
Acta Univ. Sapientiae, InfoRmatica, 16, 2 (2024) 236–254

DOI: 10.47745/ausi-2024-0013

A large-scale analysis of production effort
changes in software projects

Kristóf Szabados
Eötvös Loránd University

Budapest, Hungary
SzabadosKristf@gmail.com

Abstract.
Although software is essential to modern society, its development process

remains poorly understood. It is easy to find tools/techniques/methods pro-
moted to help reach ever-higher production volumes and great improvements,
even though this contrasts previous academic observations.

This study aims to expand on previous research regarding the evolution
of software development efforts by analyzing a large dataset of contemporary
open-source projects.

We examined 875 popular and largeGitHub repositories and found a strong
correlation between accumulated effort and quadratic functions of time, in
73% of projects, with linear models applicable in 41%. Our analysis of long-
term trends suggests that no major external events (e.g., economic downturns,
technological shifts) have impacted significantly all projects over the past 25
years.

These findings challenge the perception of rapid, exponential improve-
ments in software development efficiency. While further research is needed,
our results suggest a disconnect between software development’s perceived
and empirical realities.

Key words and phrases: Empirical Study, Large-Scale, Software Evolution,
Longitudinal, Conway’s Law, Mirroring Law, Lehman’s Laws, Software De-
velopment Tools, Software Engineering Laws, Sustainability, Cost Reduction

1 Introduction

Software is ubiquitous in modern society. It helps us navigate, communicate, and
manage energy resources. It drives companies, trades on markets, and supports
healthcare.

236

http://dx.doi.org/10.47745/ausi-2024-0013
mailto:SzabadosKristf@gmail.com


A large-scale analysis of production effort changes in software projects. 237

Developing large-scale software systems often takes years and is an effort-intensive
endeavour. Accelerating software development could have a positive impact on
both economic growth and social well-being. Improving efficiency could improve
results, reduce costs and free up resources for other activities.

Given the decades-long history of software development, we have access to a
wealth of empirical data. By analysing the source code repositories of open-source
projects, we can gain valuable insights into the factors that influence development
efforts. This will ensure that upcoming development efforts are based on a solid
foundation of evidence-based practices and strategies instead of assumptions and
speculations. By examining historical trends, we can uncover hidden correlations
and potential causal relationships between external factors and development efforts,
ultimately enabling us to make more informed decisions and optimise our develop-
ment processes.

In this paper, we report on our study on how the effort invested into software
development changes over time, and how seemingly there was no event in the last
25 years that would have impacted all projects on its own, using 875 open-source
projects.

This paper is organised as follows. Section 2 presents related works from the
literature. Section 3 describes our work. Section 4 presents our results and analyses.
Section 5 their validity. Finally, Section 6 shows our conclusions, and Section 7 offers
ideas for further research.

2 Literature Review

In this section, we present earlier literature related to our work. While we view
our work as a natural extension of [1] and [2] (presented in Section 2.5), we also
present research results related to strong patterns observed in other aspects of soft-
ware systems. We accept the potential influence of external factors, such as interna-
tional laws, regulations, and business objectives, on software development practices.
However, we do not wish to prioritize these factors in our literature review, as we
lack empirical evidence to assess their relative importance.

In the first group of sections, factors external to the software: organisations in-
tentionally design and govern the overall architecture of their products to achieve
their business targets (Sections 2.1, 2.2). Followed by sections on the generality
and inevitability of the internal structure of large software systems (Section 2.3), all
software systems evolving similar size distributions (Section 2.4). Finally, previous
works on how all software systems evolve in similarly predictable ways (Section
2.5).



238 K. Szabados

2.1 The impact of organisational factors on software systems

Empirical observations have identified a strong relationship between an organisa-
tion’s communication and product structure [3], [4]. In 2008 Nagappan et al. [5]
showed that organisational metrics predict failure-proneness better than code com-
plexity, coverage, internal dependencies, churn and pre-release bug measures. By
2022 it was used by firms as a superior strategy [6] to maximise business benefits
[7]. This indicates the importance of the legal and business environment over any
technical considerations.

Following these laws, contemporary System Architects consider among others
Taxation [8], Export control [9], and Geopolitics [10] when planning software ar-
chitecture and the organisation developing it. Contemporary Project Management
recommends [11] tailoring a selected development approach first for the organisa-
tion and second to the project.

2.2 The impact of Project Management on software Projects

Researchers have identified [12]–[14] that Project Management1 techniques and
processes are the critical factors contributing to project success.

Empirical observers have noted [16] that 94% of troubles and possibilities for im-
provement are the responsibility of management. Recommended preventing prob-
lems with systemic problem-solving performed with scientific rigour [17]–[19] in-
stead of celebrating solving crises and heroes putting out fires. Understanding, that
writing programs “is only a small part of Software Engineering” ([20]). This indi-
cates the importance of intentional and professional management.

