascal triangles of s order), the multinomial coefficients (leading
to Pascal pyramids and hyperpyramids), special arithmetical sequences (lead-
ing to resulting triangles which we might call as Lucas, Fibonacci, Gaussian,
Catalan, ... triangle) (details in [3]).

One of the present authors has devised, and then worked out in detail and
published such a type of generalization, which is based on the idea of using
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“the powers of the base number”. Referring to our former results (presented in
detail in [7] and [8]; here we don’t repeat/echo the theorems and propositions)
we show here the first few rows of the 112-based triangle (Figure 1), which
will gain outstanding importance below in this paper.

1
1 1 2
1 2 5 4 4
1 3 9 13 18 12 8

1 4 14 28 49 56 56 32 16
1 5 20 50 105 161 210 200 160 &80 32
1 6 27 80 195 366 581 732 780 640 432 192 64

Figure 1: The 112-based triangle

Let us use the notation E;0"" ™" for the k™ element in the n'® row of
apaj ...am—1-based triangle (0 < ag, aj,...,am—1 < 9 are integers). Then we
have the definition rule, as follows:

aoQy...Qm—1 __ apap...am—1 apQy...dm_1
Ek»n = Qm—1 Ekfer],nf] + am_zEkan»Z,nf] + -
aopaj...dm—1 apaq...am_1
FarB 0+ ak )

The indices in the rows and columns run from 0, elements with non-existing
indices are considered to be zero. Applying this general form to the 112-based
triangle (now: m = 3), we get the specific rule

12 Hpli2 12 12
Ern =285 01 B o H B

The historical overview of this special field is presented in [8]. In the last few
years there were published several new results which are related to our topic
(e.g. [2]). Moreover, besides that, up to about 2005, all generalized triangle
sequences of the type ax 4+ by were added to the database On-line Encyclo-
pedia of Integer sequences [11], since that time there have been several new
applications, too, based on sequences appearing in our triangles. However, e.g.
the sequences based on the general abc-based triangles are still not widely
known.

Recalling the basic properties of generalized triangles—most of all in con-
nection with powering the base number aga; ... a1 and with the polynomial
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(apxo+aixy+- -+ am_1Xm_1)™—we can state that we have the “right” to call
these types of triangles as generalized Pascal triangles (details in [8], summary
in [6]).

2 Divisibility of elements and prime numbers

The classic divisibility investigations in Pascal triangle (for binomial coeffi-
cients) are very popular and even spectacular, if the traditional “strict” math-
ematical approach is moved toward coloring and fractals (details in [3]). For
generalized binomial coefficients (with our notation: in triangles with bases
11---1) we have similar results, too, with a remark that in these cases general
proofs are harder, and there are many conjectures, too.

We recall here the beautiful result of Richard C. Bollinger, who proved
for generalized Pascal triangles of p** order that for large n, “almost every”
element in the n*® row is divisible by p (see [3], p. 24). For example, for the
111-based triangle this means divisibility by 3. (We mention that the p** order
Pascal triangle is a triangle with base 11---1, where we have p pieces of 1.)

Now we turn our attention specially to the 112-based triangle, and in the
following we are interested mostly in prime numbers. It is obvious that the
right part of the triangle contains only even numbers. Moreover, if we move
to the right, the powers of 2 are usually (not always) growing as divisors.
Analyzing connections with the multinomial theorem we can conclude that
the left part of the triangle contains mostly (with possible exception of the
first two places) composite numbers, too. Of course, this can be not true for
the 0*" and 15" numbers, which are the same as in the classic Pascal triangle.
Moreover, using induction we can see that the center element in every row is
always odd.

We can pose obviously two (not hard) questions in connection with prime
numbers:

1. Can we find every prime number as an element in our triangle?

2. Can we find every prime number as an element in our triangle in non-
trivial places?

The answer to question 1 is “yes”, as we already saw above (the 15" elements
in every row, however, this is a trivial match). To question 2, we fix first that
primes are worth looking for only in the middle position.

