
Acta Univ. Sapientiae, InfoRmatica, 16, 2 (2024) 198–218

DOI: 10.47745/ausi-2024-0011

Optimization of the Seventh-order Polynomial
Interpolation 1P Kernel in the Time Domain
Zoran N. MILIVOJEVIĆ

MB University,
Teodora Drajzera 27, Belgrade, Serbia.

zoran.milivojevic@akademijanis.edu.rs
 0000-0002-2240-3420

Ratko M. IVKOVIĆ
MB University,

Teodora Drajzera 27, Belgrade, Serbia.
ratko.ivkovic@ppf.edu.rs
 0000-0002-6557-4553

Milan R. CEKIĆ
Academy of Applied Technical and

Preschool Studies,
A. Medvedeva 20, Niš, Serbia.

milan.cekic@akademijanis.edu.rs

Dijana Z. KOSTIĆ
”Šargan inženjering” d.o.o„

A. Medvedeva 20, Niš, Serbia.
dijanaaricija79@gmail.com
 0009-0007-3940-9611

Abstract.
This paper presents the optimization of the convolutional, seventh-order

polynomial, one-parameter, interpolation kernel. In the first part of the paper,
the seventh-order kernel is defined, and, after that, the process of the kernel
optimization is described. The optimization criterion was the minimization
of the interpolation error e. The optimization involved the selection of the
optimal value of the kernel parameter 𝛼, and it was carried out in the time
domain. In the second part of this paper, the experiment, which was realized
with the aim of determining the precision of interpolation of the third-order,
fifth-order, and the seventh-order interpolation kernels, is described. After
that a comparative analysis of the interpolation precision is described. As a
measure of the interpolation precision, the mean square error (MSE) was used.
The results of the experiment are presented graphically and tabularly. Finally,
using a comparative analysis, the precision of interpolation with the kernel,
whose parameters were optimized in the time domain, in relation to the ker-
nel, whose parameters were optimized in the spectral do-main, was analyzed.
Based on the comparative analysis, a recommendation for the optimal param-
eter for the seventh-order kernel is given.
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1 Introduction

In many areas of digital signal processing (DSP), it is necessary to estimate the value
of the discrete signal between two, time or spatial, neighboring samples. Estimation
of the value of the discrete signal is performed using a numerical method, which is
known as interpolation [1], [2]. Some of the typical cases of DSP, where the applica-
tion of interpolation is necessary, are: a) image processing (spatial transformations,
such as resampling, image dimension change, rotation, geometric deformation [3]–
[7] b) speech processing (estimation of the fundamental frequency, emotional and
health condition of the speaker [8], …); c) processing of musical signals (extraction
and transcription of solo and bass lines, recognition of chords and their transcrip-
tion [9], evaluation of the parameters of the played tone, such as intonation, vi-
brato rate, vibrato extend [10], …), etc. In the scientific literature, a large number
of algorithms for interpolation (Lagrangian, Newtonian, Gaussian, Stirling, Bessel,
Chebyshev, …) are described [11]. The construction of the interpolation function
using the described algorithms requires the use of a large number of samples. This
increases the order of the interpolation function, which results in a long calculation
time, and, because of this, their application in real-time is limited.
One of the methods of interpolation, which is suitable for implementation in DSP,

is the so-called convolutional interpolation. The principle of convolutional interpo-
lation is based on the realization of convolution between the discrete signal and the
convolutional kernel r. The characteristics of the convolutional interpolation are
directly dependent on the characteristics of the interpolation kernel. The ideal in-
terpolation of the band limited signal can be realized with the ideal interpolation
kernel, which is of the form sin(𝑥)/𝑥 and denoted as sinc. Kernel sinc is defined in
the interval (−∞, +∞). Its spectral characteristic is a rectangular, i.e. box function,
which: a) is flat in the pass-band and equal to one, b) is flat in the stop-band and
equal to zero, and c) with an ideal slope in the transition band [12]. The interpolation
kernel r, with the properties defined in this way, cannot be practically realized. The
solution, which is self-evident, is to truncate the length of the kernel sinc to the fi-
nal length L by applying the rectangular window function. This process is known as
windovization. Truncate sinc kernel is, in the scientific literature, denoted by sincw.
However, the shortening of the kernel leads to the degradation of the characteristic
of the kernel sinc, which has: a) a ripple in the pass-band and stop-band, and b) a
finite slope in the transition band. Therefore, convolutional interpolation with trun-
cate kernel sincw, leads to a decrease of the interpolation precision. Because of all,
this, in the last thirty years, intensive work has been done on the construction of
the interpolation kernel r, of finite length L, which will be: a) good approximation
of the sinc kernel in the time-space domain and spectral domain, and b) numerically
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simple, that is, it should be created from a relatively simple mathematical function,
in order to reduce the interpolation execution time.
In recent decades, low-order polynomials (𝑛 ≤ 7) have been intensively used for

