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Abstract. The bucket recursive tree is a natural multivariate struc-
ture. In this paper, we apply a trivariate generating function approach
for studying of the depth and distance quantities in this tree model with
variable bucket capacities and give a closed formula for the probability
distribution, the expectation and the variance. We show as j→∞, lim-
iting distributions are Gaussian. The results are obtained by presenting
partial differential equations for moment generating functions and solving
them.

1 Introduction

Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. For example, a connected graph is a tree, if and only
if the number of edges equals the number of nodes minus 1 [5]. Furthermore,
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each pair of nodes is connected by a unique path. A rooted tree is a tree
with a countable number of nodes, in which a particular node is distinguished
from the others and called the root node. A recursive tree with n nodes is an
unordered rooted tree, where the nodes are labelled by distinct integers from
{1, 2, 3, ..., n} in such a way that the sequence of labels lying on the unique path
from the root node to any node in the tree are always forming an increasing
sequence. Call a random recursive tree a tree chosen uniformly at random from
the (n− 1)! possible recursive trees on n nodes. A random recursive tree can
also be constructed as follows. The node 1 is distinguished as the root. We
imagine the nodes arriving one by one. For k ≥ 2, node k attaches itself to
a node chosen uniformly at random from 1, 2, ..., k − 1 (for more information
and applications, see [11]) .

Mahmoud and Smythe introduced bucket recursive trees as a generalization
of random recursive trees [10]. In this model the bucket is a node that can hold
up to b ≥ 1 labels. The capacity of a bucket v (c = c(v)) is defined by the num-
ber of its labels. They applied a probabilistic analysis for studying the height
and depth of the largest label in these trees. Kuba and Panholzer analyzed
these trees as a special instance of bucket increasing trees which is a family of
some combinatorial objects [8]. They obtained exact and limiting distribution
results for the parameters depth of a specified label, descendants of a specified
label and degree of a specified label. A (probabilistic) description of random
bucket recursive trees is given by a generalization of the stochastic growth rule
for ordinary random recursive trees (which are the special instance b = 1),
where a tree grows by progressive attraction of increasing integer labels: when
inserting element n+1 into an existing bucket recursive tree containing n ele-
ments (i.e., containing the labels {1, 2, ..., n}) all n existing elements in the tree
compete to attract the element n + 1, where all existing elements have equal
chance to recruit the new element. If the element winning this competition
is contained in a node with less than b elements (an unsaturated bucket or
node), element n + 1 is added to this node, otherwise if the winning element
is contained in a node with already b elements (a saturated bucket or node),
element n+1 is attached to this node as a new bucket containing only the ele-
ment n+1. Starting with a single bucket as root node containing only element
1 leads after n − 1 insertion steps, where the labels 2, 3, ..., n are successively
inserted according to this growth rule, to a so called random bucket recursive
tree with n elements and maximal bucket-size b. In this paper we consider
a model of bucket trees where the nodes are buckets with variable capacities
labelled with integers 1, 2, · · · , n (not the same capacities as bucket recursive
trees).
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Definition 1 [6] A size-n bucket recursive tree Tn with variable bucket ca-
pacities and maximal bucket size b starts with the root labelled by 1. The tree
grows by progressive attraction of increasing integer labels: when inserting label
j+ 1 into an existing bucket recursive tree Tj, except the labels in the non-leaf
buckets with capacity < b all labels in the tree (containing label 1) compete to
attract the label j+1. For the root node and buckets with capacity b, we always
produce a new bucket j+ 1. But for a leaf with capacity c < b, either the label
j+ 1 is attached to this leaf as a new bucket containing only the label j+ 1 or
is added to that leaf and make a bucket with capacity c+ 1. This process ends
with inserting the label n (i.e., the largest label) in the tree.

Figure 1 illustrates such a tree of size 19 with b = 3.

Figure 1: A bucket recursive tree with variable capacities of buckets with 19
elements and b = 3.