2.3 The dependency networks of software systems

Empirical researchers have shown that several architectural properties of software
systems are scale-free2, like many real-life networks. Class collaboration graphs of
the C++ language [21], Class, method, and package collaboration graphs of Java [22],
[23], connections between the modules in TTCN-33 [24], [25], file inclusion graphs
in C [26], and the runtime object graph of most of the Object Oriented Programming
languages in general [27], the relationships of distributed software packages [28],
[29] show scale-free properties.

1“Project Management is the application of knowledge, skills, tools, and techniques to project
activities to meet the project requirements” [15].

2A network is called scale-free, when its degree distribution, follows a power law.
3TTCN-3 is the abbreviation of Testing and Test Control Notation Version 3



A large-scale analysis of production effort changes in software projects. 239

Taube-Schock et al. [30] showed, that approximately scale-free structures should
arise for both between-module and overall connectivity from the preferential attachment-
based models, not as the result of poor design. That high coupling is unavoidable
and might even be necessary for good design, contradicting previous ideas about
software structure, particularly the “high cohesion/low coupling” maxim. This in-
dicates that software design is not done before development, but emerges automat-
ically during it, with developers having limited control over it.

2.4 The size distribution of software systems

Empirical studies have revealed that several metrics correlate to the point of re-
dundancy4 [31]. Measuring Source Lines Of Code would be enough to obtain a
landscape of the evolution of the size and complexity of FreeBSD [32].

Empirical researchers have shown logarithmic distributions in various places:
module lengths of IBM 360/370 and PL/S code [33], Java class sizes [34], tokens
in Java [35], [36], all metrics measured on FreeBSD [32], for five (C, C++, Java,
Python, Lisp) of the top seven programming languages used in the Linux code [37]
and LOC in Smart Contracts for the Ethereum blockchain [38]. Stating that ”what-
ever is measured in a large scale system” logarithmic distribution is observed in
most cases [39].

Hatton used [40], [41] the Conservation of Hartley-Shannon Information to show
strong evidence for unusually long components being an inevitable by-product of
the total size of the system, validating the claims on 100 million lines of code in 7
programming languages and 24 Fortran 90 packages. Highlighting the importance
of changing software design techniques, from attempting to avoid the essentially
unavoidable to mitigating its damaging effects.

2.5 The evolution of software systems

Since Lehman published the laws of software evolution [42], plenty of empirical re-
search [1], [2], [43]–[50] show that the laws seem to be supported by solid evidence.
To the point that the gross growth trends can be predicted by a mean absolute error
of order 6%[1], [2], [51], [52].

Looking at the impact of outside effects on software growth, empirical researchers
observed [1] that “the introduction of continuous integration, the existence of tool
support for quality improvements in itself, changing the development methodolo-

4Cyclomatic Complexity, the Number of Lines of Code, Statements, Classes, Files, public APIs,
and public undocumented APIs are redundant metrics, with Cyclomatic Complexity in classes and
functions measuring the same subject



240 K. Szabados

gies (fromwaterfall to agile), changing technical and linemanagement structure and
personnel caused no measurable change in the trends of the observed Code Smells”,
on industrial Java and C++ projects [2], that changing architects, going open-source
or the organisation moving to a different building had no easily discernible effect
on development.

Theworks performed on large open-source systems [2], [44], [46]–[49], [52] serve
as observations supporting the understanding that there might not have been any
hardware, software, tooling, methodological, social, or other change at least since
2000, thatwould have significantly changed the development speed of large software
systems already started.

3 Methodology

This section presents our aim and work in technical terms.
We wanted to extend the knowledge available on how software systems evolve

with up-to-date information on a dataset of large, diverse, and long-running projects.
We selected GitHub as the data source, one of the largest sites hosting software

project repositories. To ensure language independence, we focused on change counts
reported by Git for each merge. This approach allowed us to treat all changes,
including code, comments, documentation, test examples, and other text artefacts
equally.

We also decided to treat deletions and insertions as equally significant changes,
valuing careful removal of unnecessary code at the same level as adding new ones.

The following metrics were tracked:

• Cumulative Commits: The total number of commits contributed over time.

• Cumulative Effort: The total number of insertions and deletions made over
time.

• Lines: The net change in lines of text, calculated by subtracting deleted lines
from inserted lines.

The process for gathering and processing the data:

1. Selection: We identified the 100most liked/stared GitHub repositories for each
programming language5 and selected those with over 3000 commits by mid-
2024.

5The list of most popular repositories by programming languages we used is shown on Github-
Ranking

https://github.com/EvanLi/Github-Ranking
https://github.com/EvanLi/Github-Ranking


A large-scale analysis of production effort changes in software projects. 241

2. Repository filtering: We excluded repositories triggering virus detection (e.g.,
Metasploit Framework), from this work, so that we would not compromise
the security of our devices and the networks they have to connect to.