the construction of the interpolation kernel [13]. Numerically the simplest is the
polynomial zeroth-order kernel [14]. Interpolation is performed by rounding to the
nearest-neighbor sample [15], [16] . In addition to the fact that the interpolation
time is very short, the interpolation error is huge. A linear, polynomial first-order
interpolation kernel is described in [17]. A cubic polynomial third-order interpola-
tion kernel is described in [18]. Convolutional interpolation using the third-order
kernel is more precise than interpolation using the polynomial zeroth-order and
first-order interpolation kernels. The parameterization of the polynomial third-
order kernel was proposed by Robert Keys in [19]. The parameterization was per-
formed in such a way that one of the coefficients of the kernel was replaced by the
parameter 𝛼. By changing the parameter 𝛼, it is possible to influence the precision
of interpolation. Later, in the scientific literature, third-order polynomial interpo-
lation kernel, in honor of the author who proposed it, the one-parameter Keys (1P
Keys) kernel was named. In addition, in [19] the optimization of the alpha parame-
ter 𝛼 in the time domain is shown (𝛼𝑡𝑜𝑝𝑡,3 = -1/2). The optimization was performed
with the criterion that the Taylor expansions of both, the interpolated function and
the interpolation kernel, are equal up to the second term. In [20] the optimization
of the 1P Keys kernel in the spectral domain is shown. The optimization criterion
was minimization of the ripple of the spectral characteristic in pass-band and stop-
band. In this way, the optimal value of the kernel parameter (𝛼 𝑓𝑜𝑝𝑡,3 = -1/2) was
determined. It can be seen that for the third-order kernel, the optimal parameter
is the same for optimization in the time and spectral domains. With the idea of in-
creasing the precision of the interpolation, third-order polynomial two-parameter
2P (𝛼, 𝛽) [21] and three-parameter 3P (𝛼, 𝛽, 𝛾) [22] kernels were constructed. A
fifth-order polynomial one-parameter interpolation kernel, whose length is L = 6, is
described in [20]. Optimization of the fifth-order kernel in the spectral domain, the
optimal kernel parameter (𝛼 𝑓𝑜𝑝𝑡,5 = 3/64), was calculated. In [23] optimization of the
kernel in the time domain was performed (𝛼 𝑓𝑜𝑝𝑡,5 = 3/64). In [24] the parameteriza-
tion of a two-parameter fifth-order interpolation kernel, length L = 8, is described.
The spectral characteristics of this kernel are described in [25]. The optimization of
this kernel is performed in the spectral domain (𝛼 𝑓𝑜𝑝𝑡,5 = 171 / 1408, 𝛽 𝑓𝑜𝑝𝑡,5 = 525
/ 7744) [26]. A seventh-order polynomial 1P kernel is described in [20]. In addi-
tion, the optimization of the 1P kernel in the spectral domain (𝛼 𝑓𝑜𝑝𝑡,7 = -71/83232)
is described.
In this paper, the results of optimization of the seventh-order polynomial one-
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parameter kernel [20] are presented. The optimization was realized in the time do-
main. As an optimization criterion, the minimization of the interpolation error e
was applied. The first part presents the optimization algorithm. First, the interpo-
lation function g is determined. After that, assuming that the function f, which is
to be interpolated, has at least six continuous derivatives in the interval where the
interpolation is performed, the development of the function f in Taylor series is
performed. The Taylor series has been expanded to the sixth term. Then, the inter-
polation error 𝑒 = 𝑓 − 𝑔, was formed. Finally, the minimization of the interpolation
error was realized, so that the interpolated function f and interpolation function
g agree up to the sixth term in the Taylor series expansion. The minimization of
the interpolation error was achieved by minimizing the 27 coefficients in the Tay-
lor series expansion. In this way, a system of 27 equations, with one variable, was
formed. In that case, it is not possible to find a unique solution, and, there-fore, the
least squares method (LSM) was applied. As a result of applying LSM, the optimal
kernel parameter 𝛼𝑜𝑝𝑡 was calculated. With the aim of verifying the correctness of
the choice of the optimal kernel parameters, an experiment was carried out. First,
the algorithm, according to which the experiment was realized, is described, and
four test functions 𝑓1, …, 𝑓4, which represent signals with complex time form, are
created. After that, the test functions are interpolated using convolutional interpo-
lation with one parameter: a) third-order kernel, which is optimized in the spectral
and time domain [19], [20], b) fifth-order kernel, which is optimized in the spec-
tral and time domain [20], [23], c) seventh-order kernel, which is optimized in the
spectral domain [20], and d) seventh-order kernel, which is optimized in the time
domain, and whose optimization is presented in this paper. Then, the interpolation
errors e and mean square errors MSE, for the case of interpolating test functions,
were calculated. Finally, a comparative analysis of the interpolation precision of
the kernel that was optimized in this paper, using optimization in the time domain,
with kernels whose optimizations were performed in the spectral domain, was per-
formed. As a measure of interpolation precision MSE was used. The results of the
experiment are presented using graphs and tables.
Further organization of this paper is as follows. In Section 2, the seventh-order

1P interpolation kernel is described. Section 3 describes the kernel optimization in
the time domain. In Section 4, the experiment is described, the results presented
and a comparative analysis performed. Section 5 is the Conclusion.
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2 Seventh-order Polynomial One-parameter Kernel

The construction of the seventh-order polynomial one-parameter kernel shown in
[20]. The 1P kernel is defined on the interval (-4, 4) and approximates the ideal
sinc interpolation kernel. Outside of the interval (-4, 4) the interpolation kernel is
zero. The 1P kernel is composed of piecewise seventh-order polynomials, which are
defined on the subintervals (-4, -3), (-3, -2), (-2, -1), (-1,0), (0,1), (1, 2), (2, 3) and (3, 4).
Therefore, the length of the kernel is L = 8. The kernel r is defined by:

𝑟 (𝑠) =


𝑎70 |𝑠 |7 + ... + 𝑎10 |𝑠 | + 𝑎00, |𝑠 | ≤ 1

𝑎71 |𝑠 |7 + ... + 𝑎11 |𝑠 | + 𝑎01, 1 < |𝑠 | ≤ 2

𝑎72 |𝑠 |7 + ... + 𝑎12 |𝑠 | + 𝑎02, 2 < |𝑠 | ≤ 3

𝑎73 |𝑠 |7 + ... + 𝑎13 |𝑠 | + 𝑎03, 3 < |𝑠 | ≤ 4
0, otherwise

. (1)

