AcTta UNIV. SAPIENTIAE, INFORMATICA, 16, 2 (2024) 255-285

DOI: 10.47745/ausi-2024-0014

The Sapientia ECN Al Baseline Index:
Benchmarking Large Language Models Against
Student Performance in Competitive

Programming
Zoltan KATAI David ICLANZAN
Sapientia Hungarian University of Sapientia Hungarian University of
Transylvania Transylvania
Targu Mures, Romania Targu Mures, Romania
&9 katai_zoltan®Oms.sapientia.ro &9 iclanzan@ms.sapientia.ro
0000-0003-2343-3629 0000-0003-2587-9106

Abstract.

We introduce the Sapientia ECN Al Baseline Index, a benchmark for evalu-
ating the fundamental problem-solving capabilities of publicly available, state-
of-the-art Large Language Models (LLMs) in competitive programming. Using
basic prompting techniques on problems from the annual Sapientia Efficiency
Challenge Networking (ECN) competition, we assess LLMs’ baseline perfor-
mance, deliberately excluding more advanced enhancements like agentic sys-
tems or external knowledge retrieval.

Our initial study compares LLM results with those of student teams from
the ECN 2023 competition, analyzing both the number and types of problems
solved, as well as score distributions. By providing a consistent, longitudinal
measure, the ECN Al Baseline Index aims to track Al baseline capability ad-
vancement in complex problem-solving domains and offers insights into the
evolving strengths and limitations of LLMs relative to peak and median stu-
dent expertise.

Key words and phrases: competitive programming, Al program code gen-
eration

1 Introduction

In recent years, the rapid advancement of artificial intelligence has sparked new
possibilities in evaluating programming competition difficulty and participant skill
255
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levels. Programming contests, including globally recognized events like the Inter-
national Collegiate Programming Contest (ICPC) and Google Code Jam, have long
served as arenas for coders to test their problem-solving and algorithmic thinking.
These competitions demand not only proficiency in coding but also the ability to de-
vise efficient algorithms under strict time constraints. Similarly, the Sapientia-ECN
(Efficiency Challenge Networking) programming contest, organized by the Mathe-
matics and Informatics Department of Sapientia Hungarian University of Transyl-
vania, has established itself as a significant event in the region, adhering to ACM-
ICPC standards and attracting high school and university teams for over 15 years.
The competition provides a unique and challenging environment, allowing young
programmers to showcase their skills in a structured and competitive setting.

Determining an appropriate level of problem difficulty is essential to the success
of any programming competition, as it influences participant engagement, learning
outcomes, and the overall fairness of the event. A well-calibrated difficulty range
ensures that the contest remains accessible to participants of diverse skill levels,
fostering broader participation while maintaining a high standard. Balancing easy
and challenging problems not only sustains motivation among participants but also
enhances the educational impact of the competition, enabling students to develop
stronger problem-solving and algorithmic skills. This balance is crucial for con-
tests aimed at educational growth, as it prevents problems from being too trivial or
prohibitively complex, thereby enhancing participants’ sense of achievement and
satisfaction.

The increasing sophistication of large language models (LLMs) has introduced a
new method for evaluating problem complexity and solution effectiveness in pro-
gramming competitions. State-of-the-art language models, such as those based on
OpenAT’s latest offerings, now serve as a practical benchmark for assessing prob-
lem difficulty by simulating solutions generated with basic prompting techniques.
These models can provide a stable, consistent baseline for comparing Al perfor-
mance against that of human participants, offering organizers a quantitative ap-
proach to evaluate the complexity of contest problems. Furthermore, the qualitative
aspects of Al performance are increasingly relevant, as they allow us to delve into
not just the quantity of successfully solved problems but also the types of problems
that different models and human participants can address. By examining the distri-
bution of scores achieved by human competitors alongside Al results, we can gain a
nuanced understanding of how AI models handle various problem types compared
to human teams, thereby offering a holistic view of AI’s current strengths and lim-
itations.

This paper introduces the Sapientia ECN Al Baseline Index (EAII), a novel metric
that systematically evaluates the capability of publicly accessible LLMs in solving
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algorithmic challenges typical of programming competitions. By applying this in-
dex to the 2023 Sapientia-ECN contest, we aim to establish an accessible, replica-
ble baseline for Al performance, focusing on standard, straightforward prompting
methods that any user can implement. Through this comparative analysis, which in-
cludes both quantitative and qualitative evaluations, we assess the problem-solving
abilities of current LLMs, their limitations, and the variety of problems they can
tackle effectively. The EAII thus serves as a longitudinal tool, designed not only to
track the evolution of Al capabilities in competitive programming but also to offer
a unique perspective on the types of algorithmic challenges that remain difficult
for Al relative to human performance, as models continue to advance in complex
problem-solving domains.

2 Background

Program synthesis aims to automate the coding process by generating programs that
satisfy user-specified intents, a goal often considered the “holy grail” of computer
science [1], [2]. Achieving this would significantly enhance programmer produc-
tivity and broaden access to programming. Automatically creating programs from
high-level descriptions has long been a central challenge in computer science.

Developing Al systems capable of solving unforeseen problems by generating
code from descriptions is multifaceted, advancing our understanding of problem
solving and reasoning [3]. Solving competitive programming problems is a crucial
step in this field. It requires understanding complex natural language descriptions,
reasoning about novel problems, mastering diverse algorithms and data structures,
and precisely implementing extensive solutions [4]. Competitive programming,
which attracts hundreds of thousands of participants worldwide, provides robust
benchmarks for evaluating intelligence [5].

2.1 State-of-the-Art Models for Competitive Programming

Large language models (LLMs) have demonstrated remarkable reasoning capabil-
ities, though debates about their limitations and data contamination issues per-
sist [6]. Recent studies focus on evaluating LLMs’ abilities to solve expert-crafted,
competition-level programming problems, which demand deep understanding and
robust reasoning skills [6]. For example, the paper by Coignion [7] evaluates the
performance of LLM-generated code on Leetcode, a popular platform for coding
challenges. This research compares 18 different LLMs, analyzing factors such as
model temperature and success rates. The findings indicate that LLMs can produce
code with performance comparable to that of human-crafted solutions, suggesting
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that LLMs are capable of handling competitive programming tasks effectively [7].

Recent advancements of state-of-the-art models have led to remarkable progress
in machine assisted solving of competitive programming problems[8], with models
such as AlphaCode, AlphaCode 2, and OpenAT’s o1 achieving significant milestones.
These systems demonstrate Al’s growing capability to tackle complex coding chal-
lenges, with each model offering distinct approaches and achievements in the field.

