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Abstract. Given a graph G = (V, E), with respect to a vertex parti-
tion P we associate a matrix called P-matrix and define the P-energy,
EP(G) as the sum of P-eigenvalues of P-matrix of G. Apart from study-
ing some properties of P-matrix, its eigenvalues and obtaining bounds
of P-energy, we explore the robust(shear) P-energy which is the maxi-
mum(minimum) value of P-energy for some families of graphs. Further,
we derive explicit formulas for EP(G) of few classes of graphs with dif-
ferent vertex partitions.

1 Introduction

In this paper, we are concerned with simple and undirected graph G = (V, E)
of order n and size m. For spectral and graph theoretic terminologies we refer
Cvetković et al. and West respectively [4, 14].

If A(G) is the adjacency matrix of a graph G, then its energy is the sum
of the absolute values of all the eigenvalues of A(G) [5]. In 1978, Gutman
introduced this concept and thereafter, extensive studies on the same have
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been carried out by several researchers on its theoretical as well as practical
aspects and several variations of graph energy can be found in the literature
[2, 6, 7, 12].

An interesting variation of graph energy is the k-partition energy defined by
Sampathkumar et al. [12]. They have introduced this concept using the idea
of a matrix called L-matrix, Pk(G) with respect to a vertex partition Pk that
uniquely represents the given graph G. The k-partition energy, EPk(G) is sum
of the absolute values of k-partition eigenvalues of Pk(G). For a given graph
G, the value of EPk(G) varies according to different vertex partitions. It can be
observed that the properties of elements in the vertex partition is not taken
into consideration while determining the value of EPk(G). In the present study,
we consider this aspect and introduce P-energy as a variation of k-partition
energy.

Let P = {V1, V2, . . . , Vk} be a partition of the vertex set V(G) of a graph
G = (V, E). Then the P-matrix of G, AP(G) = D(G) + Pk(G), where D(G)
is the diagonal matrix with the ith diagonal entry, the cardinality of the set
Vr ∈P containing the vertex vi. In other words, AP(G) = (aij)n×n where

aij =



|Vr| if i = j and vi = vj ∈ Vr, for r = 1, 2, . . . k

2 if vivj ∈ E(G) with vi, vj ∈ Vr,
1 if vivj ∈ E(G) with vi ∈ Vr and vj ∈ Vs for r 6= s,
−1 if vivj /∈ E(G) with vi, vj ∈ Vr,
0 otherwise.

The characteristic polynomial of AP(G) is denoted by φP(G, λ) and the
eigenvalues λ1, λ2, . . . , λn of AP(G) are called P-eigenvalues. If g1, g2, . . . , gn
are the multiplicities of λ1 > λ2 > . . . > λn respectively, then the P-spectrum
of G is

SpecP(G) = {λ
g1
1 , λ

g2
2 , . . . , λ

gn
n }

and accordingly the P-energy, EP(G) is sum of the absolute values of P-
eigenvalues of AP(G).

For a given vertex partition P of V(G), the diagonal entries of AP(G) are
positive numbers, whereas the diagonal entries of Pk(G) are zeros and remain-
ing entries of these matrices are same which belongs to the set {2, 1, 0,−1}.
Since the absolute values of the eigenvalues of any matrix are directly pro-
portional to the maximum value of the absolute values of entries in the given
matrix, one immediate observation is that if the cardinality of every mem-
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ber of the given vertex partition P of a graph G is greater than 1, then
EP(G) ≥ EPk(G).

Another interesting observation about P-energy is that, as the order of ver-
tex partition P of a given graph G increases, value of EP(G) decreases. Hence,
P-energy of a graph G is maximum when the vertex partition P = {V(G)}
and minimum when P = {{v1}, {v2}, . . . , {vn}}. We call the maximum (min-
imum) value of P-energy as the robust(shear) P-energy, EPr(G)(EPs(G)),
similar to the concepts of robust domination energy and shear domination
energy of a graph introduced by Acharya et al. [1].

Example 1 For a null graph H of order n, it can easily be verified that
EPr(H) = n

2 and EPs(H) = n.

Now, we state in the following remark some of the basic results from linear
algebra which are required for the present study:

Remark 2 [11] If A is a real or complex matrix of order n × n with the
characteristic polynomial φ(G, λ) and eigenvalues λ1, λ2, . . . , λn, then

(i) A principal sub-matrix of order r× r of A is a sub-matrix consisting of
the same set of r rows and r columns and a principal minor of order
r× r of A is the determinant of a principal sub-matrix of order r× r.

(ii) If a0, a1, a2, . . . , an are the coefficients of φ(G, λ), then (−1)rar is the
sum of principal minors of order r× r.

(iii) If the rth symmetric function Sr(A) is the sum of the product of the
eigenvalues of A taken r at a time, then it is the sum of r× r principal
minors of A.

(iv) Trace of A is the sum of diagonal entries of A and it can also be repre-
sented as tr(A) = S1(A) = −a1.

(v)
n∏
i=1

λi = |A|.