The coefficients 𝑎𝑖 𝑗 , where 0 ≤ 𝑖 ≤ 7 and 0 ≤ 𝑗 ≤ 3, are determined from
the conditions: a) 𝑟 (0) = 1 and 𝑟 (𝑠) = 0 for |𝑠 | = 1, 2, 3; and b) 𝑟 (𝑙) (𝑠) must be
continuous at |𝑠 | = 0, 1, 2, 3, 4 for 𝑙 = 0, 1, 2, 3, 4, 5.
In order to satisfy the set conditions, based on the definition of the kernel, 31

equations with 32 unknown coefficients 𝑎𝑖 𝑗 were formed. The system of equations
formed in this way cannot be solved unambiguously. By parametrizing the kernel,
that is, introducing the parameter 𝛼, and setting the parameter 𝑎73 = 𝛼, the system
of equations can be solved. The coefficient values were calculated: 𝑎70 = 245𝛼 +
821/1734, 𝑎60 = −621𝛼 − 1148/867, 𝑎50 = 0, 𝑎40 = 760𝛼 + 1960/867, 𝑎30 = 0,
𝑎20 = −384𝛼−1393/578, 𝑎10 = 0, 𝑎00 = 1. 𝑎71 = 301𝛼+1687/6936, 𝑎61 = −3309𝛼−
2492/867, 𝑎51 = 14952𝛼 + 32683/2312, 𝑎41 = −35640𝛼 − 128695/3468, 𝑎31 =
47880𝛼+127575/2312, 𝑎21 = −36000𝛼−13006/289, 𝑎11 = 14168𝛼+120407/6936,
𝑎01 = −2352𝛼−2233/1156, 𝑎72 = 57𝛼+35/6936, 𝑎62 = −1083𝛼−175/1734, 𝑎52 =
8736𝛼+1995/2312, 𝑎42 = −38720𝛼−4725/1156, 𝑎32 = 101640𝛼+1575/136, 𝑎22 =
−157632𝛼−5670/289, 𝑎12 = 133336𝛼+42525/2312, 𝑎02 = −47280𝛼−8505/1156,
𝑎73 = 1𝛼, 𝑎63 = −27𝛼, 𝑎53 = 312𝛼, 𝑎43 = −2000𝛼, 𝑎33 = 7680𝛼, 𝑎23 = −17664𝛼,
𝑎13 = 22528𝛼, 𝑎03 = −12288𝛼.
The kernel parameter 𝛼 directly affects the time-spectral characteristics of the

1P kernel. Changing the value of the kernel parameter affects on the interpolation
precision. By minimizing the interpolation error e, it is possible to determine the
optimal value of the kernel parameter, and, in this way, optimize the interpolation
kernel r. It is possible to optimize the interpolation kernel in: a) spectral and b) time
domain. Optimization in the spectral domain implies the minimization of the differ-
ence between the amplitude spectral characteristics of the ideal kernel sinc, whose
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characteristic is the box function, 𝐻𝑠𝑖𝑛𝑐 , and the analyzed interpolation 1P kernel r,
whose spectral characteristic is H. The paper [20] describes the optimization of the
1P kernel in the spectral domain ( 𝛼 𝑓𝑜𝑝𝑡,7 = −71/83232). The optimization criterion
was the minimization of the ripple of the spectral characteristic H. In the further
part of this paper, the interpolation kernel, optimized in the spectral domain, will
be denoted by , and its spectral characteristic by 𝑟 𝑓𝑜𝑝𝑡 , and its spectral characteristic
by 𝐻 𝑓

𝑜𝑝𝑡 .
In the rest of this paper, the optimization of the polynomial seventh-order 1P

kernel, which was performed in the time domain, is presented. The optimization
criterion was the minimization of the interpolation error e.

3 Optimization of the 1P Kernel in the Time Domain

The interpolation function 𝑔(𝑥) is a special type of approximation function. Its fun-
damental property is that it is equal to the sampled data, that is, the values of the
function 𝑓 (𝑥) in the interpolation nodes. Then 𝑔(𝑥𝑘) = 𝑓 (𝑥𝑘), where 0 ≤ 𝑘 ≤ 𝑁1,
and N is the total number of interpolation nodes, in the segment where the func-
tion is interpolated. Let us assume that x is a point, in which the interpolation of the
function 𝑓 (𝑥) should be performed. Let x be between two consecutive interpolation
nodes, denoted as 𝑥 𝑗 and 𝑥 𝑗+1. Let 𝑠 = (𝑥 − 𝑥 𝑗)/ℎ, where h is the sampling incre-
ment. Then (𝑥 − 𝑥𝑘)/ℎ = (𝑥 − 𝑥 𝑗 + 𝑥 𝑗 − 𝑥𝑘)/ℎ = 𝑠 + 𝑗 + 𝑘 . The interpolation, that is,
the reconstructed function 𝑔(𝑥), is determined by convolutional interpolation [19],
[23], [27] of the interpolation function 𝑓 (𝑥) with the interpolation kernel r :

𝑔 (𝑥) =
∑
𝑘

𝑐𝑘𝑟
(𝑥 − 𝑥𝑘

ℎ

)
=
∑
𝑘

𝑐𝑘𝑟 (𝑠 + 𝑗 − 𝑘) , (2)

where 𝑐𝑘 is the value of the function 𝑓 (𝑥) in the interpolation k-th node (k-th sam-
ple), and h is the sampling increment. By developing the sum from Equation 2, the
reconstruction function can be written as:

𝑔 (𝑥) = 𝑐 𝑗−3𝑟 (𝑠 + 3) + 𝑐 𝑗−2𝑟 (𝑠 + 2) + 𝑐 𝑗−1𝑟 (𝑠 + 1) + 𝑐 𝑗𝑟 (𝑠)
+ 𝑐 𝑗+1𝑟 (𝑠 − 1) + 𝑐 𝑗+2𝑟 (𝑠 − 2) + 𝑐 𝑗+3𝑟 (𝑠 − 3) + 𝑐 𝑗+4𝑟 (𝑠 − 4) ,

(3)

The value of kernel r, for the segment is −4 ≤ 𝑠 ≤ −3, is:

𝑟 (𝑠 + 3) = 𝛼 𝑠7 − 6𝛼𝑠6 + 15𝛼𝑠5 − 20𝛼𝑠4 + 15𝛼𝑠3 − 6𝛼𝑠2 + 𝛼𝑠, (4)
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Continuing this procedure, the kernel values in the other segments are determined:

