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Abstract: According to the data provided by the World Health Organization (WHO) 
diabetes has become an endemic of these days. There are several nonlinear models 
describing the dynamic of glucose-insulin of diabetes mellitus, like the simplest one 
with only three state variables, also known as the model of Bergman, and the most 
complex with 19 state variables, the model of Sorensen. Their common characteristic is 
that they describe type 1 diabetes physiologically. A recently published theoretical 
model [1] is capable of describing human blood glucose system at molecular levels. 
This paper is based on its analysis from a control theory point of view with multiple 
purposes: nonlinear analysis, rank reduction possibilities with physiological 
explanations, defining physiological working points for further polytopic modeling, 
analyzing control properties of the linear systems in the defined working points. 
 

Keywords: Diabetes, nonlinear analysis, model reduction, physiologic working 
points. 

1. Introduction 

The normal blood glucose concentration level in the human body varies in a 
narrow range (70 - 110 mg/dL). If for some reason the human body is unable to 
control the normal glucose-insulin interaction (e.g. the glucose concentration 
level is constantly out of the above mentioned range), diabetes is diagnosed. 
The consequences of diabetes are mostly long-term: among others, diabetes 
increases the risk of cardiovascular diseases, neuropathy and retinopathy. Four 
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types of diabetes are known: type 1 (also known as insulin-dependent diabetes 
mellitus), type 2 (or insulin- independent diabetes mellitus), gestational diabetes 
and other special types, like genetic deflections. Consequently, diabetes mellitus 
is a serious metabolic disease, which should be artificially regulated. 

The newest statistics of the World Health Organization (WHO) predate an 
increase of adult diabetes population from 4% (in 2000, meaning 171 million 
people) to 5.4% (366 million worldwide) by the year 2030 [2]. This is a 
warning that diabetes could be the “disease of the future”, especially in 
developing countries (due to stress and unhealthy lifestyle). 

To design an appropriate control, an adequate model is necessary. In the last 
decades several models appeared for type 1 diabetic patients [3]. The most 
widely used and also the simplest one proved to be the minimal model of 
Bergman [4], for type 1 diabetic patients under intensive care, and its extension, 
the three-state minimal model [5]. However, the simplicity of the model proved 
to be its disadvantage too, since in its formulation a lot of components of the 
glucose-insulin interaction were neglected. 

Besides the Bergman-model other models appeared in the literature [6]-[8], 
which are more general, but more complicated. The most complex one proved 
to be the 19th order Sorensen-model [6], which is based on the earlier model of 
[8]. Even if the Sorensen-model describes the human blood glucose dynamics in 
a very exact way, it is rarely used in research problems due to its complexity. 

2. The molecular model 

In contrast with the earlier phenomenological aspect, the model applies a 
more accurate approach [1] published in 2008; it describes the human blood 
glucose system at molecular levels. Consequently, the cause-effect relations are 
more plausible and different functions and processes can be separated. The 
considered model is approximately halfway from Bergman’s model [4]-[5] to 
Sorensen’s [6] with its 8 state variables and it can be naturally divided into three 
subsystems: the transition subsystem of glucagon and insulin, the receptor 
binding subsystem and the glucose subsystem. Parameters of the model can be 
found in [1]. 

A. Transition subsystem 

We assume that plasma insulin does not act directly on glucose metabolism 
but through cellular insulin [9]. Let  and  denote concentrations of plasma 
glucagon and insulin, respectively. Complementing equations of 

ps1
ps2

[10] with 
transition delay the subsystem can be described with  
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where  and  stand for glucagon and insulin produced by the pancreas. The 
equations show that the hormones of pancreas have a positive effect on their 
plasma concentrations, while the hormones in plasma can be interpreted as a 
negative feedback. 

1w 2w

The positive constants  denote transition rates and  the degradation 

rates (j=1,2). Contrary to 

p
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p
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[10], we suppose that intracellular insulin cannot go 
back to plasma, which is in harmony with Bergman’s minimal model [4]-[5]. 