Bucket recursive trees with variable capacities of buckets are appeared in
chemistry, social science, in some computer science applications and further-
more. They are appeared as a model for the spread of epidemics, for pyramid
schemes, for the family trees of preserved copies of ancient texts. In the family
trees, suppose males with the same ethical traits come together in each gener-
ation. Suppose up to 3 people are matched with the same attributes. Then a
bucket recursive trees with variable capacities of buckets with maximal bucket
size 3 is formed. In this case, and in a genealogy of n people, the distance
between two specific individuals is the quantity examined in this article. For
another example, if n atoms in a branching molecular structure are stochasti-
cally labelled with integers 1, 2, ..., n, then atoms in different functional groups
can be considered as the labels of different buckets of a bucket recursive tree
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(the size of the largest functional group is b).
In passing, we give the combinatorial description of our model. Let d(v) be

the out-degree of node v. It will be convenient to define for trees the size |T |

of a tree T via |T | =
∑
v c(v). An increasing labelling of an ordered tree T

is then a labelling of T , where the labels {1, 2, ..., |T |} are distributed amongst
the nodes of T . Then a class T of a new family of bucket-increasing trees can
be defined in the following way: A sequence of non-negative numbers (αk)k≥0
with α0 > 0 and a sequence of non-negative numbers β1, β2, ..., βb−1 is used
to define the weight w(T) of any ordered tree T by w(T) := Πvw(v), where v
ranges over all nodes of T . It is natural that w(v) must be dependent on c(v)
and d(v). Thus the weight w(v) of a node v is given as follows:

w(v) :=

{
αd(v), v is root or complete (c(v) = b)

βc(v), v is incomplete (c(v) < b).
(1)

The above definition is reasonable because the root is the only incomplete
node that has outdegree ≥ 1. Thus for complete nodes and root, the weight is
dependent on the out-degree and described by the sequence αk, whereas for
incomplete nodes except of root the weights are dependent on the capacities.

Furthermore, L(T ) denotes the set of different increasing labelings of the
tree T with distinct integers {1, 2, ..., |T |}, where L(T) := |L(T )| denotes its car-
dinality. Then the family T consists of all trees T together with their weights
w(T) and the set of increasing labelings L(T). For a given degree-weight se-
quence (αk)k≥0 with a degree-weight generating function ϕ(t) :=

∑
k≥0 αkt

k

and a bucket-weight sequence β1, β2, ..., βb−1, we define the exponential gen-
erating function

Tr,k1,...kr(z) :=

∞∑
n=1

Tn,b,r,k1,...kr
zn

n!
, (2)

where Tn,b,r,k1,...kr :=
∑

|T |=nw(T) · L(T) is the total weights. For this model,

Tn,b,r,k1,...kr =
(n− 1)!(b!)n(1−

∑r
i=1 |Pki |)

b
, n ≥ 1

ϕ(Tr,k1,...kr(z)) =
(b− 1)!

1− b!1−
∑r
i=1 |Pki |z

, (3)

where Pki is the set of all trees of size ki and r is the degree of root node [6].
For simplicity, we set Tn,b := Tn,b,r,k1,...,kr and T(z) := Tr,k1,...,kr(z).

Various studies are devoted to a distributional analysis of distances between
random nodes in a lot of tree families of interest. For example, Mahmoud and
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Neininger [9] for binary search trees, Christophi and Mahmoud [1] for the
digital data structure, and Panholzer [13] for simply generated trees. Fewer
studies are made to reveal the distribution of distances between specified nodes
in labelled tree structures. Dobrow [3] and Dobrow and Smythe [4] have shown
a central limit theorem for the distance between the nodes labelled by j and n,
respectively, in a random recursive tree of size n and Devroye and Neininger
[2] have shown a central limit theorem for the distance between the nodes
labelled by j1 and j2 in a random binary search tree of size n. Panholzer and
Prodinger have studied the level of nodes in increasing trees [14]. Kuba and
Panholzer have studied the distribution of distances between specified nodes in
increasing trees [7]. Also Moon studied the distance between nodes in recursive
trees [12].

If we denote by Dn,n the random variable which measures the depth of node
containing label n in the our tree model of size n, then it was shown in [6]

that Dn,n satisfies a central limit law with mean and variance b!
∑r
i=1 |Pki | logn.