Theorem 3 [10] If λ is an eigenvalue of the matrix (aij)n×n, then

|λ| ≤ nmax
i,j

|aij|.

Lemma 4 [4] If C =
(
A B
B A

)
is a symmetric block matrix of order 2× 2, then

the spectrum of C is the union of the spectra of A+ B and A− B.

Lemma 5 [4] If M,N, P,Q are matrices where M is invertible and S =
(
M N
P Q

)
,

then detS = detM · det[Q− PM−1N].
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2 Properties of P-eigenvalues of AP(G)

Before proceeding further, we present a few observations about AP(G) with
respect to the structure of a graph G.

Observation 1 Given a graph G = (V, E), the following are true for its P-
matrix AP(G).

(i) If d(vi) is the degree of vi ∈ V(G), then d(vi) is the number of posi-
tive off-diagonal entries of the ith row corresponding to the vertex vi in
AP(G).

(ii) The elements of AP(G), excluding its main diagonal entries has one-one
correspondence with Pk(G) with respect to the same vertex partition of a
given graph G.

(iii) For the matrix AP(G),

tr(AP(G)) =

n∑
i=1

aii =

k∑
i=1

|Vi|
2. (1)

(iv) If m1 is the number of edges of a graph G whose end vertices share the
same partition, m2 is the number of edges of G whose end vertices are
in different partitions and m3 is the number of pairs of non-adjacent
vertices of G within the same partition, then∑

1≤i<j≤n
(aij)

2 = 4m1 +m2 +m3. (2)

The following result that characterizes P-matrix of a graph is similar to
that of the characterization of L- matrix of a labeled graph as given in [13].

Theorem 6 A symmetric matrix A = (aij)n×n with positive diagonal entries
and off-diagonal entries belonging to the set {2, 1, 0, -1} is the P-matrix
graph G of order n with the vertex partition P = {V1, V2, . . . , Vk} if and only
if

(i) aij, ajk ∈ {2,−1} =⇒ aik ∈ {2,−1},

(ii) aij ∈ {2,−1} and ajk ∈ {0, 1} =⇒ aik ∈ {0, 1} and

(iii) vi ∈ Vr =⇒ aii = |Vr|.
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In the next result, we obtain the exact values of the coefficients of λn, λn−1

and λn−2 in the characteristic polynomial φP(G, λ) = a0λ
n + a1λ

n−1 + . . . +
an−1λ1 + an of AP(G).

Proposition 7 If G is a graph with vertex partition P = {V1, V2, . . . Vk} and
φP(G, λ) = a0λ

n + a1λ
n−1 + . . .+ an, then

(i) a0 = 1

(ii) a1 = −
k∑
i=1

|Vi|
2

(iii) a2 =
∑

1≤i<j≤k
|Vi||Vj|− (4m1 +m2 +m3).

Proof.

(i) It holds directly, as the characteristic polynomial φP(G, λ) is a monic
polynomial.

(ii) From Remark 2(ii) and Equation (1), we get the result.

(iii) From Remark 2(ii),

(−1)2a2 =
∑

1≤i<j≤n

∣∣∣∣aii aij
aji ajj

∣∣∣∣
=
∑

1≤i<j≤n
aiiajj −

∑
1≤i<j≤n

aijaji.

Since AP(G) is a symmetric matrix,

a2 =
∑

1≤i<j≤n
aiiajj −

∑
1≤i<j≤n

(aij)
2

=
∑

1≤i<j≤k
|Vi||Vj|−

∑
1≤i<j≤n

(aij)
2. (3)

Therefore from Equations (2) and (3), we obtain the result.

�

The trace of a matrix is the sum of the eigenvalues of that matrix, therefore
the sum of P-eigenvalues of AP(G) of a graph G is non-zero. In the next
proposition, we obtain its value in terms of cardinality of elements in the
vertex partition P = {V1, V2, . . . Vk} of G.



142 P. B. Joshi, M. Joseph

Proposition 8 If G is a graph with the vertex partition P and λ1, λ2, . . . , λn
are the P-eigenvalues, then

(i)
n∑
i=1

λi =
k∑
i=1

|Vi|
2

(ii)
n∑
i=1

λ2i =
k∑
i=1

|Vi|
3 + 8m1 + 2m2 + 2m3.

Proof.

(i) From Remark 2(iv) and Equation (1), the result holds.

(ii) For a matrix A of order n×n, tr(A2) = (tr(A))2− 2S2(A), where S2(A)
is the 2nd symmetric function. This can be written as

n∑
i=1

λ2i = (

n∑
i=1

aii)
2 − 2S2(A).