𝑟 (𝑠 + 2) =
(
57𝛼 + 35

6936

)
𝑠7 +

(
−285𝛼 − 35

1156

)
𝑠6 +

(
528𝛼 + 175

2312

)
𝑠5

+
(
−380𝛼 − 175

1734

)
𝑠4 +

(
175

2312
− 40𝛼

)
𝑠3 +

(
192𝛼 − 35

1156

)
𝑠2

+
(
35

6936
− 72𝛼

)
𝑠,

(5)

𝑟 (𝑠 + 1) =
(
301𝛼 + 1687

6936

)
𝑠7 +

(
−1202𝛼 − 2709

2312

)
𝑠6 +

(
1419𝛼 + 1155

578

)
𝑠5

+
(
20𝛼 − 35

34

)
𝑠4 +

(
−805𝛼 − 1505

1734

)
𝑠3 +

(
6𝛼 + 21

17

)
𝑠2

+
(
261𝛼 − 707

1734

)
𝑠 + 725

388
· 10−15,

(6)

𝑟 (𝑠) =
(
245𝛼 + 821

1734

)
𝑠7 +

(
−621𝛼 − 1148

867

)
𝑠6

+
(
760𝛼 + 1960

867

)
𝑠4 +

(
−384𝛼 − 1393

578

)
𝑠2 + 1,

(7)

𝑟 (𝑠 − 1) =
(
−245𝛼 − 821

1734

)
𝑠7 +

(
1094𝛼 + 203

102

)
𝑠6 +

(
−1419𝛼 − 1155

578

)
𝑠5

+
(
20𝛼 − 35

34

)
𝑠4 +

(
805𝛼 + 1505

1734

)
𝑠3 +

(
6𝛼 + 21

17

)
𝑠2

+
(
707

1734
− 261𝛼

)
𝑠,

(8)

𝑟 (𝑠 − 2) =
(
−301𝛼 − 1687

6936

)
𝑠7 +

(
905𝛼 + 1841

3468

)
𝑠6 +

(
−528𝛼 − 175

2312

)
𝑠5

+
(
−380𝛼 − 175

1734

)
𝑠4 +

(
40𝛼 − 175

2312

)
𝑠3 +

(
192𝛼 − 35

1156

)
𝑠2

+
(
72𝛼 − 35

6936

)
𝑠 + 822

295
· 10−14,

(9)
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𝑟 (𝑠 − 3) =
(
−57𝛼 − 35

6936

)
𝑠7 +

(
114𝛼 + 35

6936

)
𝑠6 − 15𝛼𝑠5

− 20𝛼𝑠4 − 15𝛼𝑠3 − 6𝛼𝑠2 − 𝛼𝑠,
(10)

𝑟 (𝑠 − 4) = −𝛼𝑠7 + 𝛼 𝑠6, (11)

Substituting Equations 4 - 11 in Equation 2 the interpolation function is written in
the form:

𝑔 (𝑥) = 𝐴7𝑠7 + 𝐴6𝑠6 + 𝐴5𝑠5 + 𝐴4𝑠4 + 𝐴3𝑠3 + 𝐴2𝑠2 + 𝐴1𝑠 + 𝐴0, (12)

where 𝐴7 = 821/1734𝑐 𝑗+1687/6936𝑐 𝑗−1+35/6936𝑐 𝑗−2−821/1734𝑐 𝑗+1−1687/6936𝑐 𝑗+2−
35/6936𝑐 𝑗+3 + 245𝛼𝑐 𝑗 + 301𝛼𝑐 𝑗−1 + 57𝛼𝑐 𝑗−2 + 𝛼𝑐 𝑗−3 − 245𝛼𝑐 𝑗+1 − 301𝛼𝑐 𝑗+2 −
57𝛼𝑐 𝑗+3−𝛼𝑐 𝑗+4; 𝐴6 = 203/102𝑐 𝑗+1−2709/2312𝑐 𝑗−1−35/1156𝑐 𝑗−2−1148/867𝑐 𝑗+
1841/3468𝑐 𝑗+2+35/6936𝑐 𝑗+3−621𝛼𝑐 𝑗−1202𝛼𝑐 𝑗−1−285𝛼𝑐 𝑗−2−6𝛼𝑐 𝑗−3+1094𝛼𝑐 𝑗+1+
905𝛼𝑐 𝑗+2+114𝛼𝑐 𝑗+3+𝛼𝑐 𝑗+4; 𝐴5 = 1155/578𝑐 𝑗−1+175/2312𝑐 𝑗−2−1155/578𝑐 𝑗+1−
175/2312𝑐 𝑗+2+1419𝛼𝑐 𝑗−1+528𝛼𝑐 𝑗−2+15𝛼𝑐 𝑗−3−1419𝛼𝑐 𝑗+1−528𝛼𝑐 𝑗+2−15𝛼𝑐 𝑗+3;
𝐴4 = 1960/867𝑐 𝑗 − 35/34𝑐 𝑗−1 − 175/1734𝑐 𝑗−2 − 35/34𝑐 𝑗+1 − 175/1734𝑐 𝑗+2 +
760𝛼𝑐 𝑗 + 20𝑐 𝑗−1 − 380𝛼𝑐 𝑗−2 − 20𝛼𝑐 𝑗−3 + 20𝛼𝑐 𝑗+1 − 380𝛼𝑐 𝑗+2 − 20𝛼𝑐 𝑗+3; 𝐴3 =
175/2312𝑐 𝑗−2 − 1505/1734𝑐 𝑗−1 + 1505/1734𝑐 𝑗+1 − 175/2312𝑐 𝑗+2 − 805𝛼𝑐 𝑗−1 −
40𝛼𝑐 𝑗−2+15𝛼𝑐 𝑗−3+805𝛼𝑐 𝑗+1+40𝛼𝑐 𝑗+2−15𝛼𝑐 𝑗+3; 𝐴2 = 21/17𝑐 𝑗−1−1393/578𝑐 𝑗−
35/1156𝑐 𝑗−2 + 21/17𝑐 𝑗+1 − 35/1156𝑐 𝑗+2 − 384𝛼𝑐 𝑗 + 6𝛼𝑐 𝑗−1 + 192𝛼𝑐 𝑗−2 − 6𝛼𝑐 𝑗−3 +
6𝛼𝑐 𝑗+1 + 192𝛼𝑐 𝑗+2 − 6𝛼𝑐 𝑗+3; 𝐴1 = 35/6936𝑐 𝑗−2 − 707/1734𝑐 𝑗−1 + 707/1734𝑐 𝑗+1 −
35/6936𝑐 𝑗+2 + 261𝛼𝑐 𝑗−1 − 72𝛼𝑐 𝑗−2 + 𝛼𝑐 𝑗−3 − 261𝛼𝑐 𝑗+1 + 72𝛼𝑐 𝑗+2 − 𝛼𝑐 𝑗+3; and
𝐴0 = 𝑐 𝑗 + 725/388 · 10−15𝑐 𝑗−1 + 822/295 · 10−14𝑐 𝑗+2.
Assuming that the function 𝑓 (𝑥) has at least seven continuous derivatives in the