More precisely,

P(Dn,n = m) = b!
∑r
i=1 |Pki |

S(n− 1,m)

(n− 1)!
,

E(Dn,n) = Var(Dn,n) = b!
∑r
i=1 |Pki | logn+O(1), (4)

where S(m1,m2) are the signless Stirling numbers of first kind. We study the
random variable level of label j, i.e., the number of edges from the root node
to the bucket containing label j denoted by Dn,j in tree T of size n ≥ j.
In this paper we extend the above results for Dn,n to Dn,j. In passing, we
study the random variable Hn,j, which counts the distance, measured by the
number of edges lying on the connecting path, between bucket containing label
j and bucket containing label n. Finally, we extend our results to the random
variable Hn,i,j which counts the distance between the bucket containing label
i and bucket containing label j in our random tree of size n.

2 The depth of label j

We can to sketch a combinatorial approach to obtain the differential equation
on the trivariate generating function related to the level of an arbitrary label j.
It is better to think of specifically tricolored trees, where the coloring is as fol-
lows: one bucket is colored white (containing label j), all buckets with smaller
labels than the all labels in white bucket are colored black, and all buckets
with larger labels than the white bucket are colored red. We are interested in
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the level of the white bucket. Assume that the out-degree of the root node is
r ≥ 1 and the white bucket of T is not the root node (the case that the white
bucket is the root of the tree corresponds to the initial condition, but does not
appear explicitly in the differential equation itself). Then the white bucket is
located in one of the r subtrees of the root of T ; let us assume that it is in
the first subtree. After order preserving relabellings, each subtree T1, ..., Tr is
a bucket recursive tree with variable capacities of buckets by itself. The first
subtree is again a tricolored increasing tree with one white, j1 black and k1 red
buckets, whereas the remaining r−1 subtrees are only bicolored. For a proper
description of this combinatorial decomposition we use generating functions
which are exponential in both variables z and u, where z marks the black
buckets and u marks the red buckets, i.e.,∑

j≥0

∑
k≥0

fj,k
zj

j!

uk

k!

for sequences fj,k and ∑
j≥0

∑
k≥0

∑
m≥0

fj,k,m
zj

j!

uk

k!
vm

for sequences fj,k,m, where v marks the level of the white bucket. Set fj,k =
Tk+j,b and fj,k,m = P(Dk+j+1,j+1 = m)Tk+j+1,b. Thus the r − 1 bicolored trees
and the tricolored tree lead to

α
−
∑r
i=1 |Pki |

1 Tn,b(z+ u)
r−1L(z, u, v), (5)

just similar to [6] where

L(z, u, v) =
∑
k≥0

∑
j≥0

∑
m≥0

P(Dk+j+1,j+1 = m)Tk+j+1,b
zj

j!

uk

k!
vm.

We recall that the total weights of the r subtrees is

α
−
∑r
i=1 |Pki |

1 Tk1,b · · · Tkr,b.

The level of the white bucket in the tree is one more than the level of the
white bucket in the subtree. This fact leads to a factor v. We additionally get
a factor r, since the white bucket can be in the first, second, ..., r-th subtree.
Furthermore, the root has out-degree r that leads to a factor αr. Thus by
summing over r ≥ 1, (5) leads to

α
−
∑r
i=1 |Pki |

1 vϕ ′(Tn,b(z+ u))L(z, u, v).
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Since the root node labelled by 1 is colored black,

∂

∂z
L(z, u, v) = α

−
∑r
i=1 |Pki |

1 vϕ ′(Tn,b(z+ u))L(z, u, v). (6)

Equation (6) has the general solution

L(z, u, v) = c(u, v) exp

{
α
−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ u))dt

}
,

with a function c(u, v). Evaluating at z = 0 and adapting to the initial condi-

tion gives now c(u, v) = L(0, u, v) = T ′n,b(u) = α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u)). Thus

L(z, u, v) = α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u)) exp

{
α
−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ u))dt

}
= α

−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u))

× exp

α−
∑r
i=1 |Pki |

1 v

∫ z
0

ϕ ′(Tn,b(t+ t))T
′
n,b(t+ u)

α
−
∑r
i=1 |Pki |

1 ϕ(Tn,b(t+ u))
dt


= α

−
∑r
i=1 |Pki |

1 ϕ(Tn,b(u))