B. Receptor binding subsystem 

Let  and  denote intracellular concentrations of glucagon and insulin, 

whereas  and  stand for concentrations of glucagon- and insulin-bound 
receptors, respectively. Assuming that the receptor recycling system is closed 
intracellular concentrations can be described with 
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where  and  denote total concentrations of receptors,  stand for the 

hormone-receptor association rates,  the degradation rates,  the 

inactivation rates (j=1,2).  is plasma volume, whereas V  is intracellular 

volume. 
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C. Glucose subsystem 

Blood glucose has two sources: endogenous hepatic production with 
glycogen transformation and exogenous meal intake. Glucose utilization can be 
divided into two groups: insulin-independent (brain and nerve cells) and 
insulin-dependent (muscle and adipose tissues). 

Insulin-independent part [12] can be modelled by  
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that saturates at 500 mg/l (  denotes glucose concentration). 2q
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Insulin-dependent part can be calculated by the product 
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which was originally used in [13].  23 sf  saturates at insulin concentration 500 
mU/l. 

Concluding the assumptions the glucose subsystem can be described with 
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where  and  denote glycogen and glucose concentration,  and  
stand for reaction rate of glycogen phosphorylase and glycogen synthase, 
respectively.  and  are maximal reaction rates of the enzymes whereas 

 and  are their Michaelis-Menten constants. Exogenous glucose intake 

is denoted by . 
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D. Pancreatic control 

Hormones of the pancreas have a cardinal role in blood glucose regulation 
and homeostatic stability, since negative feedback of glucagon and insulin 
assures controllability. Control mechanism of the pancreas [9] is described with 
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where  and denote glucagon (GIR) and insulin infusion rates (IIR), 
respectively. 

1w 2w

E. Aspect of control theory 

As for inputs, exogenous insulin ( ) is completely disposable, since it is in 
daily use in the form of injection (type 1 diabetes is treated this way). Glucose 

1u
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taken as meal ( ) represents disturbance for the model, but as a result of more 
profound consideration it can be regarded as control input. Healthy people use it 
more or less to regulate their blood glucose level, but in case of diabetic patients 
the situation is crystal clear: it is strictly prescribed for them what to eat and 
when to eat, so exogenous glucose is treated as a second control input 
henceforward ( ). In order to analyze the model in a quantitative manner, a 
physiologically correct exogenous glucose input has to be defined. According to 
the literature a widely used absorption curve is applied which was recorded 
under extremely strict and precise conditions 

inG

2u

2g

[14]. 
As for outputs, blood glucose level ( ) is essential to characterize the 

system (in addition it can be measured easily). Concentration of plasma insulin 

( ) is only measurable under laboratory conditions, but any controller 
designed to regulate pathologic blood glucose system has to be qualified by the 
amount of injected insulin. Summarizing the considerations, the outputs of the 
model are plasma insulin ( ) and blood glucose level ( ). 

2q

ps2

1y 2y

3. Nonlinear analysis 

In this section global characteristics of the molecular model are observed 
from a differential geometric point of view. Differential geometry deals with 
differential equations defined over differentiable manifolds, hence dynamic 
systems and their trajectories can be analyzed. Main definitions and ideas of 
differential geometry can be found in [15]. 

A. Nonlinear model 

The molecular model presented in Section 2 has to be formulated exactly. 
Let ,  and  denote vector fields over an eight dimensional manifold,  

and  stand for real-valued functions. In this case, the input-affine nonlinear 
system  can be described with 

f
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B. Reachability 

Let  be a nonsingular involutive distribution of dimension d and assume 
that  is invariant under the vector fields . Moreover, suppose 

that the distribution  is contained in 
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coordinates, the control system  is represented by equations of the form 
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where  dzzz ,,, 211   and  ndd zzz ,,, 212   [15]. 

In this case 1  is locally reachable, since it can be manipulated by the inputs 

of  while  2  cannot be controlled. Consequently, the number of reachable 

states is equal to the rank of distribution C . 
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then the system can be decomposed into m subsystems with  integrators in the 

 subsystem 
ir

thi [15].  
If there is no zero dynamics, the system can be input-output linearized with 

the static feedback         vxSxqxSxu 11    where v  is the new input vector, 

 is feedback, so the linearized system can be transformed into Brunovsky-
form. 
q

D. Global control characteristics 

To be able investigating the global control characteristics of the molecular 
model we have implemented under MATLAB the algorithms presented above 
(sections 3.A and 3.B). The following results were obtained: 

 completely reachable system, since 8C , rank

 number of the observable states of the model is 4, since 
4Od , rank

 static feedback results in such complex vector fields that MATLAB 
is unable to handle them (manually it is also too complex), so this 
question cannot be answered this way. Linearization with dynamic 
feedback (dynamic extension, Cartan fields) has the same problem. 