interval (𝑥 𝑗 , 𝑥 𝑗+1), then, by applying Taylor’s theorem, the value of the function in
𝑥 𝑗+1 is calculated. With the earlier condition on the equality of the interpolation
function g with the function f in the k-th interpolation nodes, the coefficients c
from Equation 2 are written in the form:

𝑐 𝑗−3 = 𝑓 (𝑥 𝑗−3) =
81

80
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 81

40
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 27

8
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 9

2
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 9

2
𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 3 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(13)



206 Z. N. Milivojević et al.

𝑐 𝑗−2 = 𝑓 (𝑥 𝑗−2) =
4

45
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 4

15
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 2

3
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 4

3
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 2 𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 2 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓 (𝑥 𝑗),

(14)

𝑐 𝑗−1 = 𝑓 (𝑥 𝑗−1) =
1

720
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 1

120
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 1

24
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 1

6
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 1

2
𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(15)

𝑐 𝑗 = 𝑓
(
𝑥 𝑗
)
, (16)

𝑐 𝑗+1 = 𝑓 (𝑥 𝑗+1) =
1

720
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 1

120
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 1

24
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 1

6
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 1

2
𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(17)

𝑐 𝑗+2 = 𝑓 (𝑥 𝑗+2) =
4

45
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 4

15
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 2

3
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 4

3
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 2 𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 2 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(18)

𝑐 𝑗+3 = 𝑓 (𝑥 𝑗+3) =
81

80
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 81

40
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 27

8
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 9

2
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 9

2
𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 3 𝑓 (1) (𝑥 𝑗)ℎ + 𝑓

(
𝑥 𝑗
)
,

(19)

𝑐 𝑗+4 = 𝑓 (𝑥 𝑗+4) =
256

45
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 128

15
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 32

3
𝑓 (4)

(
𝑥 𝑗
)
ℎ4

+ 32

3
𝑓 (3)

(
𝑥 𝑗
)
ℎ3 + 8 𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 4 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(20)

The expansion of the function f into Taylor series is obtained:

𝑓 (𝑥) = 𝑠6

720
𝑓 (6)

(
𝑥 𝑗
)
ℎ6 + 𝑠5

120
𝑓 (5)

(
𝑥 𝑗
)
ℎ5 + 𝑠4

24
𝑓 (4)

(
𝑥 𝑗
)
ℎ4 + 𝑠

3

6
𝑓 (3)

(
𝑥 𝑗
)
ℎ3

+ 𝑠
2

2
𝑓 (2)

(
𝑥 𝑗
)
ℎ2 + 𝑠 𝑓 (1)

(
𝑥 𝑗
)
ℎ + 𝑓

(
𝑥 𝑗
)
,

(21)
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The interpolation error is:

𝑒 = 𝑓 − 𝑔 = 𝐶7𝑠
7 + 𝐶6𝑠

6 + 𝐶5𝑠
5 + 𝐶4𝑠

4 + 𝐶3𝑠
3 + 𝐶2𝑠

2 + 𝐶1𝑠 + 𝐶0, (22)

where are the coefficients:

𝐶7 = 𝐷7,6ℎ
6 𝑓 (6)

(
𝑥 𝑗
)
, +𝐷7,5ℎ

5 𝑓 (5)
(
𝑥 𝑗
)
+ 𝐷7,4ℎ

4 𝑓 (4)
(
𝑥 𝑗
)
+ 𝐷7,3ℎ

3 𝑓 (3)
(
𝑥 𝑗
)

+ 𝐷7,2ℎ
2 𝑓 (2)

(
𝑥 𝑗
)
+ 𝐷7,1ℎ 𝑓

(1) (𝑥 𝑗 ) ,
(23)

𝐶6 = 𝐷6,6ℎ
6 𝑓 (6)

(
𝑥 𝑗
)
+ 𝐷6,5ℎ

5 𝑓 (5)
(
𝑥 𝑗
)
+ 𝐷6,4ℎ

4 𝑓 (4)
(
𝑥 𝑗
)
+ 𝐷6,3ℎ

3 𝑓 (3)
(
𝑥 𝑗
)

+ 𝐷6,2ℎ
2 𝑓 (2)

(
𝑥 𝑗
)
+ 𝐷6,1ℎ 𝑓

(1) (𝑥 𝑗 ) , (24)

𝐶5 = 𝐷5,5ℎ
5 𝑓 (5)

(
𝑥 𝑗
)
+ 𝐷5,3ℎ

3 𝑓 (3)
(
𝑥 𝑗
)
+ 𝐷5,1ℎ 𝑓

(1) (𝑥 𝑗 ) , (25)