3. Log extraction: We extracted Git logs from the main branch of each repository.
With the adjusted settings:

(a) Increased diff.renamelimit to 130,000.

(b) Used --first-parent, for branch history analysis6.

(c) We used the commit date (”%cd”). We observed the author date as easily
manipulated7.

4. Data cleaning, filtering: The data were cleaned up and filtered.

5. Metric tracking: Changes in the number of commits, lines, and effort values
were tracked.

6. Data Analysis: The data collected was analysed.

Data cleaning and filtering involved:

• In some projects the number of lines dropped to near zero before resuming
growth. When these commits had comments hinting at restarting the project8
we split the project into two projects at those commits.

• We removed commits if therewere only a few andmuch earlier than the actual
work started9.

• We investigated every commit that made the repository look like having neg-
ative content and modified their date to that of their later parent10.

4 Results and discussion

This section presents our results and analyses.



242 K. Szabados

0

100

200

300

400

0.0 0.3 0.6 0.9

r2value

F
re

qu
en

cy

(a)

0

200

400

600

0.0 0.3 0.6 0.9

r2value

F
re

qu
en

cy
(b)

Figure 1: 𝑟2 value distribution for commits with linear 1(a) and quadratic 1(b) fitting

4.1 General overview

To investigate the relationship between accumulated commits, effort and project de-
velopment, we fitted linear and simple quadratic regression models to the data. Fig-
ure 1(a) shows the distribution of 𝑟2 values when matching the accumulated num-
ber of commits with a linear model. Of the 875 projects, 249match above 0.98, 495
above 0.95 and 687 above 0.9. Figure 1(b) shows the same data matched against a
quadratic model, with 586 matches above 0.98, 782 above 0.95 and 850 above 0.9.

Figure 2(a) shows the distribution of 𝑟2 values when matching the accumulated
effort values with a linear model of the 875 projects 126 match above 0.98, 357
above 0.95 and 576 above 0.9. Figure 2(b) shows the same data matched against a
quadratic model, 344 matches above 0.98, 636 above 0.95 and 789 above 0.9.

This indicates that software development mostly follows clear evolution patterns.
While these models may not achieve the highest precision, they might offer a prac-
tical and effective approach for industrial applications where precise forecasting is
not always critical. For most projects, simple linear or quadratic models provide a
reasonable fit, suggesting that project evolution can be approximated with functions
that change direction at most once.

6This also simplified handling octopus merges. Linux has merges with up to 66 parents, for exam-
ple: commit hash

7Linux seems to have commits from 1970.01.01 and 2085.06.18.
8In tldraw, on 2023.04.21 everything is deleted, and re-created for a new version on 2023.04.25.
9Go has a ”HelloWorld” commit in 1972, FFMPeg some commit months before the ”Initial revision”

10In Ansible the first commit, by date, seems to delete 12 lines from an empty repository, but it
builds on a commit from 2012.02.24.

https://github.com/martinetd/linux/commit/2cde51fbd0f310c8a2c5f977e665c0ac3945b46d
https://github.com/martinetd/linux/commit/224426f168aa4af3dcb628e6edaa824d32d60e6f
https://github.com/martinetd/linux/commit/4a2d78822fdf1556dfbbfaedd71182fe5b562194
https://github.com/tldraw/tldraw/commit/ec84f64e637998396f38c8f868236aae7bc931a4
https://github.com/tldraw/tldraw/commit/29ed921c6745923dcc8daa72ba6f815a5c4b279a
https://github.com/golang/go/commit/7d7c6a97f815e9279d08cfaea7d5efb5e90695a8
https://github.com/ansible/ansible/commit/b053df41822a7304fa814612200b4b31b6d53141


A large-scale analysis of production effort changes in software projects. 243

0

50

100

150

200

250

0.0 0.3 0.6 0.9

r2value

F
re

qu
en

cy

(a)

0

200

400

0.0 0.3 0.6 0.9

r2value

F
re

qu
en

cy
(b)

Figure 2: 𝑟2 value distribution for effort with linear 2(a) and quadratic 2(b) fitting

4.2 Quality in time

When investigating how the 𝑟2 values might depend on when the projects started,
we observed that newer projects tend to exhibit worse fits to linear or quadratic
models (see Figure 3).

It is important to note that a selection bias may skew this analysis. Many projects
initiated after 2020 might not have yet reached the popularity levels or commit
counts required for inclusion in our dataset.

0.00

0.25

0.50

0.75

1.00

1990 2000 2010 2020
Start date

r2 va
lu

e

(a)

0.00

0.25

0.50

0.75

1.00

1990 2000 2010 2020
Start date

r2 va
lu

e

(b)

Figure 3: 𝑟2 value distribution for commits 3(a) and effort 3(b) when correlated with
quadratic models, represented as a function of the starting time of the project



244 K. Szabados

4.3 Observations using some of the oldest projects

Figure 4 shows how the accumulated effort invested into a project grows over time
for some of the oldest projects.