DeepMind’s initial entry into this domain, AlphaCode, established a foundation
for Al systems in competitive programming by achieving rankings in the top 54.3%
of participants in simulated Codeforces competitions [4]. The system’s success
stems from its innovative methodology of generating millions of diverse code sub-
missions through transformer-based networks, followed by sophisticated filtering
and clustering processes that select up to ten submissions for final evaluation. This
approach marked a significant step forward in replicating human-like problem-
solving capabilities in programming contexts.

The subsequent development of AlphaCode 2 [9] represented a substantial ad-
vancement over its predecessor. This improved system demonstrates performance
levels surpassing approximately 85% of human programmers in competitive pro-
gramming scenarios, positioning it between the ’Expert’ and ’Candidate Master’
categories on Codeforces [10]. AlphaCode 2’s enhanced capabilities are attributed
to several key improvements, including a more sophisticated training methodol-
ogy utilizing an expanded dataset of programming challenges. The system achieves
nearly double the problem-solving efficiency of its predecessor, successfully resolv-
ing approximately 43% of problems within ten attempts, compared to the original
AlphaCode’s 25% success rate.

OpenAT’s newest model named o1 [11] seems to have has pushed the boundaries
even further [12]. It is reported to achieve rankings in the 89th percentile on Code-
forces [11]. The ol model’s success is rooted in its deliberate, reasoning-centered
approach to problem-solving, moving beyond the rapid response mechanisms char-
acteristic of earlier Al systems. This model distinguishes itself through its ability to
refine strategies, identify potential errors, and explore alternative methods to im-
prove accuracy. The training methodology emphasizes deep analytical thinking,
enabling the model to develop sophisticated problem-solving strategies that more
closely mirror human cognitive processes. Compared to its predecessor GPT-4, the
01 model demonstrates notably enhanced performance in tasks requiring precise
reasoning and stepwise analysis, particularly in advanced problem domains.

These developments collectively represent a significant evolution in AI’s capabil-
ity to engage in competitive programming, with each successive model demonstrat-
ing increasingly sophisticated approaches to problem-solving and higher levels of
performance in competitive scenarios. The progression from AlphaCode to Alpha-
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Code 2 and the introduction of the 01 model illustrate the rapid pace of advancement
in this field, suggesting promising directions for future developments in Al-driven
programming solutions.

3 Sapientia-ECN: a challenging programming competi-
tion

The Sapientia-ECN (Efficiency, Challenge, Networking) programming contest, orga-
nized by the Mathematics and Informatics Department of the Sapientia Hungarian
University of Transylvania, has been a prestigious event for more than 15 years, tar-
geting high school and university teams in the region. This competition follows the
ACM-ICPC (International Collegiate Programming Contest) format, providing an
excellent opportunity for young programmers to challenge their skills and compete
in a rigorous, yet rewarding environment.
In line with the ACM-ICPC style, the Sapientia-ECN competition features:

« Teams of Three: Each team consists of three members who collaborate to solve
problems. This encourages teamwork and effective communication.

« Single Computer: Teams are provided with one computer, simulating a real-
world scenario where resources are limited and must be managed efficiently.

+ English Language Problem Set: The problem set, written in English, ensures
that participants can compete on an international level and gain experience

with globally

« Five-Hour Duration: Teams have five hours to solve as many problems as they
can. This tests their ability to perform under pressure and manage their time
effectively.

The problems are designed to be of medium difficulty, striking a balance that
challenges participants while remaining accessible to a wide range of skill levels.
Solutions are evaluated based on correctness and efficiency, with no partial credits
awarded for incomplete or partially correct solutions. Solutions must be completely
correct to earn points.

To recognize the efforts of participants at different educational stages, the com-
petition awards prizes separately for high school and university teams. This ensures
a fair comparison and encourages participation from younger students, fostering an
early interest in computer science and programming.
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The mission of the Sapientia-ECN competition goes beyond just being a test of
programming ability. It provides participants with:

» Experience with ACM-ICPC Standards: By following the ACM-ICPC format,
participants gain familiarity with one of the most prestigious programming
competitions worldwide, preparing them for future contests at higher levels.

+ Networking Opportunities: The event brings together young programmers
from various institutions, promoting networking and the exchange of ideas.

« Skill Development: The problems are crafted to improve algorithmic think-
ing, problem-solving skills, and programming proficiency, essential traits for
future careers in technology and research.

In Conclusion the Sapientia-ECN programming competition stands out as a sig-
nificant event in the regional academic calendar. It not only fosters a competitive
spirit among young programmers but also prepares them for larger stages like the
ACM-ICPC. By participating, students gain invaluable experience, develop critical
skills, and become part of a vibrant community of problem solvers.

4 Annual Al Performance Evaluation

The ECN AI Baseline Index (EAII) is constructed as a relative performance index
that compares the easily and consistently achievable performance of Al systems in
competitive programming contests against the peak and median performances of
student teams. Each year, the Index uses publicly available state-of-the-art models,
accessible to any user, ensuring the performance is replicable without advanced
configurations, techniques or custom system setups.

4.1 Design of an Achievable Baseline

EAIl is not intended to represent the highest possible Al performance with state-of-
the-art techniques like retrieval-augmented generation (RAG) or agentic systems.
Instead, it focuses on a baseline score, one that any user could obtain using simple
and repeatable methods. In each evaluation cycle, the chosen models are used “as-
is”, with basic prompting. This establishes a fair and comparable standard over time,
ensuring that advancements in the metric reflect changes in general Al accessibil-
ity and capability, rather than specialized, advanced techniques or very resource-
intensive processes.

The prompt used to assess the AI models is minimal yet effective, constructed to
solicit a competent solution without additional guidance:
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As an expert competitive programmer, write a very efficient Python 3 so-
lution for the given problem. Read inputs from standard input and write
outputs to standard output.

This prompt is followed by the problem statement as provided in the ECN con-
test. By using a simple and consistent prompt, we ensure that the AI’s performance
is based on its inherent capabilities without the influence of intricate prompting
strategies and prompt engineering.

4.2 Limiting Al Solution Attempts for Fair Comparisons

Al systems can generate code rapidly and could potentially generate a very large
number of solutions until one succeeds. To mitigate this advantage we implement
a controlled evaluation procedure comprising two stages.