(
ϕ(Tn,b(z+ u))

ϕ(Tn,b(u))

)v
= T ′n,b(u)

(
T ′n,b(z+ u)

T ′n,b(u)

)v
. (7)

In the next results we use from the following facts [5]:

[zn]f(qz) = qn[zn]f(z), (8)∑
n≥0

n∑
m=0

S(n,m)
zn

n!
vm =

1

(1− z)v
, (9)

[zn] log

(
1

1− z

)
(1− z)−1 = Hn, (10)

[zn] log2
(

1

1− z

)
(1− z)−1 = H2n −H

(2)
n , (11)

where Hn, the n-th harmonic number and H
(2)
n is the n-th harmonic number of

order 2. In the following lemma we see that distribution of Dn,j is independent
of n.
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Lemma 1 The probabilities P(Dn,j = m) are given by the following formula:

P(Dn,j = m) = b!
∑r
i=1 |Pki |

S(j− 1,m)

(j− 1)!
, j ≤ n (12)

and

E(Dn,j) = b!
∑r
i=1 |Pki |Hj−1,

Var(Dn,j) = b!
∑r
i=1 |Pki |H2j−1(1− b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |(Hj−1 −H

(2)
j−1). (13)

Proof. By (3), (7) and (10),

E(Dn,j) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂L(z, u, v)

∂v

∣∣∣
v=1

= b!
∑r
i=1 |Pki |Hj−1

and by (11),

E(Dn,j(Dn,j − 1)) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂2L(z, u, v)

∂v2

∣∣∣
v=1

= b!
∑r
i=1 |Pki |(H2j−1 −H

(2)
j−1).

Proof of (13) is completed, since Var(Dn,j) = E(Dn,j(Dn,j − 1)) + E(Dn,j) −
E2(Dn,j). By (8), the probability generating function

p(v) =
∑
m≥0

P(Dk+j,j = m)vm =
(j− 1)!k!

Tk+j,b
[zj−1uk]L(z, u, v)

= b!
∑r
i=1 |Pki |

{
(j− 1)!k!

(k+ j− 1)!

(
v+ j− 2

j− 1

)(
k+ j− 1

k

)}
= b!

∑r
i=1 |Pki |

(
v+ j− 2

j− 1

)
.

Thus one gets (12). Therefore the probability generating function and thus
the distribution of Dk+j,j is independent of k. �

As an example, in the a tree family with 100 individuals, the probability
that the distance from the ancestor to the 45th individual is equal to 10 is
calculated from relation (12) under specific conditions. Also, if the ancestor
has 5 children, then the average distance to the 45th individual is

E(D100,45) = H44 =
5884182435213075787

1345655451257488800
.
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Corollary 1 For j = n,

E(Dn,n) = b!
∑r
i=1 |Pki |Hn−1,

Var(Dn,n) = b!
∑r
i=1 |Pki |H2n−1(1− b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |(Hn−1 −H

(2)
n−1).

Theorem 1 As j→∞,

E(Dn,j) = Var(Dn,j) = b!
∑r
i=1 |Pki | log j+O(1), j ≤ n

and

sup
x∈R

∣∣∣∣∣∣P
Dn,j − b!

∑r
i=1 |Pki | log j√

b!
∑r
i=1 |Pki | log j

≤ x

−Φ(x)

∣∣∣∣∣∣ = O
(

1√
log j

)
.

Proof. This is a direct application of the quasi power theorem for v = exp(s)
in probability generating function p(v) [5]. �

3 Distances

In this section we study the random variable Hn,j, which counts the distance,
measured by the number of edges lying on the connecting path, between bucket
containing label j and bucket containing label n in a random bucket recursive
tree T with variable capacities of buckets of size n. Let

W(z, u, v) =
∑
k≥1

∑
j≥1

∑
m≥0

P(Hk+j,j = m)Tk+j,b
zj−1

(j− 1)!

uk−1

(k− 1)!
vm.