While there were observable changes in the projects individually, it is clear that in
the last 25 years, no external change had a significant, lasting impact on all projects.

Such external events include:

• Processor speed and core count grew by magnitudes.

• RAM size and throughput grew by magnitudes.

• Internal storage size and throughput grew by magnitudes while decreasing
latency by magnitudes.

• Screen space to display information increased from around 640×480 to 1920×
1080 and beyond.

• Graphical IDEs, code quality checking and refactoring, CI/CD and other pro-
ductivity and support tools became available.

• The Internet became available, with several sites supporting developers.

• Cloud computing made vast amounts of resources easily reachable.

• Various methodologies were promoted to improve developer productivity and
reduce defects: Scrum, Kanban, SAFe, LeSS, Nexus, Scrum@Scale, Agile@Scale,
Lean, XP, FDD, AIDD, DSDM, UP, Six Sigma, DevOps and more.

• Computer Science extended understanding of how software systems evolve,
how structure and distribution patterns emerge (Section 2).

• The FLoyd-Hoare logic was extended for parallel programs.

• A financial crisis, a global pandemic and a change in R&D TAX law11.

• Some open-source projects accumulated thousands of contributors12.

• AI improved, automated planning and decision-making, navigation in physi-
cal and abstract spaces13. ChatGPT.

11Section 174 in 2022.
12Linux has 15, 700+, CPython 2, 811, GCC 983 contributors according to GitHub.
13Already in 2001 demonstrating cooperative and competitive team level behaviour[53]

https://www.thomsonreuters.com/en-us/posts/tax-and-accounting/section-174-expenditures/


A large-scale analysis of production effort changes in software projects. 245

r_source reactos ruby

perl5 php_src postgresql

gcc ghc linux

cpython curl FreeBSD

1996 2006 2016 2026 1996 2006 2016 2026 1996 2006 2016 2026

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.5e+07

5.0e+07

7.5e+07

1.0e+08

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0e+00

3e+06

6e+06

9e+06

0

500000

1000000

1500000

2000000

2500000

0

2500000

5000000

7500000

0e+00

1e+07

2e+07

0e+00

2e+07

4e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0.0e+00

2.5e+07

5.0e+07

7.5e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0e+00

5e+06

1e+07

date

ef
fo

rt

Figure 4: The effort graphs for some projects started before 2000.



246 K. Szabados

According to our data, none of these improvements and events have impacted all
projects at the time, on their own.

Other less generic events could include security patches, operating systems, pro-
gramming languages, and toolset version updates. These are usually forbidden
within shorter/smaller projects, and in longer projects managed closely as a par-
allel side-project to ensure no noticeable impact on the main project.

4.4 Projects with close to linear Effort trends are present in many
programming languages

Our analysis (Figure 2) identified several projects demonstrating high 𝑟2 values fit-
ting the accumulated Effort measurements to a linear model for different program-
ming languages. This indicates that the effect is language agnostic.

Figure 5 shows: APISIX (79.7% Lua), Appsmith (67.2% typescript), android-oss
(92.7% Kotlin), BookStack (89.2% PHP), Cats (100% Scala), CockroachDB (89.9%
Go), ColossalAI (92.8% Python), DevDocs (79.4%Ruby), Dokku (57.4% Shell script),
egui (98.5% Rust), Envoy (87.6% C++), Fastify (90.8% Javascript), osu! (100% C#),
Linux (98.4% C), AppFlowy (54.6% Dart), Bitcoin (65.3% C++, 20.2% Python).

4.5 Observations on the least fitting projects

This section presents our observations on the least fitting projects.
Only two projects, ”HoTT/book” (𝑟2 = 0.32) and ’SecLists’ (𝑟2 = 0.49), showed

linear fits below 0.5 for commit accumulation. ”HoTT/book”, started in 2013, had ap-
prox. 50% of its total commits between 2013.04.01 and 2013.09.10. ”SecLists”, estab-
lished in 2012, had approx. ”62%” of its commits between 2024.06.15 and 2024.09.15.

Investigating fits below 0.5 for effort accumulation, we found 8 projects: HoTT/-
book 0.18 and 0.45 (linear and quadratic fit), Middleman 0.35 and 0.69, Moya 0.41
and 0.71, Caffe 0.44 and 0.72, Frontend 0.45 and 0.74, plotly.R 0.49 and 0.79, Dapr
0.495 and 0.69, static-analysis 0.498 and 0.74.

In some of these projects, significant changes were introduced only by a few com-
mits which were also removed soon after. For example (see Figure 6):

• Caffe: On 2013.11.07 approx. 1.3million lines were added, seemingly most of
them removed on 2014.02.26 with commit deleting 1.4 million lines.

• Moya: On 2015.06.16 47, 698 lines were added, on 2015.09.12 45, 993 removed,
on 2015.09.14 52, 323 added and on 2015.10.27 51, 124 removed.