Local testing: The solution provided by the AI is first tested locally using the
example inputs and outputs provided in the problem statement. If the solution pro-
duces errors, such as runtime exceptions or incorrect results, a feedback loop is
created in the form of the error messages or observed incorrect behavior. If the
proposed solution involves precomputation, a technique commonly used in com-
petitive programming, the LLM is asked to separate the precomputation script and
indicate where the results should be placed in the final solution. The Al is allowed
a maximum of three rounds of error correction or enhancements at this stage.

Contest evaluation system: If the solution passes the local test, it is then submit-
ted to the automatic grading system of the contest. If the solution fails the system’s
checks, one final feedback loop is provided, where the Al is informed of the failed
test cases, along with standard error messages such as “Time Limit Exceeded” or
“Wrong Answer”. Only one round of feedback is allowed at this stage, limiting the
AT’s optimization opportunities to maintain comparability with human competitors.

By constraining the number of feedback rounds and aligning the evaluation pro-
cess with the standard contest conditions, we aim to limit the AI's potential ad-
vantage derived from rapid iteration and multiple attempts. This approach ensures
that the Al’s performance is measured under conditions comparable to those experi-
enced by human teams, who also have limited opportunities to debug and resubmit
solutions within the contest time frame.
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4.3 Baseline AI Performance

PTyy denotes the total number of problems the Al successfully solves according to
the conditions detailed above. A solution is considered successful only if it passes
all test cases in the automated judging system of the contest. A direct relative com-
parison can be used to evaluate Al performance in relation to student performance.

Relative Performance to Median (RPM):

PTa1 - Median(PTstudents)
RPM = x 100 1
Median(PTtudents) w

where:

o PTgtudents 1s the set of total problems solved by each student team.

« Median(PTydents) is the median number of problems solved by student teams.

Relative Performance to Peak (RPP):

PTa1 — Peak(PTspudents)
RPP = x 100 (2)
Peak(PTstudents)

where Peak( PTtydents) is the maximum number of problems solved by any student
team.

These metrics provide insights into how Al performance compares with both me-
dian and peak student performance, offering a multifaceted analysis of its capabili-
ties in relation to different benchmarks.

4.4 EAII Definition

In addition to RPM and RPP, which reflect AI’s position relative to specific student
performance points, the ECN Al Baseline Index (EAII) is designed to offer a com-
prehensive assessment by considering both median and peak student performances.
The EAII integrates these perspectives to provide a single, unifying metric:

PTp; — Median (PTyudents) + 1

EAIL = : x 100, (3)
Peak(PTstudents) - Medlan(PTstudents) +1

The EAIl measures the AI’s performance relative to the range between the median
and peak student performances, expressed as a percentage. Laplacian smoothing
ensures that the denominator is not zero in cases of uniform performance between
teams.
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4.5 Characteristics of the Metric

EAII provides a normalized scale, being a dimensionless quantity that normalizes the
AT’s performance between the median and peak student performances. This normal-
ization facilitates comparison across different contests and time periods, even when
the number and difficulty of problems might vary. As a relative performance indi-
cator, an EAII of 0% indicates that the AI's performance is equivalent to the median
student team, while an EAII of 100% signifies parity with the top-performing stu-
dent team. Values exceeding 100% imply that the Al outperformed the best student
team, whereas negative values indicate performance below the median.

The EAII metric becomes more sensitive when student performance is tightly
clustered. When the top and median teams score similarly, the performance devia-
tion between the student teams is low. Consequently, each problem the Al solves
or fails to solve causes a larger shift in its EAII score. This is because the metric nor-
malizes Al performance against the spread of student scores. With a narrow spread,
even small changes in Al performance result in dramatic changes to its relative po-
sition and final EAII score.

5 Experiments

Since AlphaCode 2 is not publicly accessible, we chose to conduct our experiments
using the available preview of OpenAI's new model, code-named o1-preview '. Un-
like AlphaCode 2, which is proprietary to Google DeepMind, the o1-preview model
was readily accessible via API calls. Consequently, in our experiments with ECN
2023 problems, we used ol-preview as the engine for the ECN Al 2023 (EAI2023)
solver.

5.1 ECN 2023 edition

The 2023 edition of the Sapientia-ECN competition took place on November 20,
bringing together 20 teams from Romania and Hungary, including 13 university
teams and 7 high school teams. Participants faced a diverse set of 14 problems,
ranging from relatively straightforward to highly challenging. The tasks spanned
a variety of topics, with a particular focus on dynamic programming (Tasks A, F,
I, N), classical algorithmic challenges (Tasks C, D, E, G, J), and problems involving
mathematical concepts or data structures (Tasks B, H, K, L, M). Several problems
required advanced techniques and optimizations, such as binary search (Tasks A,

"https://openai.com/index/introducing-openai-ol-preview/
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M) and precomputations (Tasks E, M). The contest demanded not only strong algo-
rithmic skills but also efficient implementations, posing a significant challenge even
to the most experienced competitors.

5.2 ECN 2023 problems

Below we present the essence of the proposed tasks. For the exact problem state-
ments visit the official website of the Sapientia-ECN programming competition 2.

5.2.1 Problem A: Gifts

Objective: Determine the optimal node in an induced subtree to add to a given list
of ‘generator nodes’ to get the closest possible sum to a specified value.

« Tree Structure: An undirected tree with N vertices, where Fanurie visits each
node in DFS order starting from node 1 and leaves gifts of increasing values.

« Subtree Induction: For each query containing a list of ‘generator nodes’, de-
termine the minimal subtree that includes each node in the list (the subtree
of the DFS tree rooted at the lowest common ancestor of the nodes in the
list) and identify the node in the induced subtree that, when added, brings the
list’s total gift value closest to a given sum S.

« Constraints: Multiple queries with varying K (number of generator nodes in
the list) and S (target sum), ensuring K + 1 nodes in the induced subtree.

+ Output: For each query, the optimal node to add, ensuring it is not already in
the list and choosing the smallest node in case of ties.
5.2.2 Problem B: Colors in Store

Objective: Determine the price each customer will pay for a tablecloth that matches
their color preference or indicate if no matching tablecloth is available.

« Each tablecloth has a unique price and two color attributes (front and back)
represented by integers from 1 to 3.

« Customers have a single favorite color and will purchase the cheapest avail-
able tablecloth with that color on either side.

Zhttps://ecn.ms.sapientia.ro/problems.php
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+ Customers are served sequentially, and each purchase removes a tablecloth
from the available options.

« For each customer, record the price paid or indicate if no suitable tablecloth
is available.

5.2.3 Problem C: Golden Primes

Objective: Write a program to identify all values of n for which p, a golden prime,
is less than a given threshold b.

+ Golden Prime Definition: A golden prime is a prime number of the form p =
¢? — ¢ — 1, where ¢ = 2" and n is a positive integer.