Again we apply a combinatorial description involving the counting of 4-colored
bucket recursive tree with variable capacities of buckets. Since the arguments
are very similar to [7] we just sketch the derivation. The combinatorial objects
considered are all possible 4-colored trees of size≥ 2 with a coloring as specified
next. In each tree T the bucket containing the largest label (i.e., n) is colored
green. From the remaining buckets exactly one bucket is colored red (bucket
containing label j), all buckets with smaller labels than the red bucket are
colored black, and all remaining buckets containing labels larger than the red
bucket are colored white. We are interested in the distance between the red
bucket and the green bucket. Finally

∂W(z, u, v)

∂z
= b!−

∑r
i=1 |Pki |ϕ ′(Tn,b(z+ u))W(z, u, v)
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+ b!−
∑r
i=1 |Pki |

v2ϕ ′′(Tn,b(z+ u))(T
′
n,b(z+ u))

2v

(T ′n,b(u)α0)
v−1

(14)

with initial condition

W(0, u, v) = b!−
∑r
i=1 |Pki |

∂

∂u
L(u, 0, v)

= b!−
∑r
i=1 |Pki |vT ′′n,b(u)

(
T ′n,b(u)

α0

)v−1
,

where z counts the black nodes, u the white nodes, and v the distance between
the red and the green label.

Lemma 2 The probabilities P(Hn,j = h) are given by the following formula:

P(Hn,j = h) =
b!

∑r
i=1 |Pki |

(n− 1)
(
n−2
j−1

){ n−j−1∑
`=0

(
n− `− 2

j− 1

)
1

`!
S(`, h− 1)

+

n−j−1∑
k=0

(
n− k− 2

j− 1

) h−2∑
`=0

2`

k!
S(k, h− `− 2)

}
, 1 ≤ j < n.(15)

Proof. The equation (14) has the following consequence:

W(z, u, v) = b!−
∑r
i=1 |Pki |

vT ′′n,b(u)T
′
n,b(z+ u)

T ′n,b(u)

(
T ′n,b(u)

α0

)v−1
+ b!−

∑r
i=1 |Pki |

v2T ′n,b(z+ u)

(T ′n,b(u)α0)
v−1

×
∫ z
0

ϕ ′′(Tn,b(t+ u)(T
′
n,b(t+ u))

2v−1dt. (16)

By (3),

W(z, u, v) =
v

b
.

b!1+v+mv

(1− b!1−mu)v(1− b!1−m(z+ u))

+
v2

bv
b!1−m+v+mv(b− 1)!1−v

(2v− 1)(1− b!1−mu)1−v(1− b!1−m(z+ u))2v

−
v2

bv
b!1−m+v+mv(b− 1)!1−v

(2v− 1)(1− b!1−mu)v(1− b!1−m(z+ u))
,

where m =
∑r
i=1 |Pki |. Thus

P(Hn,j = h) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1vh]W(z, u, v),
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and proof is completed (since these computations are essentially straightfor-
ward, but quite lengthy computations, they are omitted here. Similar consid-
erations are done in [7] where the somewhat simpler recurrences appearing
there are treated analogously). �

Theorem 2 For 1 ≤ j < n,

E(Hn,j) = b!
∑r
i=1 |Pki |

(
Hn−1 +Hj +

1

j
− 2

)
,

Var(Hn,j) = b!
∑r
i=1 |Pki |Hn−1

(
1

j
− 1−

b!
∑r
i=1 |Pki |

j
+ 2b!

∑r
i=1 |Pki |

)
− b!

∑r
i=1 |Pki |Hj

(
3

j
+ 1+

b!
∑r
i=1 |Pki |

j
− 2b!

∑r
i=1 |Pki |

)
+
b!

∑r
i=1 |Pki |

j
(4b!

∑r
i=1 |Pki | − 1) + 4b!

∑r
i=1 |Pki |(2− b!

∑r
i=1 |Pki |)

− b!
∑r
i=1 |Pki |H

(2)
n−1−3b!

∑r
i=1 |Pki |H

(2)
j +b!

∑r
i=1 |Pki |H2n−1(1−b!

∑r
i=1 |Pki |)

+ b!
∑r
i=1 |Pki |H2j (1− b!

∑r
i=1 |Pki |)+2b!

∑r
i=1 |Pki |HjHn−1(1−b!