With a computer investigation (using e.g. the Maple program) we can find
6 small primes up to the 100" row (Figure 2).

Extending the examination up to the 1900*" row, we get only one more

]st
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Position (row, column) Prime
2,2 5
3,3 13
8,8 7393
15, 15 65753693
21,21 175669746209
24, 24 9232029156001

Figure 2: Small primes in the 112-based triangle

positive answer, in position (156,156), a 90-digit prime (candidate). So, the
answer to our second question (considering only this triangle) is “no”.

Our possibilities are extended rapidly, if we look up not only pure prime
numbers, but even decompositions. So now we modify our question 2 as “can
we find every prime number as a factor of any element in our triangle?” (Exam-
ining only non-trivial places, so, positions 0 and 1 are in every row excluded.)

We see immediately that every one-digit prime occurs as a factor at least
once up to the 4" row. Here 2 and 5 are triangle elements themselves; 3 is a
factor of 9, 7 is a factor of 14.

Continuing with an easy computer examination for two-digit primes we find
all but 4 up to the 12t row. For the rest of the numbers we get the following
first occurrences (in number-row form): 79-14, 71-15, 59-17 and, surprisingly
41-27.

Now, we turn our attention to 3-digit primes. Here we need a much larger
triangle-part. Let’s choose, say, a 100-row triangle in an easy-factorized form.
With a small Maple program on a normal table-PC, we can generate the
necessary data in a few minutes. (Easy factorization is very important here,
otherwise, with full factorization the generation could take an extremely long
time...) The output of the program in txt form will be approximately 1.15
MBytes.

From the 143 3-digit primes we find 105 up to 40*" row. For the remaining
38 numbers, 18 numbers are situated in rows 41 — 50, 11 additional primes in
rows 51 —60, and 2 (823 and 827) in rows 61 —70. The still missing “hardest”
3-digit primes finally give the following first occurrences (in number — row
form): 479 — 74, 499 — 74, 677 — 76, 719 — 77, 859 — 72, 937 — 98 and 947 — 73.
To the contrary, the “easiest” 3-digit primes are 103, 191 and 409 in the 7"
rOw.

With this we give up the claim “to find all of the primes as divisors”.
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Our next investigation focuses on very large prime factors (more accurately:
prime candidates).

Computer investigations suggest that the largest prime factors in a given row
occur very likely in the center position or very close to that place. Of course,
this is not an absolute rule, but since our goal is “only” to find very large prime
(candidate) factors, we can limit the investigation to the center element. (This
has a significant importance to achieving: go as “deep” relatively quickly in
the triangle as possible.)

Moreover, the center element carries special properties compared with other
elements. Recalling Richard C. Bollinger’s result above, we can set up a similar
interesting conjecture:

For large n, the center element in the ™ row “almost surely” will be divis-
ible by 5 and 7 (but surely not by 2 and usually not by 3).

So, with a relatively simple Maple program we set out to the easy-factorization
of the center element up to the 1900*" row. On a normal table-PC, the execu-
tion time is approximately 11 hours, with an output file in txt form roughly
110 KBytes.

Analyzing the output we can deduce that prime divisors here follow the
Knuth-observation [9], too: we usually find few small factors some of which are
repetitive; composite (not decomposable with the ’easy’ option) large factors
are common, pure large prime factors are however rare or extremely rare.

Position (row, column) Digits of the prime candidate

1726, 1726 1002
1793, 1793 1028
1794, 1794 1030

Figure 3: Large “pure” prime factors (candidates)—112-based triangle, center
position

Considering only the primes (prime candidates) with digits more than 1000
we get 3 matches.

Here the second and third matches are especially interesting, since they can
be considered as a special kind of “twin-primes” (candidates) in the triangle.
In general, our chance to find “pure” large prime factors in consecutive rows
is very little...