« Input: A single positive integer b (where b < 2'090) serving as the upper
bound for p.

« Output Requirements: Print each value of n (one per line) for which p is a
golden prime and less than b.

5.2.4 Problem D: Egyptian Fractions

Objective: Develop an algorithm to compute all possible Egyptian fraction represen-
tations for a given fraction, using the fewest possible terms.

« Egyptian Fraction Definition: An Egyptian fraction is a representation of a
fraction as a sum of distinct unit fractions (fractions with numerator 1), such
17 _ 1

1,1 _ 1,1
sz =5 tutr =71 10

« Input: Several lines, each containing a fraction in the form £, where a and b
are positive integers and 0 < a < b.

+ Output Requirements: (i) Each line should display the minimum number of
unit fractions in the Egyptian representation, followed by the denominators in
lexicographically ordered parentheses; (ii) If multiple minimal representations
exist, list each distinct set of denominators in lexicographical order.

5.2.5 Problem E: F. Lanovka — The cable car

Objective: Determine the minimum number of units needed to increase the heights
of selected peaks to install a cable car system of length K with smoothly ascending
columns in the Vector Vista Mountains.
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+ Peak Requirements: There are N peaks in total, and columns need to be in-
stalled on K consecutive peaks.

o Column Heights: The highest point of the cable car columns (peak + col-
umn) should reach height H, with subsequent heights on the remaining K — 1
columns descending by 1 unit each ie, H -1, H-2,.., H - K + 1).

« Direction of Installation: The cable car path starts from the rightmost peak
and goes leftward.
5.2.6 Problem F: Kings Again

Objective: Calculate the number of ways to place K kings on an N X M chessboard
without them attacking each other.

 Chessboard Rules: Kings can attack each other if they are on adjacent cells
(horizontally, vertically, or diagonally).

« Input: Multiple test cases, each specifying the values of N, M, and K.

« Constraints: Fach test case requires calculating the number of valid place-
ments modulo 107 + 7.

+ Output: For each test case, the number of ways to place the K kings.

5.2.7 Problem G: Breaking a Quantum Cryptography Machine

Objective: Analyze intercepted cryptographic messages and their solutions to de-
duce the operating principles of an enemy quantum cryptography machine and re-
implement its functionality in C/C++.

« Intercepted Messages: Access to captured messages along with their verified
solutions, provided by the Secret Service.

+ Objective of Analysis: Identify and understand the underlying encryption
principles used by the quantum cryptography machine based on the given
examples.

5.2.8 Problem H: ”Optimizing” Ascent: Navigating Bear-Dangerous Terri-
tory in a Binary Matrix Mountain

Objective: Calculate the minimum number of steps taken through dangerous (in-
ternal) regions to ascend from the base to the summit of a multi-level "mountain”
represented by concentric binary matrices.
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« Mountain Representation: The mountain has n levels, each encoded as an
m X m binary matrix where: (i) A value of 1 represents mountain points; (ii)
Each level’s 1s form a connected region, including boundary points.

« Concentric Structure: Levels are “concentric”, meaning if a point is 1 at level
I,itisalso 1 atleveli—1,fori=2,...,n.

+ Summit Configuration: The top level (last matrix) has a single 1, marking the
mountain peak.

+ Climbing Constraints: (i) Start at any boundary (edge) point on level 1; (ii)
Move from the edge of each level to the next level’s edge, aiming to reach
the summit in the fewest steps through internal points; (iii) Moving between
levels or along any edge is considered safe, as bears avoid these regions.

5.2.9 Problem I: Hamilton

Objective: Calculate the shortest route Hamilton, Santa’s favorite elf, must take to
deliver packages to all the mailboxes on a specific stretch of road.

» Coordinates: The road is 10000 meters long and 15 meters wide. Each mailbox
has known coordinates (x,y) where 0 < x < 10000 and 0 < y < 15. The
x-coordinates (abscissas) are unique for each mailbox, but the y-coordinates
(ordinates) may repeat.

+ Movement Constraint: Hamilton must traverse the mailboxes such that their
x-coordinates first continuously increase and then continuously decrease, en-
suring an efficient round trip.

« Start and End: The route starts at the first mailbox, covers all mailboxes, and
returns to the starting point.

+ Output: A single real number representing the length of the shortest route,
printed with exactly six decimal places.

5.2.10 Problem J: Find the Identical Twins and Triplets

Objective: Identify and display groups of identical twins or triplets from a population
database (n < 160000) who share the same DNA signature, including only those
groups where at least one member is adopted.
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« Database Structure for each individual: Personal Code (a unique 31-bit posi-
tive integer); DNA Signature (a string of up to 11 uppercase letters); Adoption
Status (character ’A’ for adopted, -’ otherwise); Name (up to 27 characters,
may include whitespace).

» Unique Code Assignment: Consecutive personal codes in ascending order
may have gaps, especially after assigning codes to twins or triplets. (Twins
and triplets with the same DNA signature are guaranteed to appear consecu-
tively in the sorted database by personal code)

« Grouping Requirement: (i) Identify groups of individuals with the same DNA
(identical twins or triplets); (ii) Display only those groups containing at least
one adopted member.

5.2.11 Problem K: Dependencies

Objective: Develop a program to determine if specified sequences of AWS resources,
as defined in a CloudFormation template with dependencies, can be created in the
given order. Identify any problematic resources that cannot be created due to de-
pendency constraints.

« The input includes

- R (1 £ R < 100) lines with resources and their dependencies in the
format: Resource ID (alphanumeric, up to 20 characters) followed by a

35 9

colon ("), and then a space-separated list of its dependencies;

- S (1 £ § < 100) lines with space-separated resource IDs representing
the order in which resources are intended to be created.

« Output Requirements:

— If all resources can be created in order, print "No problematic resources”.

— If some resources cannot be created in order: (i) For one problematic
resource, print "Problematic resource: ” followed by the resource ID;
(ii) For multiple problematic resources, print "Problematic resources: ”
followed by the space-separated list of all problematic resource IDs in
the order they appear in the sequence.
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5.2.12 Problem L: Windmill-lottery

Objective: To simulate a national lottery system in "Windmillia” and output the re-
sult of each draw based on specified rules. The simulation involves generating num-
bers and performing draws as per certain calculations, with numbers being assigned
to two lines (Line; and Lines) or used in a draw depending on modular conditions.

« Line and Number Generation:

— Numbers are generated based on provided formulas involving constants

a, b, c,and d.