By Remark 2(iii),

n∑
i=1

λ2i = (

n∑
i=1

aii)
2 − 2

∑
i<j

(aiiajj − aijaji)

= (

n∑
i=1

aii)
2 − 2

∑
i<j

aiiajj + 2
∑
i<j

(aij)
2

=

n∑
i=1

a2ii + 2
∑
i<j

aiiajj − 2
∑
i<j

aiiajj + 2
∑
i<j

(aij)
2

=

n∑
i=1

a2ii + 2
∑
i<j

(aij)
2 (4)

and

n∑
i=1

a2ii = |V1| · |V1|2 + |V2| · |V2|2 + . . .+ |Vk| · |Vk|2

= |V1|
3 + |V2|

3 + . . .+ |Vk|
3

=

k∑
i=1

|Vi|
3. (5)



P-energy of graphs 143

Therefore from Equations (2), (4) and (5),

n∑
i=1

λ2i =

k∑
i=1

|Vi|
3 + 2(4m1 +m2 +m3). (6)

�

The next proposition given without proof, follows from Cauchy-Schwartz
inequality and Proposition 8 (ii). Note that, the symbols m1,m2,m3 for graph
G1 are as given in the Observation 1(iv) and m ′1,m

′
2,m

′
3 are the corresponding

values for the graph G2.

Proposition 9 Let G1 and G2 be two graphs with respect to vertex partition
P = {V1, V2, . . . , Vk} and P ′ = {V ′1, V

′
2, . . . , V

′
k} respectively. If {λ1, λ2, . . . , λn}

and {λ ′1, λ
′
2, . . . , λ

′
n} are the P-eigenvalues of P-matrix of G1 and G2 respec-

tively, then

n∑
i=1

λiλ
′
i ≤

√√√√[ k∑
i=1

|Vi|3 + 8m1 + 2m2 + 2m3

][ k∑
i=1

|V ′i |
3 + 8m ′1 + 2m

′
2 + 2m

′
3

]
.

3 Bounds for P-energy

Now we present some bounds for the P-energy of a graph G in terms of
its order and the cardinality of elements in its vertex partition. One obvious
bound when P = {V1, V2, . . . Vk} is

k∑
i=1

|Vi|
2 ≤ EP(G) ≤ n3.

The lower bound follows from the inequality
n∑
i=1

λi ≤
n∑
i=1

|λi| whereas the upper

bound is a direct deduction from Theorem 3.

Theorem 10 For any graph G with vertex partition P = {V1, V2, . . . Vk},

EP(G) ≤

√√√√n{ k∑
i=1

|Vi|3 + 8m1 + 2m2 + 2m3

}
. (7)
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Proof. By Cauchy-Schwartz inequality,( n∑
i=1

aibi

)2
≤
( n∑
i=1

a2i
)( n∑

i=1

b2i
)
. (8)

Replace ai = 1 and bi = |λi| in Equation (8),( n∑
i=1

|λi|

)2
≤
( n∑
i=1

1
)( n∑

i=1

|λi|
2
)

≤ n
n∑
i=1

λ2i .

From Equation (6),

( n∑
i=1

|λi|

)2
≤ n
{ k∑
i=1

|Vi|
3 + 8m1 + 2m2 + 2m3

}
.

Hence,

EP(G) ≤

√√√√n{ k∑
i=1

|Vi|3 + 8m1 + 2m2 + 2m3

}
.

�

Theorem 11 Let G be a graph with vertex partition P = {V1, V2, . . . Vk} and
|AP(G)| be the determinant of AP(G). Then

EP(G) ≥

√√√√ k∑
i=1

|Vi|3 + 8m1 + 2m2 + 2m3 + n(n− 1)|AP(G)|2/n. (9)

Proof. By the definition of P-energy,

[
EP(G)

]2
=
( n∑
i=1

|λi|
)2

=
( n∑
i=1

|λi|
)( n∑

j=1

|λj|
)

=

n∑
i=1

|λi|
2 +
∑
i 6=j

|λi||λj|. (10)
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By using arithmetic and geometric mean inequality, Equation (10) can be
written as follows

[
EP(G)

]2 ≥ n∑
i=1

|λi|
2 + n(n− 1)

(∏
i6=j

|λi||λj|

) 1

n(n− 1)

≥
n∑
i=1

|λi|
2 + n(n− 1)

( n∏
i=1

|λi|
2(n−1)

) 1

n(n− 1) .

Therefore, [
EP(G)

]2 ≥ n∑
i=1

|λi|
2 + n(n− 1)

( n∏
i=1

|λi|

) 2
n

.

Hence from Remark 2(v) and Equation (6),

EP(G) ≥

√√√√ k∑
i=1

|Vi|3 + 8m1 + 2m2 + 2m3 + n(n− 1)|AP(G)|2/n.

�

Remark 12 Let H be a null graph of order n. Then the upper and lower
bounds given by Equations (7) and (9) are sharp for the vertex partition P =
{{v1}, {v2}, . . . , {vn}} of H.

4 P-energy of some graph families

In this section, we examine the P-energy of some families of graphs for the
trivial partitions P = {V(G)} and P = {{v1}, {v2}, . . . , {vn}} respectively. Re-
call that the extreme values of P-energy is obtained with respect to these
partitions and the largest value of EP(G) denoted by EPr(G) is referred to as
the robust P-energy and the smallest denoted by EPs(G) is referred to as the
shear P-energy.