𝐶4 = 𝐷4,6ℎ
6 𝑓 (6)

(
𝑥 𝑗
)
− 1997/385 · 10−16·ℎ5 𝑓 (5)

(
𝑥 𝑗
)
+ 𝐷4,4ℎ

4 𝑓 (4)
(
𝑥 𝑗
)

− 2209/943 · 10−15·ℎ3 𝑓 (3)
(
𝑥 𝑗
)
+ 𝐷4,2ℎ

2 𝑓 (2)
(
𝑥 𝑗
)

− 4588/2285 · 10−15·ℎ 𝑓 (1)
(
𝑥 𝑗
)
− 4843/1206 · 10−15· 𝑓

(
𝑥 𝑗
)
,

(26)

𝐶3 = 3838/2825 · 10−15·ℎ6 𝑓 (6)
(
𝑥 𝑗
)
+ 𝐷3,5ℎ

5 𝑓 (5)
(
𝑥 𝑗
)

+ 4631/465 · 10−15·ℎ4 𝑓 (4)
(
𝑥 𝑗
)
+ 𝐷3,3ℎ

3 𝑓 (3)
(
𝑥 𝑗
)

+ 1231/454 · 10−14·ℎ2 𝑓 (2)
(
𝑥 𝑗
)
+ 𝐷3,1ℎ 𝑓

(1) (𝑥 𝑗 ) + 4843/603 · 10−15· 𝑓
(
𝑥 𝑗
)
,

(27)

𝐶2 = 𝐷2,6ℎ
6 𝑓 (6)

(
𝑥 𝑗
)
− 2424/2071 · 10−14·ℎ5 𝑓 (5)

(
𝑥 𝑗
)
+ 𝐷2,4ℎ

4 𝑓 (4)
(
𝑥 𝑗
)

− 2869/501 · 10−14·ℎ3 𝑓 (3)
(
𝑥 𝑗
)
+ 𝐷2,2ℎ

2 𝑓 (2)
(
𝑥 𝑗
)

− 4529/578 · 10−14·ℎ 𝑓 (1)
(
𝑥 𝑗
)
− 1948/359 · 10−14· 𝑓

(
𝑥 𝑗
)
,

(28)

𝐶1 = 3095/614 · 10−15·ℎ6 𝑓 (6)
(
𝑥 𝑗
)
+ 𝐷1,5ℎ

5 𝑓 (5)
(
𝑥 𝑗
)
+ 𝐷1,3ℎ

3 𝑓 (3)
(
𝑥 𝑗
)

+ 6377/1696 · 10−14·ℎ4 𝑓 (4)
(
𝑥 𝑗
)
+ 651/590 · 10−13·ℎ2 𝑓 (2)

(
𝑥 𝑗
)

+ 𝐷1,1ℎ 𝑓
(1) (𝑥 𝑗 ) + 2246/447 · 10−14· 𝑓

(
𝑥 𝑗
)
,

(29)
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𝐶0 = −1748/705 · 10−15·ℎ6 𝑓 (6)
(
𝑥 𝑗
)
− 1787/241 · 10−15·ℎ5 𝑓 (5)

(
𝑥 𝑗
)

− 1192/639 · 10−14·ℎ4 𝑓 (4)
(
𝑥 𝑗
)
− 1971/535 · 10−14·ℎ3 𝑓 (3)

(
𝑥 𝑗
)

− 5332/941 · 10−14·ℎ2 𝑓 (2)
(
𝑥 𝑗
)
− 1465/272 · 10−14·ℎ 𝑓 (1)

(
𝑥 𝑗
)

− 2227/749 · 10−14· 𝑓
(
𝑥 𝑗
)
,

(30)

where are they: 𝐷7,6 = 123/4624+84𝛼, 𝐷7,5 = 381/4624+226𝛼, 𝐷7,4 = 643/3468+
360𝛼, 𝐷7,3 = 547/1156 + 840𝛼, 𝐷7,2 = 355/578 + 720𝛼, 𝐷7,1 = 355/289 + 1440𝛼,
𝐷6,6 = −3851/78030−170𝛼, 𝐷6,5 = −861/4624−588𝛼, 𝐷6,4 = −1001/2601−784𝛼,
𝐷6,3 = −4501/3468 − 2520𝛼, 𝐷6,2 = −2485/1734 − 1680𝛼, 𝐷6,1 = −2485/578 −
5040𝛼, 𝐷5,5 = 237/2890 + 366𝛼, 𝐷5,3 = 1505/1734 + 2016𝛼, 𝐷5,1 = 2485/578 +
5040𝛼, 𝐷4,6 = 257/12355 + 108𝛼, 𝐷4,4 = 398/1519 + 640𝛼, 𝐷4,2 = 1446/1009 +
1680𝛼, 𝐷3,5 = 124/4787 + 26𝛼, 𝐷3,3 = 206/2601 − 240𝛼, 𝐷3,1 = −1446/1009 −
1680𝛼, 𝐷2,6 = 41/21013−22𝛼, 𝐷2,4 = −217/3468−216𝛼, 𝐷2,2 = −355/578−720𝛼,
𝐷1,5 = −75/18274 − 30𝛼, 𝐷1,3 = −637/5202 − 96𝛼, 𝐷1,1 = 355/1734 + 240𝛼.
Minimization of the interpolation error e (Equation 22) is done by choosing the

appropriate kernel parameter 𝛼. This means that the coefficients of the Equations 23
- 30 should be equal to zero. In this way, a system of 27 equations with one unknown
was formed. In that case, it is not possible to find a unique solution, and, therefore,
the least squares method (LSM) was applied. As a result of applying LSM, optimal
kernel parameter was calculated: 𝛼 𝑓𝑜𝑝𝑡,7 = −22/27931.
In Figure 1.a shows the time forms of: a) ideal windows interpolation kernel sincw,