— Line assignment is determined by another formula with constants L,
Ly, L.,and L.

— If Line, value is 1 or 2, Number, is assigned to the corresponding line.
If Line, is 3, a draw is performed if the two lines have the same parity
of count.

o Draw Process:
— Condition for Draw: A draw can only occur if both Line; and Lines
contain an even or odd number of elements.

— Sorting: Both lines are sorted before the draw.

— Rotation: Lines is rotated by rotationCount based on the calculated mid-
dle point.

- Offset Calculation: An offset O f f'set; is calculated to find specific posi-
tions from the middle point in each line.

- Winning Number: Using the middle point and offset, two values are
summed (taking 0 if a line is too short), and their modulo m is taken as
the winning number.

« Special Calculations:

— Middle Point Determination: Adjustments are made for odd/even counts
in each line.

— Modulo m: Where m is the maximum value currently present across
both lines.
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5.2.13 Problem M: Modpute

Objective: To simulate the Modputer machine’s behavior and calculate the total
number of updates applied to its internal state array after processing a sequence
of input integers. Each update occurs when an element in the state array is divisible
by the current input integer.

« Internal State Array (A):
— The machine’s internal state is represented by an array A of N positive
integers.
— Each element in this array is subject to updates based on divisibility
checks against the input integers.
« Input List:
— A sequence of M positive integers, each greater than 1, is processed one
by one.
— For each integer D in this input, the machine checks each element in A
to see if it is divisible by D.
+ Update Mechanism:
— For each integer D in the input: If an element A[7] in the state array is
divisible by D, it is incremented by one.
— The operation is repeated for each integer in the input list, potentially

causing multiple updates to each element in A.

« Count of Updates: Track the number of updates for each element in A and
calculate the total number of updates across the entire array.
5.2.14 Problem N: Carpathian Riders

Objective: Plan an optimal motorcycle trip across the Carpathian Mountains on a
grid of elevations.

+ Grid Structure: The grid has R rows and C columns, with elevation values
between 0 and 1000, and impassable cells marked as -1.

« Movement: The gang can move east, northeast, or southeast, starting from
any passable cell on the western edge and aiming to exit on the eastern edge.
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« Constraints: The trip must visit exactly P mountain passes, where a mountain
pass is a cell with a higher elevation than its eastern and western neighbors
and a lower elevation than its northern and southern neighbors.

+ Goal: Minimize the sum of elevations along the trip while meeting the pass
constraints.

+ Output: The minimum sum of elevations for a valid trip or "impossible” if no
such trip exists.

6 Results and Discussion

Metric Value
Students Maximum Problems Solved (Max(PTgudents)) 8
Students Minimum Problems Solved (Min(PTgtudents)) 0
Students Mean Problems Solved (Student mean PT) 2.47
Students Median Problems Solved (Median(PTstudents)) 2
Students PT Standard Deviation (STD (PTgudents)) 2.34
EAI2023 Total Problems Solved (PTar) 10
EAI2023 Solved Percentage (SP) 71.42%
EAI2023 Partially Solved 3
Relative Performance to Median (as defined in Equation 1) 400%
Relative Performance to Peak (as defined in Equation 2) 25%

2023 ECN Al Baseline Index (as defined in Equation 3)  128.57%

Table 1: Key metrics

Performance statistics and key metrics are presented in Table 1. The problem-
solving rates for each student team and the outcomes of EAII2023 are shown in
Table 2. Additionally, the distribution of the number of problems solved by student
teams is illustrated in Figure 1.

The problem-specific solving rates are visualized in Figure 2, which indicates
varying levels of difficulty across different problems. Problems A and B were solved
exclusively by student teams, while Problems C and D were solved solely by the Al
system.

The box plot in Figure 3 provides a statistical summary of student performance,
and Figure 4 reveals the correlations between different problems.

The results of this study underscore distinct problem-solving patterns between
student teams and the EAI2023 Al system, particularly in terms of problem-specific
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Problem EAI2023 Solved Student Teams Solved Percentage of Teams Solved

A Partially 1 5.26%
B Partially 6 31.57%
C Yes 0 0%
D Yes 0 0%
E Yes 7 36.84%
F Yes 1 5.26%
G Yes 16 84.21%
H Yes 2 10.52%
I Yes 2 10.52%
] Yes 3 15.78%
K Yes 4 21.05%
L No 0 0%
M Partially 0 0%
N Yes 5 26.31%

Table 2: Problem-solving rates

strategies and advanced techniques. Metrics such as Relative Performance to Me-
dian (RPM) and Relative Performance to Peak (RPP) allow us to quantitatively assess
the strengths of EAI2023 relative to student performance. Furthermore, qualitative
analysis offers additional insights into how the unique requirements of each task
shaped the outcomes, revealing important pedagogical implications for training in
competitive programming,.

6.1 OQuantitative Analysis of Performance

As shown in Table 1, EAI2023 demonstrated outstanding performance, outperform-
ing the median student team by an impressive 400% (RPM, Equation 1) and excelling
across nearly all tasks. With a record-breaking 10 solved tasks, it exceeded the peak
performance of the top student team by 25% (RPP, Equation 2), further cementing
its reputation as a highly capable and effective problem-solving system.

The problem-specific analysis in Figure 2 reveals significant variances in diffi-
culty across problems. Problems such as C and D, which were solved exclusively
by EAI2023, highlight areas where the Al may have distinct advantages in system-
atic problem-solving under strictly defined test conditions. Conversely, Problems
A and B, which were partially solved by students but not fully by EAI2023, may
indicate situations where students displayed creative or heuristic-driven problem-
solving abilities that the Al did not replicate fully. Problem G stands out as the most
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Distribution of Problems Solved by Student Teams vs. EAI2023
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Figure 1: Distribution of total problems solved by student teams compared to
EAI2023. The red dashed line indicates EAI2023’s performance.

frequently solved problem among students (84.21% of teams), suggesting that cer-
tain types of problems align more closely with human problem-solving strategies
than with Al-driven methods.

Figure 3 further illustrates the distribution of total problems solved by students,
with the red dashed line marking the AI’s score of 10 problems. The spread of stu-
dent performance, reflected in a standard deviation of 2.34, points to a wide range
of competencies among participants. This variability, combined with the solid per-
formance of Al suggests potential opportunities for future Al improvements aimed
at bridging the gap in partially solved or creative problem types.