Theorem 13 For the complete graph Kn,

EPr(Kn) = n
2 and EPs(Kn) = n.
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Proof. Let Kn be a complete graph and P = {V(G)}. The P-matrix of Kn is

AP(Kn) = [(n− 2)I+ 2J]n×n

where J is the matrix of order n × n whose all entries are 1 and I is identity
matrix of order n × n. The characteristic polynomial is φP(Kn, λ) = |λI −
AP(Kn)|. Thus,

φP(Kn, λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ− n −2 −2 . . . −2
−2 λ− n −2 . . . −2
−2 −2 λ− n . . . −2
...

...
...

. . .
...

−2 −2 −2 . . . λ− n

∣∣∣∣∣∣∣∣∣∣∣
n×n

= [λ− (n− 2)](n−1)[λ− (3n− 2)].

Therefore,
SpecP(Kn) = {(3n− 2)1, (n− 2)(n−1)}

and

EP(Kn) = n
2 with respect to the vertex partition P = {V(G)}.

Hence, EPr(Kn) = n2. Now, let P be a vertex partition of Kn such that
P = {{v1}, {v2}, . . . , {vn}}. The P-matrix of Kn is

AP(Kn) = Jn×n

and

φP(Kn, λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 . . . −1
−1 λ− 1 −1 . . . −1
−1 −1 λ− 1 . . . −1
...

...
...

. . . −1
−1 −1 −1 . . . λ− 1

∣∣∣∣∣∣∣∣∣∣∣
n×n

= λ(n−1)(λ− n).

Therefore,
SpecP(Kn) = {n1, 0(n−1)}

and

EP(Kn) = n with respect to the vertex partition P = {{v1}, {v2}, . . . , {vn}}.

Hence, EPs(Kn) = n. �
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Remark 14 For a complete graph Kn and a null graph H,

EPr(Kn) = EPr(H) and EPs(Kn) = EPs(H).

Note that Kn and H are non-cospectral equi-P-energetic graphs, since the P-
eigenvalues of P-matrices of both the graphs differ but the values of their
robust and shear P-energies coincide.

The following result deals with the robust and shear P-energy of a star. We
omit its proof, since its proof technique is similar to that of Theorem 13.

Theorem 15 If K1,n−1 is a star of order n ≥ 2, then

EPr(K1,n−1) = 2n− 4+
√
n2 + 12n− 12 and

EPs(K1,n−1) = (n− 2) + 2
√
n− 1.

If we join the maximum degree vertex of two copies of K1,r−1 of order r(r ≥ 2),
then the resultant graph is called a double star Br,r of order n = 2r.

Theorem 16 If Br,r is a double star of order n, then

EPr(Br,r) = n
2 for n ≥ 2,

EPs(Br,r) =

{
n− 1+

√
2n− 3 for 2 ≤ n < 8,

(n− 4) + 2
√
2n− 3 for n ≥ 8.

Proof. Let Br,r be a double star of order n with respect to the vertex partition
P = {V(G)}. Then

AP(Br,r) =



n 2 2 . . . 2 2 −1 −1 . . . −1
2 n −1 . . . −1 −1 −1 −1 . . . −1
2 −1 n . . . −1 −1 −1 −1 . . . −1
...

...
...

. . .
...

...
...

...
. . .

...
2 −1 −1 . . . n −1 −1 −1 . . . −1
2 −1 −1 . . . −1 n 2 2 . . . 2

−1 −1 −1 . . . −1 2 n −1 . . . −1
−1 −1 −1 . . . −1 2 −1 n . . . −1
...

...
...

. . .
...

...
...

...
. . .

...
−1 −1 −1 . . . −1 2 −1 −1 . . . n


n×n

.

Clearly, it is of the form
(
A B
B A

)
. To get SpecP(Br,r), we need to find SpecP(A+

B) and SpecP(A − B) by solving its respective characteristic polynomials.
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By applying a series of row and column operations on φP(A + B, λ) and
φP(A− B, λ), and using Lemma 5,

φP(A+ B, λ) =[λ− (n+ 1)](r−2)
[
λ−

(n+ 5) +
√
n2 + 12n− 3

2

]
[
λ−

(n+ 5) −
√
n2 + 12n− 3

2

]
(11)

and

φP(A− B, λ) =[λ− (n+ 1)](r−2)
[
λ−

(2n− 1) + 3
√
2n− 3

2

]
[
λ−

(2n− 1) − 3
√
2n− 3

2

]
. (12)

Therefore from Equations (11) and (12), and by the Lemma 4,

SpecP(Br,r) =

{[
(n+ 5) +

√
n2 + 12n− 3

2

]1
,

[
(2n− 1) + 3

√
2n− 3

2

]1
,

(n+ 1)(n−4),

[
(2n− 1) − 3

√
2n− 3

2

]1
,[

(n+ 5) −
√
n2 + 12n− 3

2

]1}
.