To illustrate the impact of such changes, removing these specific commits the fit
would improve to 𝑟2 values of 0.79 and 0.94 for Caffe, 0.50 and 0.79 for Moya, 0.68

https://github.com/BVLC/caffe/commit/ade9664cba38b2e03b708db421723dfbc07e159b
https://github.com/BVLC/caffe/commit/f0b76ea244a07dd258671015d0e944da5deac7c6
https://github.com/Moya/Moya/commit/d60892dcc5da9d8f160c948185a2fb9ff474d29d
https://github.com/Moya/Moya/commit/b734fc777e6366c9a317da4bf7e19bcc91c54fad
https://github.com/Moya/Moya/commit/58b1eb35f4e49826bd533bf176ef7e48eec0fd0b
https://github.com/Moya/Moya/commit/964c863df66d620b2020791d60bc2d44b2ab220a


A large-scale analysis of production effort changes in software projects. 247

envoy fastify linux Osu

ColossalAI devdocs dokku egui

bitcoin bookstack cats cockroach

 android−oss apisix AppFlowy appsmith

2014 2024 2014 2024 2014 2024 2014 2024

0e+00

1e+06

2e+06

3e+06

4e+06

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0e+00

1e+05

2e+05

3e+05

4e+05

0

500000

1000000

1500000

0

500000

1000000

1500000

2000000

2500000

0e+00

1e+05

2e+05

0e+00

1e+05

2e+05

3e+05

2.5e+07

5.0e+07

7.5e+07

1.0e+08

0e+00

2e+05

4e+05

6e+05

0e+00

2e+05

4e+05

6e+05

50000

100000

150000

200000

0

50000

100000

150000

200000

0

250000

500000

750000

1000000

1250000

0e+00

1e+06

2e+06

3e+06

4e+06

0

250000

500000

750000

1000000

0e+00

1e+06

2e+06

3e+06

4e+06

date

ef
fo

rt

Figure 5: Projects with high 𝑟2 values, developed in different programming lan-
guages

and 0.97 for Middleman, 0.83 and 0.98 for plotly.R, 0.67 and 0.74 for Dapr.
HoTT/book seems to have a large commit beside a large insertion and deletion

pair on 2013.04.27. Removing only the insertion-deletion pair does not change the
𝑟2 values significantly. The large insertion is a merge, indicating that a substantial
amount of work is being done elsewhere.

Frontend seems to have many large temporal changes, Static-analysis underwent
several changes between 2022.08.22 and 2022.09.24 that look like refactoring, mak-

https://github.com/HoTT/book/commit/c35e131efc9eb810cc78da0cf856b7f92bd0e91b
https://github.com/HoTT/book/commit/aacbb13485fd04555200fc79371e6fd60e39df8f
https://github.com/HoTT/book/commit/075ad72dae5f93287951efff5cef04f93eba1552
https://github.com/HoTT/book/commit/075ad72dae5f93287951efff5cef04f93eba1552


248 K. Szabados

0

500000

1000000

1500000

2014 2016 2018 2020
date

#l
in

es

(a)

0

20000

40000

60000

2016 2018 2020 2022 2024
date

#l
in

es
(b)

Figure 6: The number of lines for Caffe 6(a) and Moya 6(b)

ing them harder to analyse.

5 Threats to validity

This study might suffer from the usual threats to external validity. There might be
limits to generalizing our results beyond our settings (the programming language
used and repositories outside of GitHub).

One specific threat to validity might come from the fact that committers did mod-
ify the author and commit date of some of the commits. It could happen that there
were other ways and methods to change commits, that we did not know about or
notice. To address this threat we have to point out that most of the projects have
several contributors (15, 700+ for Linux) and have been running for several years.
We find it unlikely that an effort would exist to create misleading metrics on this
scale.

A limit for generalizing our results might come from the selection criteria: pop-
ular, large, open-source projects present on GitHub. While GitHub is one of the
largest sites hosting software project repositories, privately developed, less popular
or smaller repositories may follow different trends.

6 Conclusion

This paper presents our study on how the effort invested into software development
projects changes over time, using 875 popular and large open-source projects.



A large-scale analysis of production effort changes in software projects. 249

We presented earlier works on the structure of software systems and the external
factors identified to impact them significantly. We also presented earlier works on
the evolution tendencies of software systems, information that we are updating with
contemporary data and extending in the number of projects.

In nearly 73% of the investigated projects, we found a strong correlation between
accumulated effort and a quadratic function of time.

Despite significant advancements in areas related to software development over
the past 25 years, our analysis of pre-2000 projects revealed no overarching exter-
nal event that consistently impacted their development. Most projects seemed to be
largely unaffected by external factors. This effect was seen regardless of the pro-
gramming language used.

Our results show that software development seems to follow clear patterns, even
if those are not intuitive. Our observations offer little hope for improving the speed
of software development but indicate the possibility of improving efficiency by op-
timising headcount and investment into tooling ([54]).