Finally, Figure 4 provides an overview of problem-solving correlations, though
these patterns should be interpreted with caution due to the small sample size. For
example, the observed perfect correlation between Problems H and I likely stems
from these problems being solved only by the winning team, rather than indicat-
ing a significant general trend. Nevertheless, exploring such correlations in larger
datasets could offer insights into how certain types of problems may cluster or in-
teract, potentially guiding further Al development.
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Problem Solving Rates by Student Teams vs. EAI2023
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Figure 2: Problem-specific solving rates comparing student teams’ performance
with EAI2023. The green bars represent the percentage of student teams that solved
each problem, while the red line shows whether the EAI2023 solved the problem or
not.

6.2 OQualitative Analysis of Performance

The efficient solution of four tasks (A, F, I, N) required the application of a specific
programming technique: dynamic programming (DP). Notably, the Al correctly
identified the need for dynamic programming in all instances. For task N, the Al
provided a valid solution in the first round, but it fell short in terms of speed for one
test case, likely due to generating Python code, which is generally slower than lan-
guages like C. The Al correctly determined that a 3D DP array dp[r][c][p] should
be used, where r represents the row index, ¢ the column index, and p the number
of passes visited so far. In round 2, aiming to optimize performance, the Al tried to
enhance the solution by implementing Dijkstra’s algorithm. However, the Python
version of this approach was even slower, resulting in a "time limit exceeded” error
for two test cases. Learning from this, the Al returned to the dynamic programming
approach and chose a more efficient data structure in Python, which ultimately re-
sulted in a solution that was accepted for all test cases. Among the teams, five
successfully solved this problem, with one team submitting a correct solution on
their first attempt.

Task I was a specific variation of the Traveling Salesman Problem (TSP), known
as the Bitonic TSP. Although this was not explicitly mentioned in the problem de-
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Distribution of Problems Solved by Student Teams

Total Problems Solved (PT)

0 ---- EAI2023 PT

Figure 3: Box plot showing the distribution of total problems solved by student
teams. The red dashed line indicates EAI2023’s score, with 10 problems solved.

scription, the AI quickly recognized the nature of the problem. In the first round, it
correctly formulated the recursive equations for computing the Bitonic Hamiltonian
Paths but made an error when extracting the optimal length of the Bitonic Hamil-
tonian Cycle from the completed DP table. The Al recognized that it was dealing
with a two-dimensional DP problem and accurately identified the general structure
of the bitonic path subproblems: dp[i][j] represented “the minimal total distance
of a path that starts at mailbox 0 (leftmost), goes to mailbox i, then to mailbox j, vis-
iting all mailboxes from 0 to j exactly once”. When populating the DP array, the Al
correctly distinguished between two cases: when i and j are consecutive mailboxes
in the sorted order, and when they are not. In the second round, it successfully fixed
the bug by ensuring that, when calculating the minimal total distance (the length of
the Bitonic Hamiltonian Cycle), it considered all possible bitonic Hamiltonian paths
ending at the rightmost point, not just those starting from the leftmost point. Only
two teams managed to solve this problem—the first and second place teams—both
on their first attempt.

Task F was also straightforward for the Al to recognize, as it involved a clas-
sic chessboard problem: determining the number of ways to place k kings on an
n X m chessboard without them attacking each other. In the first round, the Al
employed a similar approach to the one proposed by the task’s author, who sug-
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Correlation Matrix of Problems Solved by Student Teams
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Figure 4: Correlation matrix showing the relationships between different problems.
Darker red colors indicate positive correlations, while darker blue colors indicate
negative correlations. The values range from -1 (perfect negative correlation) to 1
(perfect positive correlation).

gested an O (n?m?2%™) solution. However, this approach alone was not sufficient
to meet the time limit. The author applied a clever trick, embedding precomputed
results into the code. After we informed the AI of this optimization, it success-
fully implemented the trick. Interestingly, one of the competing teams devised a
faster solution (O (nmkC? + tC)), t: number of test cases) that did not rely on the
precomputed trick. Moreover, after the competition, a member of the competition
committee further optimized this solution.

For task A, efficiently solving one of the subtasks required the use of dynamic
programming, specifically through the technique of binary lifting—a method that
was not widely known among the competitors. (Only the team trained by the au-
thor successfully solved this task.) Despite this, the Al immediately recognized the
need for binary lifting to calculate the Lowest Common Ancestor (LCA) and applied
it correctly. However, it misunderstood the task’s definition of the “subtree induced
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by a list of nodes”, leading to an incorrect solution in the first round. In the second
round, while the Al identified its earlier mistake, it failed to recognize that this cor-
rection opened up an opportunity for further optimization. Instead, it modified its
previous approach to fit the new understanding, resulting in an algorithm that still
wasn’t fast enough. The Al missed the fact that the nodes of the induced subtree
form a consecutive segment in the DFS-ordered node list, and as a result, the cor-
responding value list was sorted in increasing order, making it possible to apply a
binary search algorithm.

Two tasks required a solid mathematical background. Task C involved a seem-
ingly simple prime number test but for extremely large numbers. The author pro-
vided a Python solution for this task, a language not permitted in the competition,
and relied on the isprime function, which is known to use a probabilistic approach
beyond a certain threshold. This made the task’s inclusion in the competition some-
what controversial. In the first round, the Al also used the isprime function. How-
ever, since the competition’s official judging system, although allowing Python sub-
missions outside the competition, did not support the sympy library (which isprime
depends on), we informed the Al of this limitation. In the second round, the Al ex-
plicitly implemented the Miller-Rabin test with 20 iterations for reliability, produc-
ing code that returned an “accepted” result for all test cases. Unsurprisingly, none of
the teams solved this task, and understandably, only those with limited competition
experience attempted it.

For task D, the Al quickly recognized the need to dynamically generate a rooted
tree and search for the shortest path from the root to a solution leaf. The author’s
solution used a BFS search since the goal was to find the shortest decomposition.
The main challenge was limiting the number of branches at each node. The au-
thor applied a clever trick, based on mathematical results vaguely hinted at in the
problem description: estimating the maximum depth of the tree with a relatively
small value and using this estimate to determine the maximum number of branches
each node could have. Interestingly, the Al also realized that the solution depended
on determining the maximum possible denominator for the next term based on the
estimated tree depth. However, instead of guessing this limit, the Al repeatedly gen-
erated the tree and performed searches at increasing depths —1, 2, and so on— until
it found a solution. In this approach, it was natural for the Al to initiate a DFS search
in each iteration. The AI's code passed all test cases on the first attempt. During the
competition, only one team attempted this task, but they were unsuccessful.