4. Linear analysis 

Global characteristics of the molecular model are examined in Section 3 and 
led to the conclusion that despite the great importance of the achieved results 
practical application is very difficult because of the extreme complexity of the 
generated vector fields. Furthermore, ulterior aim of the research is polytopic 
modeling of the system, hence linearization and model reduction possibilities 
are observed in this section. In this manner local characteristics of the molecular 
model can be determined. 

A. Steady state linearization 

Linearization is carried out by applying Jacobian matrices in a steady state. The 
linearized form of system  

 
 uxhy

uxfx

,

,




 (17) 

 in steady state  with output  is  00 , ux  0y

  



The Human Blood Glucose System at Molecular Levels from a Control Theory Point of View 85 

 

uDxCy

uBxAx
~~~

~~~




, (18) 

 where 

0

0

0

~

~

~

yyy

uuu

xxx





  (19) 

 
and 

 

),( 00 uxx

f
A




 , (20) 

 

),( 00 uxu

f
B




 , (21) 

 

),( 00 uxx

h
C




 , (22) 

),( 00 uxu

h
D




 . (23) 

  

B. Corner points 

Observing simulation results it can be seen that blood glucose varies 
between 700-1800 mg/l. An obvious choice could be searching for steady points 
within this range and approximating the nonlinear model with these steady 
states. With a resolution of 100 mg/l the twelve determined steady states (in our 
terms corner points) are stable, completely controllable and completely 
observable. 

In order to approximate the nonlinear system third degree polynomial 
functions can be fit to the corner points interpolating the non-determined steady 
states. Applying the glucose and insulin input presented in Section 2 to the 
system that is determined by linearizing the nonlinear model along the 
approximation function in each variable, the system becomes instable and its 
responses are meaningless. This is because linearization is only precise in the 
neighborhood of the actual steady state, but the presented method tries to 
describe the system in distant regions of the state space with only one variable 
(blood glucose) which is far too imprecise. Consequently, another method has 
to be chosen in order to reduce complexity of the nonlinear model. 
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C. Physiologic working points and further LPV modeling 

Polytopic approach of LPV modeling can only be applied if the linear 
models are stable and cover the operating area in a more or less uniform way. In 
order to fulfill these conditions physiologic working points (PWPs) are defined: 
these are state vectors that are not exact solutions of the differential equations 
describing the molecular model but derived from a steady state.  

Applying only five different values for each state variable (which is a rather 
rough quantization) almost 400000 PWPs should be considered. Exponential 
explosion is down-to-earth, hence complexity reduction is crucial. 

Normalization of the trajectories of the molecular model (see Fig. 1 and Fig. 
2) to [0,1] results in a valuable experiment: variables can be divided into two 
groups. One of them is the glucagon-type variables (see Fig. 1) whereas the 
other is the group of insulin-type variables (see Fig. 2). Glycogen is the only 
variable that does not fit perfectly into either group (but it can be categorized as 
an insulin-type variable), which is not surprising, since glycogen is the stored 
form of glucose that can be interpreted as the integral of the glucose excess 
(saturation can be remarked after linear phase).  

As a result of biochemical and physiological considerations variables are di-
vided into two groups: glucagon- and insulin-type. PWPs are generated by mul-
tiplying the normoglycaemic values [1] by  
in case of both group, value of glycogen is not modified. The created 64 PWPs 
are stable, completely controllable and observable, hence further polytopic 
modeling can be fulfilled. 

]425.125.1175.05.025.0[

D. Model reduction 

Considering the results it is probable that the complexity of the model can be 
reduced since variables are not independent in a physiologic sense. Many 
methods have been published in the subject of linear model reduction, one of 
the most widely used is based on state space transformation and projection to a 
subspace [16]. 