∑r
i=1 |Pki |)

−
b!2

∑r
i=1 |Pki |

j2
.

Proof. By (10),

E(Hn,j) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂W(z, u, v)

∂v

∣∣∣
v=1

= b!
∑r
i=1 |Pki |

(
Hn−1 +Hj +

1

j
− 2
)
,

and by (11),

E(Dn,j(Dn,j − 1)) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]

∂2W(z, u, v)

∂v2

∣∣∣
v=1

= b!
∑r
i=1 |Pki |Hn−1

(
1

j
− 2

)
− b!

∑r
i=1 |Pki |Hj

(
3

j
+ 2

)
− 2

b!
∑r
i=1 |Pki |

j
+ 10b!

∑r
i=1 |Pki | − b!

∑r
i=1 |Pki |H

(2)
n−1

− 3b!
∑r
i=1 |Pki |H

(2)
j + b!

∑r
i=1 |Pki |H2n−1 + b!

∑r
i=1 |Pki |H2j

+ 2b!
∑r
i=1 |Pki |HjHn−1.
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Proof is completed just similar to the Lemma 1. �

Corollary 2 For 1 ≤ j < n,

E(Hn,j) = Var(Hn,j) = b!
∑r
i=1 |Pki |(logn+ log j) +O(1).

Theorem 3 As n→∞,

Z =
Hn,j − b!

∑r
i=1 |Pki |(logn+ log j)√

b!
∑r
i=1 |Pki |(logn+ log j)

d→N(0, 1),

for arbitrary sequences (n, j(n))n∈N.

Proof. Let m =
∑r
i=1 |Pki | and

ψn,j(v) = E(vHn,j) =
∑
h≥0

vhP(Hn,j = h),

be the probability generating function of Hn,j. Thus

ψn,j(v) =
(j− 1)!(n− j− 1)!

Tn,b
[zj−1un−j−1]W(z, u, v)

= v
b!

∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

)
+

v2

2v− 1

b!
∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

) (
2v+ j− 2

j− 1

)

−
v2

2v− 1

b!
∑r
i=1 |Pki |

(
n+v−2
n−j−1

)
(n− 1)

(
n−2
j−1

) .

Let

µn,j := b!
∑r
i=1 |Pki |(logn+ log j),

σ2n,j = b!
∑r
i=1 |Pki |(logn+ log j),

and

Mn,j(t) = E(etZ) =
∑
z≥0

etzP(Z = z),
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be the moment generating function of

Z = σn,j
−1(Hn,j − µn,j).

Then

Mn,j(t) = e
−
µn,j
σn,jψn,j(e

t
σn,j ).

Now we split the region 1 ≤ j < n into two cases: j big and j ≥ logn, and j
small and j ≤ logn. With the same consideration of [7] proof is completed. �

We get also as a corollary similar results for the random variable Hn,i,j, which
counts the distance between the bucket containing label i and bucket contain-
ing label j in our random tree of size n.

Corollary 3 For 1 ≤ i < j < n,

E(Hn,i,j) = Var(Hn,i,j) = b!
∑r
i=1 |Pki |(log i+ log j) +O(1).

If µn,i,j := b!
∑r
i=1 |Pki |(log i+ log j), σ2n,i,j = b!

∑r
i=1 |Pki |(log i+ log j), then

Z =
Hn,i,j − b!

∑r
i=1 |Pki |(log i+ log j)√

b!
∑r
i=1 |Pki |(log i+ log j)

d→N(0, 1)

for arbitrary sequences (n, i(n), j(n))n∈N.

4 Conclusion

In this paper, we studied the random variable depth of label j in a bucket re-
cursive tree with variable bucket capacities and maximal bucket size b (n ≥ j).
We obtained a closed formula for the probability distribution, the expectation
and the variance. We showed as j→∞, limiting distributions are Gaussian. In
passing, we studied the random variable Hn,j, which counts the distance, mea-
sured by the number of edges lying on the connecting path, between bucket
containing label j and bucket containing label n. Finally, we extend our results
to the random variable Hn,i,j which counts the distance between the bucket
containing label i and bucket containing label j in our random tree of size
n. We obtained this results by presenting partial differential equations for
moment generating functions and solving them.
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