Our findings support the prohibition of gold plating (any effort spent on achieving
higher than necessary quality is likely to be taken away from other directly benefi-
cial features), the consideration of outcome bias (as the outcome might not depend
on the actions of individuals or decisions directly, it should be ignored when eval-
uating those decisions) and in general the delaying of decisions as long as feasible
instead of action fallacy (since development seems to follow predictable trends it is
not clear if decisions do have an impact on results or might only take up resources
to make).

7 Further work

In the future, we plan to investigate more projects with low 𝑟2 values. Further
research could investigate the reasons behind the deviance we observed in some
projects and explore for specific projects all events that happened with that project
and their impact on it (e.g. [1]).

Further research could also investigate if there are differences in the effect based
on the organisation performing the development or industrial area.

Further research could also investigate how and how far the headcount and tool-
ing investment could be lowered while achieving the same results.

It is generally accepted that a low bus factor and the presence of the hero anti-
pattern can harm projects. Our observations also seem to indicate that it is not just
necessary to limit these effects, but also possible on long time horizons (in a 25
year time frame, people tend to leave projects). We leave it to further researchers to



250 K. Szabados

investigate in detail, how the projects managed to keep these effects under control.

Data Availability: For our research we only used data publicly available on GitHub (the
Git repositories of the projects). In every case, we used the latest version at the time of
publication (pulling the latest changes for every project). We refer to specific phenomena
in the article by providing direct links to the code version, using their unique commit hash
identifier.

Acknowledgments: The authors thank Izabella Ingrid Farkas for her help and feedback
on this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

[1] A. Kovacs and K. Szabados, “Internal quality evolution of a large test system–
an industrial study,” Acta Univ. Sapientiae, vol. 8, no. 2, pp. 216–240, 2016
(⇒ 237, 239, 249).

[2] A. Zsiga, “Termelékenységi trendek, minták elemzése szoftverfejlesztési pro-
jektekben,” M.S. thesis, Eötvös Loránd University, 2019 (⇒ 237, 239, 240).

[3] M. E. Conway, “How do committees invent,” Datamation, 1967 (⇒ 238).
[4] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality between

product and organizational architectures: A test of the “mirroring” hypothe-
sis,” Research Policy, vol. 41, no. 8, pp. 1309–1324, 2012, issn: 0048-7333 (⇒ 238).

[5] N. Nagappan, B. Murphy, V. Basili, and N. Nagappan, “The influence of orga-
nizational structure on software quality: An empirical case study,” Microsoft
Research, Tech. Rep. MSR-TR-2008-11, Jan. 2008, p. 11 (⇒ 238).

[6] L. J. Colfer and C. Y. Baldwin, “The mirroring hypothesis: Theory, evidence
and exceptions,” IRPN: Innovation&Organizational Behavior (Topic), 2016 (⇒ 238).

[7] E. Leo, “Breaking mirror for the customers: The demand-side contingencies
of the mirroring hypothesis,” Cont. Man. Res., vol. 18, pp. 35–65, Mar. 2022
(⇒ 238).

[8] M. Dorner, M. Capraro, O. Treidler, et al., Taxing collaborative software engi-
neering, 2023. arXiv: 2304.06539 [cs.SE] (⇒ 238).

https://arxiv.org/abs/2304.06539


A large-scale analysis of production effort changes in software projects. 251

[9] M. Choudaray and M. Cheng, “Export Control,” in Open Source Law, Policy
and Practice, Oxford University Press, Oct. 2022, isbn: 9780198862345. eprint:
https://academic.oup.com/book/0/chapter/378967490/chapter-
pdf/49854057/oso-9780198862345-chapter-12.pdf (⇒ 238).

[10] A. Pannier, Software power: The economic and geopolitical implications of open
source software, 2022 (⇒ 238).

[11] P. M. Institute, A guide to the Project Management Body of Knowledge (PMBOK
guide), 7th. Newton Square, PA: PMI, 2021, isbn: 9781628256673 (⇒ 238).

[12] J. Varajão, R. P. Marques, and A. Trigo, “Project management processes –
impact on the success of information systems projects,” Informatica, vol. 33,
no. 2, pp. 421–436, 2022, issn: 0868-4952 (⇒ 238).

[13] S. Pretorius, H. Steyn, and T. Bond-Barnard, “The relationship between project
management maturity and project success,” J. Mod. Proj., vol. 10, pp. 219–231,
Mar. 2023 (⇒ 238).

[14] S. Moradi, K. Kähkönen, and K. Aaltonen, “From past to present- the develop-
ment of project success research,” J. Mod. Proj., vol. 8, no. 1, Apr. 2022 (⇒ 238).

[15] P. M. Institute, A guide to the Project Management Body of Knowledge (PMBOK
guide), 6th. Newton Square, PA: PMI, 2017, isbn: 9781628251845 (⇒ 238).