Here the factorization of element with position 1793, 1793 is as follows:
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1793,1793;4(5) * “(7)% % “(673) = “(65119) = “(1485703) * “(15578887875328
926423851777567602680378792003694589981499750631818308971422277975
902867850432471811687112334064063828539296067422531997963055491323
406425659317001574425151788919713654021679547897110675223861482309
644220358490739245691930715715021145166205571510978302005857149111
239471032734380710285002174983967604232152940389858538629493812650
108566716591594874813194189360195173091031608755605756723631900973
625032697091409833078265261680211635427069757196618031458397872466
034789488450265204214587550269112317436588892430166513888148357222
480962630168478230243146450158020142586939406221546644931686618139
068737541801842683626194613956159330873776421795220707554672321055
658602305273678940456712151943459348907356567358277310497505925970
210070347980231047308886323693790450859256057748541430119354204022
527748661261790305800487349106563678280226712828838174678186252307
070941149885645163684441661612796581751766644659424590726902531393
104098376100305217952214533052008783687240950373043230661705142861
901235736247002277563333)

In [6] we proved the primality of the largest factor of 1726,1726 which
has 1002 decimal digits. That time we used a freeware software developed
by F. Morain. In the remaining part of this paper our goal is to present our
selfmade program which is appropriate to prove the prime property of such
large numbers. Let us denote the 1028 digits long factor of 1793,1793 by n,
and the 1030 digits long factor of 1794,1794 by n;. We investigated n; and
n, with our program, and have found that both of them are really primes.
Moreover, the process of the proof and shematic structure of the evidence will
be presented, too.

3 Atkin’s primality test

We described the theoretical foundations of the elliptic curve primality proving
in [6]. Unfortunately, most computer algebra systems include just probability
primality test, so we can not use them to reach our purposes. Although the
Magma system (described below) is able to carry out primality proving with
ECPP (Elliptic Curve Primality Proving), we did not get any result even after
two days running for n,. Thus we have developed an own primality proving
program presented in the next section.

According to the notation of [6] let us denote an elliptic curve over Z/nZ
by En. The first step in the basic ECPP algorithm is choosing randomly an
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E.,. elliptic curve, the second one is counting |E,|, the order of E,. The latter
action is very time-consuming, so we had to find an improved version of ECPP.
Finally we have implemented an algorithm suggested by A. O. L. Atkin. A
specification of this method can be found in [1]. Lenstra and Lenstra published
a heuristic running time analysis of Atkin’s elliptic curve primality proving
algorithm in [10]. They conjectured that with fast arithmetic methods the
running time of ECPP can be reduced to O(In**¢(n)).

Atkin brilliant idea was founding an appropriate m order in advance and
then constructing E, for this m avoiding the order-counting. Moreover, we
get simultaneously two elliptic curves increasing the chance of the successful
running of the test. m order has to be chosen from the algebraic integer of an
imaginary quadratic field Q(v/D). An appropriate D, so-called fundamental
discriminant, has some properties: D = 0 (mod 4), or D = 1 (mod 4), for
every k(> 1) D/k? is not a fundamental discriminant, D < —7 and (Dn) =1,
where (D|n) is the Jacobi symbol.

The function NEXTD() gives a value D which meets the above mentioned
requirements. A given D value is suitable if there exist such x,y € Z for which

4n = (2x +yD)? —y*D. (1)

In that case we get two possible orders: m =|v + 1|2, where

D++vD

vV=x+Y 3

If (1) is valid, then we can compute an xo root of the Hilbert polynomial
(mod n). The function HILBERT(n, D) returns with a root of the appropriate
Hilbert polynomial. Then we get two elliptic curves with order m = |v + 172,
The rest of the algorithm works as we described in [6].

PrROOF(E,, m, )

P «— RANDOMPOINT(E,,)
if f- P is not defined
then return COMPOSITE
iff-P=0
then goto 1
if mP #£ O
then return NO
return YES

0 g T W
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Here symbol O means the “point infinitely far” e.g. the unit of the Abelian
group. The function PROOF() has three input values: E, m, f, where E;, is
an elliptic curve with order m, m = f - s, the factorization of f is known and
s is probably prime. The output value COMPOSITE means that n is surely
composite. If the output is NO, then n is composite or we have to choose the
other elliptic curve. In case YES the next recursion step follows. In the following
we present the pseudocode of the Atkin’s test.