Many tasks required the use of appropriate built-in data structures, combined
with efficient access algorithms like binary search, to achieve correct, efficient, and
elegant solutions. These tasks were particularly well-suited to experienced competi-
tors but also aligned with the AI’s strengths. For instance, task B naturally called
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for a set, task E for an interval or segment tree, task G for a stack, task L for a
multiset, and task M for a vector of sets, among others. Another common feature
across several tasks was that certain precomputations significantly accelerated the
algorithms. Examples include task E (precomputing sums and maximums for all
consecutive fixed-length segments), task I (precomputing and storing all Euclidean
distances), and task M (precomputing and storing all divisors to avoid repeated di-
visibility checks). These tasks favored both seasoned competitors and the Al alike.

Task G was the most frequently solved problem, with 16 out of 19 teams com-
pleting it. The challenge was to recognize that the problem revolved around the
stack data structure, though it was presented in a coded form based on the given
examples. Teams had to implement this solution, either by using the built-in stack
structure or by directly coding it, for instance, with an array. Unsurprisingly, the
Al successfully solved this task on its first attempt.

Task K was fairly straightforward, as it required implementing the algorithm di-
rectly from the problem description. No advanced optimizations were necessary
due to the relatively small input size. Three teams—all of them podium finishers—
worked on this task, with each solving it correctly. Both the first- and second-place
teams succeeded on their first attempt, as did the Al It is likely that the highly tech-
nical nature of the problem statement discouraged other teams from attempting it,
as it appears they did not even engage with the task (at least, no solutions were
submitted).

Another task that the Al solved on its first attempt was Task H. The author’s
proposed solution used a modified version of the Lee algorithm, which is generally
well-known among experienced competitors. Due to the relatively small input size,
no additional optimizations were needed to meet the time limit. The Al similarly
employed a BFS-based approach, which is the core of the Lee algorithm. The top
two teams also solved this task successfully on their first submissions. Meanwhile,
one other team attempted it, submitting their code 12 times unsuccessfully—making
it the most attempts for any task in the competition.

Task ] presented a relatively simple challenge. The key requirement was efficient
sorting, and once the array was sorted, the solution could be easily extracted, as the
relevant items would naturally align next to each other. Despite 11 teams attempt-
ing this problem, only 3 succeeded in scoring points. It was later revealed that there
was an error in the input file, and depending on the chosen strategy, teams either
encountered or bypassed this issue. In the first round, the Al overlooked a crucial
detail in the input specification, leading to faulty code. Although it corrected this
in the second round, it once again missed the opportunity to leverage the benefits
of a proper understanding of the problem, as it had with Task A. Instead of opti-
mizing its approach, it merely extended the previous method to the new situation.
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Nonetheless, the AI’s proposed solution, though unnecessarily complex, ultimately
proved correct and fast enough.

Task B was attempted by nearly every team (17 in total), but only 6 managed to
receive an “accepted” result. The author sorted the tablecloths into three sets, as
their fronts or backs could only fall into one of these categories. Interestingly, the
Al also identified this as a natural approach, but instead opted for a more complex
Python data structure in the hopes of creating a more efficient algorithm. However,
it became overly complicated and failed to fix the solution even in the second round.

Task E was solved by 7 teams, making it the second most-solved problem. The
author used an interval tree to efficiently find the maximum in different segments.
The Al however, provided a sufficiently fast solution by cleverly utilizing the deque
data structure. While it made an error during the first round’s maximum calculation,
it corrected the mistake in the second round.

Tasks L and M were not inherently difficult but rather complex in their formula-
tion. The convoluted wording of Task L may have discouraged participants, as no
submissions were made for this problem. The author’s solution involved implement-
ing a custom heap structure, though the competition committee later introduced
simpler alternatives, one of which relied on the built-in multiset data structure. For
full context, it’s worth noting that the creators of these alternative solutions had
to consult the original task author due to misunderstandings or incorrect interpre-
tations of the task description. This ambiguity may explain why the Al-generated
code failed to produce output and likely contributed to teams’ hesitation to engage
deeply with the problem, resulting in no submissions.

For Task M, a straightforward naive solution was relatively easy to implement,
but the challenge lay in optimizing each subtask and applying various advanced
implementation techniques. One such technique involved precomputing divisors,
while another clever approach by the task author involved storing the positions or
indices of input array elements in sets to enable efficient retrieval through binary
search. The Al’s initial solution produced incorrect results, even for the example
provided in the problem description. In the second attempt, the AI corrected this
issue, but its algorithm was still too slow for 3 out of 9 test cases. It seems that the
AT’s optimization strategies—such as associating frequency arrays with both input
arrays and using the Sieve of Eratosthenes to precompute the smallest prime factor
for all numbers up to MAX (300,000 in this case) to accelerate factorization—were
insufficient in terms of both efficiency and precision. Only one prize-winning team
managed to submit a solution for this task, but it was ultimately unsuccessful. Other
teams that attempted the task multiple times, also without success, generally ranked
lower on the leaderboard.
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6.3 Pedagogical Insights and Lessons Learned

The analysis of Al solutions, task author approaches, and team performances reveals
important pedagogical insights, especially valuable for developing effective compet-
itive programming training. These insights can help shape training strategies and
highlight common pitfalls to avoid.

6.3.1 Technique Familiarity vs. Flexibility in Approach

Certain tasks required advanced techniques like dynamic programming for tasks
A, F I, and N, and binary lifting specifically for task A. While both the Al and the
task author correctly applied binary lifting for task A, only the author-trained team
among competitors used it, underscoring the need for explicit training in specialized
algorithmic strategies. Familiarity with less commonly known methods like binary
lifting, which can bring considerable efficiency gains, is essential for competitors
aiming to improve performance.

6.3.2 Programming Language Constraints and Optimization Awareness

Task C, which required large prime number tests, highlighted the impact of pro-
gramming language limitations. Both the task author and Al initially used Python’s
isprime function from the sympy library, which was unavailable in the compe-
tition’s environment. The AI’s pivot to a custom Miller-Rabin test implementa-
tion emphasizes the importance of preparing students to handle unexpected con-
straints and limitations. Competitors should practice adjusting strategies based on
language-specific features and know when to implement fallback methods.

6.3.3 Strategic Use of Precomputation and Data Structures

Tasks E, I, and M demonstrated the substantial advantages of precomputing values
to optimize complex calculations. While the AI often identified opportunities for
precomputation, the majority of teams did not, highlighting the need for training in
recognizing precomputation opportunities early in problem-solving.