length L = 8, which is windowed using a rectangular window, on the segment (-4, 4);
b) the seventh-order polynomial 1P kernel 𝑟 𝑓𝑜𝑝𝑡,7, which is optimized in the spectral
domain [20], with the criterion of minimizing the ripple of the spectral character-
istics (𝛼 𝑓𝑜𝑝𝑡,7 = −71/83232), and c) the seventh-order polynomial 1P kernel, which
is optimized in the time domain (Section 3), (𝛼 𝑓𝑜𝑝𝑡,7 = −22/27931). In Figure 1.b
shows the spectral characteristics: a) ideal interpolation kernel sinc, 𝐻𝑠𝑖𝑛𝑐 (L → ∞),
b) windowized ideal kernel 𝐻𝑠𝑖𝑛𝑐𝑤 , (L = 8), c) 1P kernel 𝐻 𝑓

𝑜𝑝𝑡,7, that is optimized in
the spectral domain, and d) 1P kernel 𝐻𝑡𝑜𝑝𝑡,7, that is optimized in the time domain.

4 Experimental Results and Analysis

4.1 Experiment

The precision of the convolutional interpolation was evaluated by experiment. The
convolutional interpolationwas realized by applying the polynomial, one-parameter
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Figure 1: a) Time forms of: the ideal interpolation kernel sinc, seventh-order poly-
nomial 1P kernel optimized in the spectral domain 𝑟 𝑓𝑜𝑝𝑡,7 and time domain 𝑟 𝑡𝑜𝑝𝑡,7,
on the interval (-4, 4); b) Spectral characteristics of: ideal interpolation kernel 𝐻𝑠𝑖𝑛𝑐 ,
windowized ideal kernel 𝐻𝑠𝑖𝑛𝑐𝑤 , 1P kernel optimized in the spectral domain 𝐻 𝑓

𝑜𝑝𝑡,7,
and 1P kernel optimized in the time domain 𝐻𝑡𝑜𝑝𝑡,7.

(1P), interpolation kernels, namely: a) third-order kernel where the optimization of
the parameter was performed in the spectral and time domain (𝛼 𝑓 ,𝑡𝑜𝑝𝑡,3 = −0.5) [19],
[20], b) fifth-order kernel where the optimization of the parameter was performed
in the spectral and time domain (𝛼 𝑓 ,𝑡𝑜𝑝𝑡,5 = −3/64) [20], [23], c) seventh-order ker-
nel where the optimization of the parameter was performed in the spectral domain
( 𝛼 𝑓𝑜𝑝𝑡,7 = −71/83232) [20], and d) seventh-order kernel where the optimization
of the parameter was performed in the time domain (𝛼𝑡𝑜𝑝𝑡,7 = −22/27931) (Section
III). For the purpose of comparative analysis of the interpolation precision, the mean
square error MSE as a measure of the interpolation precision, was used.
The algorithm for calculating the interpolation precision, which is MSE, and the

optimal kernel parameter 𝛼𝑜𝑝𝑡 , for the test function f, was implemented in the fol-
lowing steps:

Input: r - interpolation kernel, L - length of interpolation kernel, 𝛼𝐿 and 𝛼𝐻
kernel parameter boundaries, Δ𝛼 kernel parameter step, f - test function, 𝐾𝐿 and
𝐾𝐻 - segment boundaries, h - sampling period, Δ𝑥 - interpolation period
Output: 𝑀𝑆𝐸𝑚𝑖𝑛, 𝛼𝑜𝑝𝑡
Step 1: The test function f is sampled on the segment (𝐾𝐿 , 𝐾𝐻 ) in N interpolation

nodes with a uniform sampling period h, where 𝑁 = (𝐾𝐻 − 𝐾𝐿 − 𝐿)/ℎ.
FOR 𝛼 = 𝛼𝐿 : Δ𝛼 : 𝛼𝐻
Step 2: The test function f is interpolated in the K interpolation points, with an
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interpolation periodΔ𝑥, where𝐾 = (𝐾𝐻−𝐾𝐿−𝐿)/Δ𝑥. Interpolationwas performed
using convolutional interpolation:

𝑔𝑘,𝛼 =
𝑛+𝐿/2∑
𝑖=𝑛−𝐿/2

𝑓𝑛 · 𝑟𝛼 (𝑘 − 𝑖), 𝑛 ≤ 𝑘 ≤ 𝑛 + 1, (31)

where 𝑓𝑛 is the n-th sample of the test function on the segment (𝐾𝐿 , 𝐾𝐻 ), 𝑟𝛼 is the
interpolation kernel with the kernel parameter 𝛼, and L is the length of the kernel.
Step 3: In each interpolation point k, the interpolation error 𝑒𝑘,𝛼 = | 𝑓𝑘 − 𝑔𝑘,𝛼 |

was calculated.
Step 4: Mean squared error:

𝑀𝑆𝐸𝛼 =
1

𝐾

𝐾∑
𝑛=1

𝑒2𝑘,𝛼, (32)

is calculated.
END 𝛼
Step 5: The minimum root mean square error MSE was calculated:

𝑀𝑆𝐸𝑚𝑖𝑛 = min(𝑀𝑆𝐸𝛼), (33)

and the optimal kernel parameter, that corresponds to the minimum interpolation
error, was calculated:

𝛼𝑜𝑝𝑡 = argmin
𝛼

(𝑀𝑆𝐸𝛼). (34)

Applying the described algorithm to each test function 𝑓𝑖 , where 𝑖 = 1, ..., 𝑀 , the
mean interpolation error MSE = 1/𝑀 ·∑𝑀

𝑖=1 𝑀𝑆𝐸𝑖 , was calculated. In this way, it
is possible to perform a comparative analysis of the precision of interpolation, for
all tested interpolation kernels. The test functions used in the experiment are:

𝑓1(𝑥) = 1.5 sin
( 𝑥
2𝜋

)
+ sin

(
𝑥2

2𝜋

)
, (35)

𝑓2(𝑥) = 10−3(𝑥 − 10) (𝑥 − 15)(𝑥 − 35) sin
( 𝑥
𝜋

)
. (36)
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𝑓3(𝑥) = 𝑒−
𝑥
2𝜋 sin

(
4𝑥

𝜋

)
, (37)

𝑓4(𝑥) = sin
( 𝑥
3𝜋

)
· sin

(
2𝑥

𝜋

)
. (38)

The experiment was carried out with parameters: 𝐾𝐿 = 0, 𝐾𝐻 = 35, ℎ = 1,
Δ𝑥 = 0.01, and 𝑀 = 4. The results are presented using graphs and tables.