ATKIN-PRIMALITY-TEST(N)

D « NEexTD()

w « (D++vD)/2

if Ix,yeZ:4n=(2x+yD)* —y’D
then v« x +yw
else goto 1

m e v+ 1)

if m =f-s, where s “probably prime” and s > (y/n + 1)2
then goto 12

me |v— 1P

if m = f-s can not be produced so that s is “probably prime”

and s > (Yn+1)°

O© 00 O Tk Wi

—
o

11 then goto 1

12 x¢ « HILBERT(n, D)

13 ¢ « arbitrary integer for which (¢/n) = —1

14 k < arbitrary integer for which k = xo/(1728 — x¢) (mod n)
15 En —{(x,y) | y? =x3 + 3kx + 2k}

16 if PrROOF(En, m,f) = COMPOSITE

17 then return COMPOSITE

18 else if PROOF(En, m, f) = YES

19 then goto 23

20 E. — {(x,y) | y*> = x> + 3kc?x + 2kc3)

21 if PrROOF(En, m, f) = COMPOSITE or PROOF(En, m, ) = NO
22 then return COMPOSITE

23 if s surely prime

24 then return PRIME

25 else ATKIN-PRIMALITY-TEST(S)
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4 Magma Computer Algebra System

Magma [5] is a large software system specialized in high-performance com-
putations in number theory, group theory, geometry, combinatorics and other
branches of algebra. It was launched at the First Magma Conference on Com-
putational Algebra held at Queen Mary and Westfield College, London, August
1993. It contains a large body of intrinsic functions (implemented in C lan-
guage), but also allows the user to implement functions on top of this, making
use of the Pascal-like user language and the programming environment that
is provided.

4.1 Primality tests in Magma

Magma has several built-in functions for primality testing purposes.
IsProbablyPrime(n: parameter) : RngIntElt +— BoolElt

The function returns TRUE if and only if n is a probable prime. This function
uses the Miller-Rabin test; setting the optional integer parameter Bases to
some value B, the Miller-Rabin test will use B bases while testing composite-
ness. The default value is 20. This function will never declare a prime number
composite, but with very small probability (much smaller than 278, and by
default less than 107°) it may fail to find a witness for compositeness, and
declare a composite number probably prime.

IsPrime(n: parameter) : RngIntElt +— BoolElt

This function proves primality using ECPP which is of course more time-
consuming. It is possible though to set the optional Boolean parameter Proof
to FALSE; in which case the function uses the probabilistic Miller-Rabin test,
with the default number of bases.

PrimalityCertificate(n: parameter) : RngIntElt — List

This function proves primality and provides a certificate for it using ECPP.
If the number n is proven to be composite or the test fails, a runtime error
occurs.

IsPrimeCertificate(c: parameter) : List — BoolElt

To verify primality from a given certificate ¢ this function is used. This re-
turns the result of the verification by default, a more detailed outcome can
be obtained by setting the optional Boolean parameter ShowCertificate to
TRUE.
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The numbers nq and n; were tested with Magma’s own ECPP, using the
intrinsic IsPrime function, and with our ECPP implementation written in
Magma language. We refer to Magma’s ECPP algorithm as Magma-ECPP
and to our implementation as modified-ECPP. Both tests were running in
Magma 2.16 on a machine with 7425 MB RAM and four 2400 MHz Dual-Core
AMD Opteron (TM) Processors.

The Magma-ECPP provided a primality proof for ny in 32763.52 seconds,
but seemed to stuck after the third iteration during the test of n,; the modified-
ECPP provided proof for ny in 5666.96 seconds and for n; in 5153.37 seconds.
As the modified-ECPP is not finished yet, the running time can still be im-
proved.

4.2 The implementation of ECPP algorithm

The ECPP algorithm consists of iteration steps, where the i iteration step
outputs an s; which will be the input of the next iteration step. In one iteration
step an attempt is made to factor order m; of the group of points on a curve
Ei. Curve E; is defined using the input s; 1 and a discriminant of an imaginary
quadratic field, read in from a list.