Additionally, task-specific data structures played a vital role in solution optimiza-
tion (e.g., sets for task B, deques for task E). While the Al generally applied these
structures effectively, many teams did not. For students, mastering data structures
and quickly assessing their applicability in different scenarios can significantly en-
hance performance and reduce complexity.
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6.3.4 Error Recovery and Revisiting Problem Understanding

In tasks A and J, the Al initially misunderstood problem requirements. Although
it corrected these errors, it continued refining its original flawed approach instead
of reassessing the solution with the clarified requirements. This tendency, common
among learners, to stick to an initial solution path can hinder progress even after
gaining new insights. Training should encourage students to consider a "reset” ap-
proach once key misunderstandings are resolved, promoting a fresh perspective that
could reveal simpler or more efficient solutions.

6.3.5 Clarity and Ambiguity in Problem Statements

Tasks L and M demonstrated how complex or ambiguous problem wording can be
a significant barrier. Both competitors and the AI struggled with interpretation,
especially for tasks requiring custom structures or specific mathematical insights.
This underscores the importance of training competitors to deconstruct complex
descriptions, focus on core requirements, and approach ambiguous problems with
resilience, enabling them to tackle even the most challenging wording effectively.

6.3.6 Reinforcing Mathematical and Theoretical Background

Some tasks required specialized mathematical insights, such as understanding the
bitonic Traveling Salesman Problem for task I or efficiently testing large prime num-
bers in task C. Few competitors attempted these problems, which highlights the
value of strengthening students’ mathematical reasoning and theoretical knowledge
as part of competitive programming training. Advanced-level training should incor-
porate more complex mathematical challenges to develop these critical skills among
competitors.

6.4 EAII Advatnages and Limitation

EAII offers several advantages for longitudinal analysis. By normalizing perfor-
mances, the EAIl ensures comparability over time, remaining consistent across con-
tests with differing problem sets and participant pools. This consistency enables
meaningful longitudinal comparisons of Al capability advancements. Using the me-
dian student performance enhances robustness to outliers, reducing the influence
of extreme values and skewed distributions and providing a more stable reference
point, especially in datasets with small sample sizes. The metric also provides a
compact insight, capturing the AI’s relative standing within the spectrum of stu-
dent performance and offering insights into both average (median) and peak human
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capabilities. EAIl’s percentage scale enhances interpretability, facilitating straight-
forward communication of results.

EAII has certain limitations. It is dependent on the student performance distri-
bution and sensitive to factors unrelated to the AD’s capabilities, such as changes
in participant demographics or preparation levels. In contests with a limited num-
ber of student teams, the median and peak may not accurately represent typical or
maximum human performance, potentially skewing the EAIIl due to the impact of
small sample sizes. The metric assumes a linear relationship between the median
and peak performances, which may not capture the nuances of performance distri-
butions, particularly if the spread is uneven or significant gaps exist between top
performers and others. Additionally, the EAII focuses on two specific points—the
median and peak—and does not account for the full distribution of student perfor-
mances, which might provide additional context.

The EAII is inherently influenced by the total number of problems presented in a
contest, as the sheer volume can affect the performance outcomes for both Al and
human teams. In instances where a large number of problems are available, human
teams may struggle to address all of them within the five-hour time limit of the
contest. This limitation could inadvertently advantage the AL

To address some of these limitations, incorporating additional statistical measures
such as the interquartile range (IQR) might add more stability to the metric. The IQR
considers the spread of the middle 50% of the data, making it less sensitive to extreme
values. However, reliably computing quartiles requires an even larger sample size
with many participating teams. In contests with a small number of participants,
quartile calculations may be less robust, potentially limiting the effectiveness of
IQR-based adjustments.

7 Conclusions

The ECN AI Performance Index (EAII) introduced in this paper provides a normal-
ized, interpretable metric for comparing Al and human performances in competi-
tive programming contests. By incorporating both median and peak performances,
the EAIl benchmarks the AI’s capabilities against both average and top-performing
competitors, offering a well-rounded perspective on AI’s standing within human
standards of excellence. This dual reference point makes EAII particularly valuable
in identifying not just raw Al performance but also the areas where Al approaches
human problem-solving strengths, as well as areas where it lags behind.

In this analysis, the EAII has proven effective in capturing the AI's competen-
cies and limitations across a range of tasks, revealing both the current status and
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developmental potential of Al systems in this domain. For example, our qualita-
tive analysis highlights that the Al is well-suited to problems requiring systematic
approaches, such as dynamic programming or binary lifting. However, tasks involv-
ing flexible heuristics, creative partial solutions, or complex mathematical reason-
ing sometimes challenge the Al, indicating opportunities for further enhancement
in these areas. By tracking such nuances over time, the EAII allows us to observe
shifts in AT’s problem-solving capabilities and to identify specific areas for potential
improvement.

The EAIl’s design also accommodates variations in contest conditions and par-
ticipant performance distributions, making it a robust tool for longitudinal analysis
across multiple competitions. Although limitations exist—particularly with respect
to sample size and distribution assumptions—EAII nonetheless provides an invalu-
able metric for evaluating the evolution of Al in competitive programming, tracking
AT’s progress with accessible metrics that reflect achievable benchmarks rather than
optimal outcomes. This ensures that the EAII remains widely applicable and inter-
pretable over time, as it is not tied to specialized optimization techniques that could
obscure true progress in baseline Al capabilities.

Importantly, EAIl is intentionally designed to reflect a consistent, achievable bench-
mark rather than the maximum potential performance attainable with highly ad-
vanced techniques. While agent-based systems [13]-[15], retrieval-augmented gen-
eration [16]-[18], or other sophisticated methods could indeed push Al capabilities
further, our focus is on establishing a baseline that is accessible to anyone using
straightforward prompts and publicly available models. This baseline provides a
reference point for tracking Al progress over time without the confounding effects
of specialized techniques and customized optimization strategies. In this way, the
EAII supports transparent and meaningful assessment of Al progress, helping re-
searchers and practitioners understand the real-world applicability and constraints
of Al within competitive programming contexts.

Overall, EAII is a stepping stone for understanding AI’s evolving role in problem-
solving, offering insights that extend beyond mere performance scores. By captur-
ing a nuanced view of AI’s strengths, limitations, and growth areas, the EAII fosters
a richer understanding of AI's development trajectory and its potential for reach-
ing, and perhaps one day surpassing, human performance benchmarks in complex
problem-solving domains.
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Disclaimer: LLMs were used to enhance the phrasing and flow of this manuscript. How-

ever, all core content - including the research concept, experimental design, data analysis,

results, and scientific interpretations - are solely the product of authors’ work. The Al lan-

guage models were used exclusively to improve the clarity and presentation of our research

findings.
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