Hence, EPr(Br,r) = n2, for n ≥ 2. Now, we consider the vertex partition
P = {{v1}, {v2}, . . . , {vn}} of Br,r and the corresponding P-matrix of Br,r is

AP(Br,r) =



1 1 1 . . . 1 1 0 0 . . . 0

1 1 0 . . . 0 0 0 0 . . . 0

1 0 1 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
1 0 0 . . . 1 0 0 0 . . . 0

1 0 0 . . . 0 1 1 1 . . . 1

0 0 0 . . . 0 1 1 0 . . . 0

0 0 0 . . . 0 1 0 1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0 1 0 0 . . . 1


n×n

.
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It is of the form
(
A B
B A

)
. Thus,

φP(A+ B, λ) = (λ− 1)(r−2)
[
λ−

(
3±
√
4r− 3

2

)]
(13)

and

φP(A− B, λ) = (λ− 1)(r−2)
[
λ−

(
1±
√
4r− 3

2

)]
. (14)

Therefore from Lemma 4 and Equations (13) and (14),

SpecP(Br,r) =

{(
3+
√
4r− 3

2

)1
,

(
1+
√
4r− 3

2

)1
,(

1−
√
4r− 3

2

)1
,

(
3−
√
4r− 3

2

)1
, 1(n−4)

}
.

Hence, EPs(Br,r) = n− 1+
√
2n− 3, for 2 ≤ n < 8

and
EPs(Br,r) = (n− 4) + 2

√
2n− 3, for n ≥ 8. �

Theorem 17 If Kr,r is a complete bipartite graph of order n = 2r ≥ 2, then

EPr(Kr,r) = n
2 + 2n− 2 and EPs(Kr,r) = 2(n− 1).

Proof. Let Kr,r be a complete bipartite graph of order n and let P = {V(G)}.
The P-matrix of Kr,r is a 2 × 2 block matrix which can be represented as(
A B
B A

)
.

AP(Kr,r) =

(
[(n+ 1)I− J]r×r [2J]r×r

[2J]r×r [(n+ 1)I− J]r×r

)
.

Therefore, from Lemma 4 its P-spectrum is given by

SpecP(Kr,r) = SpecP(A+ B) ∪ SpecP(A− B). (15)

By applying successive row and column operations on φP(A + B, λ) and
φP(A− B, λ), and simplifying using Lemma 5, we get

φP(A+ B, λ) = [λ− (3r+ 1)][λ− (n+ 1)](r−1) (16)

and

φP(A− B, λ) = [λ+ (r− 1)][λ− (2n+ 1)][λ− (n+ 1)](r−2). (17)
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Thus, from Equations (15), (16) and (17)

φP(Kr,r, λ) =[λ+ (r− 1)][λ− (3r+ 1)][λ− (2n+ 1)][λ− (n+ 1)](n−3).

Therefore,

SpecP(Kr,r) = {(2n+ 1)1, (3r+ 1)1, (n+ 1)(n−3), [−(r− 1)]1}

and

EPr(Kr,r) = n
2 + 2n− 2.

Now, if we consider P = {{v1}, {v2}, . . . , {vn}} as the vertex partition of Kr,r,
then the corresponding P-energy will be shear P-energy of G. So, consider
Kr,r with respect to P = {{v1}, {v2}, . . . , {vn}} and the P-matrix of Kr,r is
AP(Kr,r) =

(
I J
J I

)
. Therefore, from Lemma 4

SpecP(Kr,r) = SpecP(I+ J) ∪ SpecP(I− J). (18)

By applying successive row and column operations on φP(A + B, λ) and
φP(A − B, λ), and simplifying using Lemma 5, we get the corresponding P-
eigenvalues. Thus,

SpecP(A+ B) = {1(r−1), (r+ 1)1} (19)

and
SpecP(A− B) = {1(r−1), [−(r− 1)]1}. (20)

Therefore, from Equations (18), (19) and (20)

SpecP(Kr,r) ={(r+ 1)1, 1(n−2), [−(r− 1)]1}

and
EPs(Kr,r) = 2(n− 1).

�

Remark 18 We observe that, the robust P-energy of Kr,r, 2-partition energy
of K1,n−1 and color energy of K1,n−1 with respect to minimum number of colors
χ are same, that is EPs(Kr,r) = EP2(K1,n−1) = Eχ(K1,n−1).

Now, we proceed to determine EP(G) for some families of graphs with re-
spect to non-trivial vertex partitions.
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Theorem 19 For the star K1,n−1, n ≥ 3, with vertex partition P = {{v1},

{v2, v3, . . . , vn}} where v1 is the central vertex and v2, v3, . . . , vn are pendant
vertices of K1,n−1,

EP(K1,n−1) = n(n− 2) + 2
√
n− 1.

Proof. The P-matrix of K1,n−1 is

AP(K1,n−1) =


1 1 1 . . . 1

1 n− 1 −1 . . . −1
1 −1 n− 1 . . . −1
...

...
...

. . .
...

1 −1 −1 . . . n− 1


n×n

.