If the attempt is successful, factor s; is the output; if not, we need to back-
track. A different discriminant in an iteration step results in a different s;.
The possible iteration chains that occur this way, can be represented as paths
in a directed graph G(n). The nodes of G(n) are the s;’s, the root represents
n, the edges are the iteration steps. An edge leads from s; to si;q if there is
an iteration that produces si;1 with input s;. Consider a path successful if
the corresponding iteration-chain starts with input n and ends with input sy,
where s; is a small prime, which can be verified by easy inspection, or trial
division. In the rest of the paper we refer to the s;’s also as nodes.

Magma-ECPP uses a small fixed set of discriminants during the process.
Each iteration goes through this set until it finds a discriminant which pro-
duces a new node. Using a small set of discriminants makes the algorithm
faster, but increases the probability of producing no new node. If no discrim-
inant produces new node in the set it backtracks to the previous node and
retries that with the same set of discriminants but possibly stronger factor-
ization methods to factor the my’s. If backtracking does not produce a new
node, it will try to factor again with more effort; these hard factorizations may
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consume a large amount of time, and the process appears to get stuck in a
seemingly endless loop. This happened during the test of our number n, with
Magma-ECPP.

4.2.1 Modifications

During the iteration steps certain limits are used; for example, the bound
B on the primes found in factoring the mj-s. Imposing a small B decreases
the difference between the size of the si-s and thus may extend the path
down to the small primes. On the other hand, setting a large B significantly
increases the running time needed for factoring. Of course, choosing a more
sophisticated factoring method smoothes the differences in running time, but
the size of B still remains an important factor. Other important limits are
the bound D on the discriminants and the limit S on the prime factors of the
discriminants. Decreasing them leads to speed improvement but to a smaller
set of discriminants, too.

The modified-ECPP uses a huge file which contains a list of fully factored
discriminants up to 10?. During the selection of discriminants useful for the
current input we extract a modular square root of its prime divisors and build
up the square root of the discriminant by multiplication. After using one prime,
the square root is stored, and thus it will be computed only once in an iteration
step. The speed that we gain this way makes it possible to increase limits D,
S in the iterations, which are adjusted to the size of the current input.

The steps can be extended to result in a series of si-s at a time instead of just
a single one: if the iteration step does not stop at the first good discriminant
but will collect several good ones. This way, we can select the input of the
next step from a set of new nodes.

The numbers have individual properties, which makes a difference from the
point of usability. The modified-ECPP predicts the minimal value of D which
is still enough to produce at least one new node for each s; produced by earlier
steps and, building upon this prediction, sets up a priority between them. It
selects the one with the highest priority as input for the next iteration step. If
the step does not provide output the limit D will be increased in order to use
a new set of discriminants next time when the node is selected. The priority
is reevaluated after each step because either there are new nodes or in case
of no output D is increased. This way the possibility of getting stuck is lower
(details can be found in [4]).
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4.3 The proof

On input n, a probable prime, the primality test results in a list, which provides
sufficient data to prove the correctness of the sequence of the steps along the
successful path. If we consider the length of the proof list as #L, the it"
list element, as the proof runs in reverse order, starting from the smallest s;,
corresponds to the #L —1it" step in the sequence and consists of s;, aj, by, Pi,
fi, where sif; = m; and s; is a probable prime, the factorization of fj is known,
y? = x> + a;x + by is an elliptic curve of order m; over Z/si;1Z, and P; is a
point on this curve that satisfies the condition m;P; = 0, fiP; # 0. P; is given
by its two coordinates x; and y;. The correctness proof guarantees recursively
that all s; are genuine primes, and eventually that the input n is prime.

Since the size of the above mentioned list is too large (approximately 809
KB in txt form), the exact details can not be presented in this paper. Instead
of this, we give here only a small part of this file (see in Table 1). The full
text can be downloaded from page: http://compalg.inf.elte.hu/tanszek/
farkasg/proof-tri.txt
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