[16] W. E. Deming, Out of the Crisis (MIT Press Books). The MIT Press, Dec. 2000,
vol. 1, isbn: 9780262541152 (⇒ 238).

[17] R. Hayes, “Why japanese factories work,” HBR, vol. 59, pp. 56–66, Jan. 1981
(⇒ 238).

[18] S. Spear and H. Bowen, “Decoding the dna of the toyota production system,”
HBR, vol. 77, Sep. 1999 (⇒ 238).

[19] R. Bohn, “Stop fighting fires,” HBR, vol. 78, pp. 83–91, Jul. 2000 (⇒ 238).
[20] D. L. Parnas, “Structured programming: A minor part of software engineer-

ing,” Information Processing Letters, vol. 88, no. 1, pp. 53–58, 2003, To honour
Professor W.M. Turski’s Contribution to Computing Science on the Occasion
of his 65th Birthday, issn: 0020-0190 (⇒ 238).

[21] C. R. Myers, “Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs,” Physical Review E, vol. 68, no. 4,
Oct. 2003 (⇒ 238).

[22] D. Hyland-Wood, D. Carrington, and S. Kaplan, “Scale-free nature of java soft-
ware package, class and method collaboration graphs,” in Proceedings of the
5th International Symposium on Empirical Software Engineering, 2006 (⇒ 238).

https://academic.oup.com/book/0/chapter/378967490/chapter-pdf/49854057/oso-9780198862345-chapter-12.pdf
https://academic.oup.com/book/0/chapter/378967490/chapter-pdf/49854057/oso-9780198862345-chapter-12.pdf


252 K. Szabados

[23] L. Šubelj and M. Bajec, “Software systems through complex networks sci-
ence: Review, analysis and applications,” in Proceedings of the First Interna-
tional Workshop on Software Mining, ser. SoftwareMining ’12, Beijing, China:
ACM, 2012, pp. 9–16, isbn: 9781450315609 (⇒ 238).

[24] K. Szabados, “Structural analysis of large ttcn-3 projects,” in Proceedings of
the 21st IFIP WG 6.1 International Conference on Testing of Software and Com-
munication Systems and 9th International FATES Workshop, ser. TESTCOM
’09/FATES ’09, Eindhoven, The Netherlands: Springer-Verlag, 2009, pp. 241–
246, isbn: 9783642050305 (⇒ 238).

[25] K. Szabados, “Quality aspects of ttcn-3 based test systems,” Ph.D. dissertation,
Eötvös Loránd University, Nov. 2017 (⇒ 238).

[26] A. Moura, Y. Lai, and A. Motter, “Signatures of small-world and scale-free
properties in large computer programs,” Physical review. E, Statistical, nonlin-
ear, and soft matter physics, vol. 68 1 Pt 2, p. 017 102, 2003 (⇒ 238).

[27] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free geometry in oo pro-
grams,” Commun. ACM, vol. 48, no. 5, pp. 99–103, May 2005, issn: 0001-0782
(⇒ 238).

[28] N. LaBelle and E. Wallingford, “Inter-package dependency networks in open-
source software,” CoRR, vol. cs.SE/0411096, 2004 (⇒ 238).

[29] G. Kohring, “Complex dependencies in large software systems,” Advances in
Complex Systems, vol. 12, Nov. 2011 (⇒ 238).

[30] C. Taube-Schock, R. J. Walker, and I. H. Witten, “Can we avoid high cou-
pling?” In Proceedings of the 25th European Conference on Object-Oriented Pro-
gramming, ser. ECOOP’11, Lancaster, UK: Springer-Verlag, 2011, pp. 204–228,
isbn: 9783642226540 (⇒ 239).

[31] M. A.Mamun, C. Berger, and J. Hansson, “Effects of measurements on correla-
tions of software code metrics,” Empir. Softw. Eng., vol. 24, Aug. 2019 (⇒ 239).

[32] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a theoretical
model for software growth,” in Fourth International Workshop on Mining Soft-
ware Repositories (MSR’07:ICSE Workshops 2007), 2007, pp. 21–21 (⇒ 239).

[33] C. P. Smith, “A software science analysis of programming size,” in Proceedings
of the ACM 1980 Annual Conference, ser. ACM ’80, New York, NY, USA: ACM,
1980, pp. 179–185, isbn: 0897910281 (⇒ 239).

[34] H. Zhang andH. B. K. Tan, “An empirical study of class sizes for large java sys-
tems,” in 14th Asia-Pacific Software Engineering Conference (APSEC’07), 2007,
pp. 230–237 (⇒ 239).



A large-scale analysis of production effort changes in software projects. 253

[35] H. Zhang, “Exploring regularity in source code: Software science and zipf’s
law,” in 2008 15th Working Conference on Reverse Engineering, 2008, pp. 101–
110 (⇒ 239).

[36] H. Zhang, H. B. K. Tan, and M. Marchesi, “The distribution of program sizes
and its implications: An eclipse case study,” CoRR, vol. abs/0905.2288, 2009.
arXiv: 0905.2288 (⇒ 239).