The aim is to determine a minimal set of state variables producing almost the 
same input-output behavior as the original system. Input-output behavior of a 
linear, autonomous system remains unchanged after a linear, nonsingular state 
space transformation. 
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Figure 1: Glucagon-type variables. 
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Figure 2: Insulin-type variables. 
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The method is supported by MATLAB Control System and Robust Toolbox. 
In case of linearized systems model reduction can be realized as follows: 
numeric conditioning (ssbal), input-output balancing (obalreal), model 
reduction based on frequency domain (modred) and determination of state space 
transformation. 

Function balmr() of the MATLAB Robust Control toolbox executes model 
reduction by minimizing the difference between the  norms of the original 
and the reduced systems in frequency domain, but information on state space 
transformation is lost. This information can be gathered by applying the above-
mentioned algorithm.  

H

As a result of  reduction  Hankel  Singular  Values of the transformed system 
 (obtained by MATLAB) are: 9.64, 5.89, 1.37, 1.10,  , , 

 and . Hankel Singular Values represent the relative 
importance of the state variables independently from realization. Consequently, 
model reduction can be fulfilled by omitting the state variables with small 
Hankel Singular Values. It can be seen that the structure of the state variables is 
the same as in the previous subsection: the first two Hankel Singular Values are 
much greater than the others validating the considerations applied in case of 
determination of PWPs. 



.7

21038.1  31032.4 
51003  61031.1 

E. Analyzing the results of reduction 

Linearized model in the normoglycaemic state is reduced with different 
ranks. Responses of the reduced models for 5% perturbation in the initial 
conditions can be seen in Fig. 3 and Fig. 4. Observing the trajectories it can be 
seen that the structure described above is plausible since the behavior of the 
original model can be more or less imitated with only two state variables and 
with the model of rank four no significant development is achieved. 

Results of the model reduction are examined in time and frequency domain. 
Since the models have two inputs and two outputs four transfer functions can be 
defined. In time domain impulse responses of the original, linearized model and 
the reduced models are compared (see Fig. 5 for one of the four possible 
transfer functions), whereas in frequency domain Bode diagrams are collated 
(see Fig. 6 for one of the four possible transfer functions). 

The investigation is realized in the normoglycaemic steady state, but it 
should be done in case of any steady state. The important frequency range is 
0.0002-0.2 rad/min [17]: noise dominates in higher frequencies and the 
dynamics of the sensor and the actuator (insulin pump) takes place in this range. 
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Figure 3: Plasma glucose concentration responses for 5% deviation at the normoglycaemic 

steady state of the reduced models of different ranks. 
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Figure 4: Plasma insulin concentration responses for 5% deviation at the 
normoglycaemic steady state of the reduced models of different ranks. 
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Figure 5: Impulse responses of Insulin(Exogenous glucose) transfer functions of the 

linearized models of different ranks. 
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Figure 6: Bode-diagrams of Insulin(Exogenous glucose) transfer functions of the 

linearized models of different ranks. 
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Examination results in reassuring observations: the second order model is 
more or less similar to the original behavior, but the precision is not enough. In 
contrast with this, the fourth order approximation produces almost identical 
behavior that the original, linearized model in frequency and time domain as 
well. 

Summarizing the achieved results, we can state that second order 
approximation is not enough, but fourth order is almost perfect which is not 
surprising considering biochemical and physiological principles. 

5. Conclusion 

This paper focused on a novel model offering a radical change in approach. 
As a result of the applied molecular point of view the cause-effect relations are 
more plausible and the processes can be described in a more exact and precise 
way. 

After a brief review of the earlier results, the molecular model was presented 
and described in detail from the aspect of control theory. Global control 
properties were determined by nonlinear analysis. Nonlinear analysis was 
followed by steady state linearization. First corner points were defined, but this 
approach could not ensure proper approximation of the model, hence 
physiological working points (PWPs) were defined for further LPV modeling. 
In order to reduce complexity model reduction possibilities were observed with 
physiological concerns as well as with mathematical ones and the results 
agreed. 

Physiological, biochemical and mathematical approaches were applied and 
conclusions were made by synchronizing the principles of the different fields of 
study. 
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