Thus, the characteristic polynomial of AP(K1,n−1) is

φP(K1,n−1, λ) = (λ− n)(n−2)[λ− (1±
√
(n− 1))].

Hence,

SpecP(K1,n−1) = {[1+
√
(n− 1)]1, [1−

√
(n− 1)]1, n(n−2)}

and

EP(K1,n−1) = n(n− 2) + |1+
√
n− 1|+ |1−

√
n− 1|

= n(n− 2) + 2
√
n− 1, for n ≥ 3.

�

Now, we derive P-energy of a double star EP(Bs,s) for different partitions
and for that we consider, V(Bs,s) = {u1, u2, . . . , us, v1, v2, . . . , vs} such that
u1, v1 are the maximum degree (central) vertices. Note that, the pendant ver-
tices ui’s are attached to u1 and the pendant vertices vi’s are attached to v1,
for i = 2, 3, . . . , s.

Theorem 20 If Bs,s is a double star of order n ≥ 6 with the vertex partition
P = {{u1, v1}, {u2, u3, . . . , us, v2, v3, . . . , vs}} where u1 and v1 are the central
vertices, then

EP(Bs,s) =


(n− 4)(n− 1) +

√
n2 − 3+ 5 for n = 6 and 8,

(n− 4)(n− 1) +
√
n2 − 3+ 1

2(5+
√
2n+ 5) for n = 10,

(n− 4)(n− 1) +
√
n2 − 3+

√
2n+ 5 for n ≥ 12.
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Proof. The P-matrix of Bs,s is a 2 × 2 block circulant matrix which can be
represented as

(
A B
B A

)
. Therefore, by Lemma 4 its spectrum is given by

SpecP(Bs,s) = SpecP(A+ B) ∪ SpecP(A− B). (21)

By applying successive row and column operations on φP(A + B, λ) and
φP(A− B, λ), we get

SpecP(A+ B) =

{
(n− 1)(s−2),

[
5+
√
2n+ 5

2

]1
,

[
5−
√
2n+ 5

2

]1}
(22)

and

SpecP(A−B) =

{
(n−1)(s−2),

[
(n− 1) +

√
n2 − 3

2

]1
,

[
(n− 1) −

√
n2 − 3

2

]1}
(23)

respectively. Therefore, from Equations (21), (22) and (23)

SpecP(Bs,s) =

{
(n− 1)(n−4),

[
(n− 1) +

√
n2 − 3

2

]1
,

[
5+
√
2n+ 5

2

]1
,[

5−
√
2n+ 5

2

]1
,

[
(n− 1) −

√
n2 − 3

2

]1}
and

EP(Bs,s) =(n− 4)(n− 1) +

∣∣∣∣5+√2n+ 5

2

∣∣∣∣+ ∣∣∣∣5−√2n+ 5

2

∣∣∣∣
+

∣∣∣∣(n− 1) +
√
n2 − 3

2

∣∣∣∣+ ∣∣∣∣(n− 1) −
√
n2 − 3

2

∣∣∣∣.
Hence from this, the result follows. �

Next, we consider another partition P ′ = {{u1, v2, v3, . . . , vs}, {v1, u2, u3, . . . , us}}

of V(Bs,s) such that {u1, v2, v3, . . . , vs} and {v1, u2, u3, . . . , us} are two indepen-
dent sets where u1, v1 are the central vertices and u2, u3, . . . , us, v2, v3, . . . , vs
are the pendent vertices of Bs,s.

Theorem 21 Let Bs,s be a double star of order n ≥ 6 with the vertex parti-
tion P ′ = {{u1, v2, v3, . . . , vs}, {v1, u2, u3, . . . , us}} where u1, v1 are the central
vertices of Bs,s. Then

EP ′(Bs,s) =
1

2

[
n2 − 2n− 4+

√
n2 + 20n− 28

]
.
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Proof. The P-matrix of Bs,s is a 2 × 2 block circulant matrix which can be
represented as

(
A B
B A

)
. Therefore, its spectrum is given by

SpecP ′(Bs,s) = SpecP ′(A+ B) ∪ SpecP ′(A− B). (24)

By applying successive row and column operations on φP(A + B, λ) and
φP(A− B, λ), we get

SpecP ′(A+ B) = {(s+ 1)(s−2), 21} (25)

and

SpecP ′(A− B) =

{[
(s+ 1) +

√
s2 + 10s− 7

2

]1
, (s+ 1)(s−2),[

(s+ 1) −
√
s2 + 10s− 7

2

]1}
. (26)

Therefore, from Equations (24), (25) and (26)

SpecP ′(Bs,s) =

{[
(s+ 1) +

√
s2 + 10s− 7

2

]1
, (s+ 1)(n−4),[

(s+ 1) −
√
s2 + 10s− 7

2

]1
, 21
}

and

EP ′(Bs,s) =2+ (s+ 1)(n− 4) +

∣∣∣∣(s+ 1) +
√
s2 + 10s− 7

2

∣∣∣∣+∣∣∣∣(s+ 1) −
√
s2 + 10s− 7

2

∣∣∣∣.
On simplifying the above equation, we get the result. �

Another possibility of the vertex partition P having 2 elements for a Bs,s
is taking one copy of a star K1,r−1 in each of the two elements of P. The next
result gives its corresponding P-energy. We omit its proof as it is similar to
the proofs of Theorems 20 and 21.