[37] I. Herraiz, D. Germán, and A. E. Hassan, “On the distribution of source code
file sizes,” in ICSOFT 2011 - International Conference on Software andData Tech-
nologies, vol. 2, Jan. 2011, pp. 5–14 (⇒ 239).

[38] R. Tonelli, G. A. Pierro, M. Ortu, and G. Destefanis, “Smart contracts software
metrics: A first study,” PLoS ONE, vol. 18, Jan. 2023 (⇒ 239).

[39] N. Bartha, “Scalability on it projects,” M.S. thesis, Eötvös Loránd University,
2016 (⇒ 239).

[40] L. Hatton, “Conservation of information: Software’s hidden clockwork?” IEEE
Trans. Softw. Eng., vol. 40, no. 5, pp. 450–460, 2014 (⇒ 239).

[41] L. Hatton and G. Warr, “Strong evidence of an information-theoretical con-
servation principle linking all discrete systems,” Royal Society Open Science,
vol. 6, p. 191 101, Oct. 2019 (⇒ 239).

[42] M. Lehman and J. Fernandez-Ramil, “Rules and tools for software evolution
planning and management,” ASE, vol. 11, pp. 15–44, Jan. 2001 (⇒ 239).

[43] M. M. Lehman and J. F. Ramil, “Evolution in software and related areas,” in
Proceedings of the 4th International Workshop on Principles of Software Evolu-
tion, ser. IWPSE ’01, Vienna, Austria: ACM, 2001, pp. 1–16, isbn: 1581135084
(⇒ 239).

[44] M. Lehman, D. Perry, and J. Ramil, “On evidence supporting the feast hy-
pothesis and the laws of software evolution,” in Proceedings Fifth International
Software Metrics Symposium. Metrics (Cat. No.98TB100262), 1998, pp. 84–88
(⇒ 239, 240).

[45] M. J. Lawrence, “An examination of evolution dynamics,” in Proceedings of
the 6th International Conference on Software Engineering, ser. ICSE ’82, Tokyo,
Japan: IEEE CS Press, 1982, pp. 188–196 (⇒ 239).

[46] C. Izurieta and J. Bieman, “The evolution of freebsd and linux,” in Proceedings
of the 2006 ACM/IEEE International Symposium on Empirical Software Engi-
neering, ser. ISESE ’06, Rio de Janeiro, Brazil: ACM, 2006, pp. 204–211, isbn:
1595932186 (⇒ 239, 240).

https://arxiv.org/abs/0905.2288


254 K. Szabados

[47] C. Kemerer and S. Slaughter, “An empirical approach to studying software
evolution,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 493–509, 1999 (⇒ 239,
240).

[48] A. Israeli and D. Feitelson, “The linux kernel as a case study in software evolu-
tion,” Journal of Systems and Software, vol. 83, pp. 485–501, Mar. 2010 (⇒ 239,
240).

[49] K. Johari and A. Kaur, “Effect of software evolution on software metrics: An
open source case study,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, pp. 1–8, Sep.
2011, issn: 0163-5948 (⇒ 239, 240).

[50] R. Potvin and J. Levenberg, “Why google stores billions of lines of code in a
single repository,” Commun. ACM, vol. 59, no. 7, pp. 78–87, Jun. 2016, issn:
0001-0782 (⇒ 239).

[51] W. Turski, “The reference model for smooth growth of software systems re-
visited,” IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 814–815, 2002 (⇒ 239).

[52] J. Fernandez-Ramil, D. Izquierdo-Cortazar, and T. Mens, “What does it take
to develop a million lines of open source code?” In Open Source Ecosystems:
Diverse Communities Interacting, vol. 299, Jun. 2009, pp. 170–184, isbn: 978-3-
642-02031-5 (⇒ 239, 240).

[53] J. Waveren, “The quake iii arena bot,” Jan. 2001 (⇒ 244).
[54] K. Szabados, “Parallelising semantic checking in an ide: A way toward im-

proving profits and sustainability, while maintaining high-quality software
development,”Acta Universitatis Sapientiae, Informatica, vol. 15, no. 2, pp. 239–
266, 2023 (⇒ 249).

Received: 06.09.2024; Revised: 09.12.2024; Accepted: 10.12.2024


	1 Introduction
	2 Literature Review
	2.1 The impact of organisational factors on software systems
	2.2 The impact of Project Management on software Projects
	2.3 The dependency networks of software systems
	2.4 The size distribution of software systems
	2.5 The evolution of software systems

	3 Methodology
	4 Results and discussion
	4.1 General overview
	4.2 Quality in time
	4.3 Observations using some of the oldest projects
	4.4 Projects with close to linear Effort trends are present in many programming languages
	4.5 Observations on the least fitting projects

	5 Threats to validity
	6 Conclusion
	7 Further work