Theorem 22 Let Bs,s be a double star of order n ≥ 6 with the vertex parti-
tion P ′′ = {{u1, u2, u3, . . . , us}, {v1, v2, v3, . . . , vs}} where u1, v1 are the central
vertices of Bs,s. Then

EP ′′(Bs,s) =
1

2

[
n2 − 2n− 8+

√
n2 + 20n− 28+

√
n2 + 28n− 60

]
.
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Remark 23 From Theorems 20, 21 and 22, we observe that

EP ≥ EP ′′ ≥ EP ′ .

Theorem 24 Let Kr,r be a complete bipartite graph of order n with a vertex
partition P = {V1, V2} such that V1 and V2 are two partite sets of Kr,r. Then

EP(Kr,r) =
1

2
[n2 + 2n− 4].

Proof. Let V1 = {u1, u2, . . . , ur} and V2 = {v1, v2, . . . , vr}. The P-matrix of
Kr,r is

AP(Kr,r) =

(
[(r+ 1)I− J]r×r Jr×r

Jr×r [(r+ 1)I− J]r×r

)
n×n

.

To get the P-spectra of Kr×r, by Lemma 4, it is sufficient to find P-spectra
of [(r+ 1)I]r×r and [(r+ 1)I− 2J]r×r. Since [(r+ 1)I]r×r is a diagonal matrix,

SpecP((r+ 1)I) = {(r+ 1)r}.

After applying a series of row and column operations on φP([(r+ 1)I− 2J], λ)
and using Lemma 5, we get the corresponding P-eigenvalues as

SpecP((r+ 1)I− 2J) = {(r+ 1)(r−1), [−(r− 1)]1}.

Therefore, from Lemma 4

SpecP(Kr,r) = {(r+ 1)(n−1), [−(r− 1)]1}

and

EP(Kr,r) =
1

2
[n2 + 2n− 4].

�

Theorem 25 Let Kr,r be a complete bipartite graph of order n with bipartite
sets {u1, u2, . . . , ur} and {v1, v2, . . . , vr} and the vertex partition P = {{ui, vi},

for 1 ≤ i ≤ r}. Then
EP(Kr,r) = 3n− 2.

Proof. The P-matrix of Kr,r is

AP(Kr,r) =

(
2Ir×r (J+ I)r×r

(J+ I)r×r 2Ir×r

)
n×n

.
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Thus, the characteristic polynomial of AP(Kr,r) is

φP(Kr,r, λ) = [λ+ (r− 1)](λ− 1)(r−1)(λ− 3)(r−1)[λ− (r+ 3)].

Hence,
SpecP(Kr,r) = {(r+ 3)1, 3(r−1), 1(r−1), [−(r− 1)]1}

and
EP(Kr,r) = 3n− 2.

�

Now, consider a graph obtained by removing 1-factor F1 from a complete
bipartite graph Kr,r and denote is by Kr,r − F1 [3].

Theorem 26 Let Kr,r−F1 be a graph of order n = 2r, for r ≥ 3 with a vertex
partition P = {V1, V2} such that V1 and V2 are two partite sets of Kr,r − F1.
Then

EP(Kr,r − F1) =
1

2
[n2 + 2n− 8].

Proof. The P-matrix of Kr,r − F1 for the given vertex partition is

AP(Kr,r − F1) =

(
[(r+ 1)I− J]r×r (J− I)r×r

(J− I)r×r [(r+ 1)I− J]r×r

)
n×n

.

By Lemma 4 and 5,

SpecP(Kr,r − F1) = {(r+ 2)(r−1), rr, [−(r− 2)]1}.

Therefore,

EP(Kr,r − F1) =
1

2
[n2 + 2n− 8].

�

In the next theorem, we consider the partition P = {{ui, vi}, for 1 ≤ i ≤ r}
and determine the corresponding P-energy for Kr,r − F1.

Theorem 27 Let Kr,r−F1 be a graph of order n = 2r, for r ≥ 3 with a vertex
partition P = {{ui, vi}, for 1 ≤ i ≤ r}. Then

EP(Kr,r − F1) =

{
2n for n = 6 and 8,

3n− 8 for n > 8.

.
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Proof. The P-matrix of Kr,r − F1 is

AP(Kr,r − F1) =

(
2Ir×r (J− 2I)r×r

(J− 2I)r×r 2Ir×r

)
n×n

.

Thus, the characteristic polynomial of AP(Kr,r − F1) is

φP(Kr,r − F1, λ) = λ
(r−1)(λ− 4)(r−1)(λ− r)[λ+ (r− 4)].

Therefore,

SpecP(Kr,r − F1) =

{
n

2

1
, 4(

n
2
−1), 0(

n
2
−1),

[
−

(
n

2
− 4

)]1}
.

Hence, EP(Kr,r− F1) = 2n, for n = 6, 8 and EP(Kr,r− F1) = 3n− 8, for n > 8.
�

5 Conclusion

The significance of P-energy stems from the importance of vertex partition
problems in graph theory. As observed from the discussions, the value of EP(G)
depends on factors such as the number of elements in the partition, the nature
of the vertex subsets in the partition and the specific properties that deter-
mines the partition. In this direction, there is also much scope for extension of
the study of the concept of P-energy as we can consider specific vertex parti-
tions such as domatic partitions and equitable degree partitions and study the
relation between the corresponding P-energy and other graph parameters.

It is to be noted that there are various algorithms available for partitioning
a graph (or a network) [8, 9]. Their applications are well known such as par-
titioning a network into clusters [15], community detection problem in social
sciences etc. [8]. We have observed that, in [9], the authors have presented cer-
tain parameters for measuring some key aspects of the network like modularity,
z-score etc using quantities such as number of partitions k, and the numbers
m1,m2 which are mentioned in Observation 1(iv) in a similar context. So by
using these algorithms and with the help of P-energy, there is a possibility
for developing a tool for a given network to find its specific properties such as
spectral clustering or community structures.
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[4] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New
York, 1980. ⇒137, 139

[5] I. Gutman, The energy of a graph Ber. Math. Stat. Sekt. Forschungsz. Graz.
103 (1978) 1–22. ⇒137

[6] I. Gutman, B. Furtula, The total π-electron energy saga, Croat. Chem. Acta.
90, 3 (2017) 359–368. ⇒138

[7] I. Gutman, X. Li, J. Zhang, Graph Energy, Springer, New York, 2012. ⇒138
[8] M. Girvan, M. E. J. Newman, Community structure in social and biological

networks, PNAS USA 99, 12 (2002) 7821–7826. ⇒156
[9] R. Guimera, L. A. N. Amaral, Functional cartography of complex metabolic

networks nature, 433, 7028 (2005) 895–900. ⇒156
[10] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities,

Courier Corporation, 1992. ⇒139
[11] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Siam, 2000. ⇒139
[12] E. Sampathkumar, S. V. Roopa, K. A. Vidya, M. A. Sriraj, Partition energy

of a graph, Proc. Jangjeon Math. Soc. 18, 4 (2015) 473–493. ⇒138
[13] E. Sampathkumar, M. A. Sriraj, Vertex labeled/colored graphs, matrices and

signed graphs, J. Comb. Inf. Syst. Sci. 38 (2013) 113–120. ⇒140
[14] D. B. West, Introduction to Graph Theory, Pearson, New Jersey, 2001. ⇒137
[15] M. Zhang, J. Deng, C. V. Fang, X. Zhang, L. J. Lu, Molecular network analysis

and applications Knowledge-Based Bioinformatics: John Wiley and Sons, Ltd.
(2010) 251–287. ⇒156

Received: April 23, 2020 • Revised: June 10, 2020

https://www.researchgate.net/profile/Chandrashekar_Adiga
https://en.wikipedia.org/wiki/E._Sampathkumar
https://www.researchgate.net/profile/M_A_Sriraj
https://www.researchgate.net/publication/265776641_Color_energy_of_a_graph
https://www.researchgate.net/publication/265776641_Color_energy_of_a_graph
https://www.sciencedirect.com/science/article/pii/S0012365X04001207
https://www.sciencedirect.com/science/article/pii/S0012365X04001207
http://www.mi.sanu.ac.rs/cv/cvcvetkovic.htm
https://www.pmf.kg.ac.rs/gutman/
https://www.pmf.kg.ac.rs/gutman/
https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=281284
https://www.pmf.kg.ac.rs/gutman/
https://www.springer.com/in
https://www.pnas.org/content/99/12/7821
https://www.pnas.org/content/99/12/7821
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175124/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175124/
https://en.wikipedia.org/wiki/E._Sampathkumar
https://www.researchgate.net/profile/M_A_Sriraj
https://www.researchgate.net/publication/285186821_Partition_energy_of_a_graph
https://www.researchgate.net/publication/285186821_Partition_energy_of_a_graph
https://en.wikipedia.org/wiki/E._Sampathkumar
https://www.researchgate.net/profile/M_A_Sriraj
https://www.researchgate.net/publication/331087594_VERTEX_LABELEDCOLORED_GRAPHS_MATRICES_AND_SIGNED_GRAPHS
https://www.researchgate.net/publication/331087594_VERTEX_LABELEDCOLORED_GRAPHS_MATRICES_AND_SIGNED_GRAPHS
https://faculty.math.illinois.edu/~west/

	1 Introduction
	2 Properties of  P-eigenvalues of  AP(G) 
	3 Bounds for P-energy 
	4  P-energy of some graph families
	5 Conclusion