4.2 Results

Time forms of the test functions f, interpolation functions g and interpolation nodes
are shown in: a) Figure 2.a ( 𝑓1, Equation 35), b) Figure 3.a ( 𝑓2, Equation 36), c) Fig-
ure 4.a ( 𝑓3, Equation 37) and d) Figure 5.a ( 𝑓4, Equation 38). Interpolation errors
MSE, (Equation 32), depending on the kernel parameter 𝛼, are shown with a blue
line on: a) Figure 2.b Fig 2.b ( 𝑓1), b) Figure 3.b Fig 3.b ( 𝑓2), c) Figure 4.b Fig 4.b
( 𝑓3) and d) Figure 5.b Fig. 5.b ( 𝑓4). The values of minimum interpolation errors
are marked on the same MSE graph, for cases when the kernel parameter is op-
timized in: a) spectral domain (𝑀𝑆𝐸 𝑓𝑚𝑖𝑛 , marker: ’•’), b) time domain (𝑀𝑆𝐸 𝑡𝑚𝑖𝑛,
marker: ’■’) and c) obtained experimentally (𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛 , marker: ’▼’). The absolute
interpolation errors e (Equation 22) on the segment (9, 10), when convolutional in-
terpolation is performed with a seventh-order polynomial 1P kernel, which is opti-
mized in a) spectral domain (𝑟 𝑓𝑜𝑝𝑡 , 𝛼

𝑓
𝑜𝑝𝑡 = -71/83232) [20] and b) time domain (𝑟 𝑡𝑜𝑝𝑡 ,

𝛼𝑡𝑜𝑝𝑡 = -22/27931) (Section III), are shown in: a) Figure 2.c Fig. 2.c ( 𝑓1), b) Figure
3.c Fig. 3.c ( 𝑓2), c) Figure 4.c Fig. 4.c ( 𝑓3) and d) Figure 5.c Fig. 5.c ( 𝑓4). In Table
1 shows the minimum MSE values for the case of interpolation with a seventh-
order polynomial kernel optimized in the spectral domain (𝑀𝑆𝐸 𝑓𝑚𝑖𝑛) and the time
domain (𝑀𝑆𝐸 𝑡𝑚𝑖𝑛). In addition, in order to perform a comparative analysis, the
minimum value of MSE, for the case of interpolation with a polynomial kernel: a)
of the third-order 𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,3 (𝛼 𝑓 ,𝑡𝑚𝑖𝑛,3 = −1/2) [19], [20], and b) of the fifth-order
𝑀𝑆𝐸

𝑓 ,𝑡
𝑚𝑖𝑛,5 (𝛼

𝑓 ,𝑡
𝑚𝑖𝑛,5 = −3/64) [20], [23], where the optimal parameter values are equal

in both the spectral and time domains, are shown. Applying the algorithm (Section
4.1), the minimum interpolation error MSE (Equation 33) and the optimal values
of the kernel parameters 𝛼 (Equation 34), for all test functions, were experimen-
tally determined: a) 𝑓1 (𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛, 𝑓1

= −7.8387 · 10−8, 𝛼𝑒𝑥𝑝𝑜𝑝𝑡, 𝑓1
= −10/10989), b) 𝑓2

(𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛, 𝑓2
= 8.4264 · 10−8, 𝛼𝑒𝑥𝑝𝑜𝑝𝑡, 𝑓2

= −5/5618), c) 𝑓3 (𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛, 𝑓3
= 1.1154 · 10−7,

𝛼𝑒𝑥𝑝𝑜𝑝𝑡, 𝑓3
= −14/14433), and d) 𝑓4 (𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛, 𝑓4

= 1.1989 · 10−7, 𝛼𝑒𝑥𝑝𝑜𝑝𝑡, 𝑓4
= −6/6383).
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Figure 2: a) Interpolated signal 𝑓1(𝑥), interpolation function 𝑔1(𝑥) and interpolation
nodes n; b) Interpolation errors MSE, depending on the kernel parameter 𝛼, and c)
absolute interpolation errors e on the segment (9, 10).
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Figure 3: a) Interpolated signal 𝑓2(𝑥), interpolation function 𝑔2(𝑥) and interpolation
nodes n; b) Interpolation errors MSE, depending on the kernel parameter 𝛼, and c)
absolute interpolation errors e on the segment (9, 10).

4.3 Analysis of results

Based on the experimental results shown in Figures 2 - Figure 5 and Table 1, it
is concluded that the precision of interpolation with the the polynomial seventh-
order 1P kernel, whose optimal parameter is determined by optimization in the time
domain, is higher, compared to:
a) third-order 1P kernel 𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,3/𝑀𝑆𝐸 𝑡𝑚𝑖𝑛,7 = 3.319 · 10−6/1.3995 · 10−6 =

2.3714 times, and b) fifth order 1P kernel𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,5/𝑀𝑆𝐸 𝑡𝑚𝑖𝑛,7 = 1.5557·10−6/1.3995·
10−6 = 1.1115 times. Based on the experimental results related to the mini-mum
interpolation errors of all test functions, the experimental mean value of the inter-
polation error was determined: 𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛 =

∑4
𝑘=1 𝑀𝑆𝐸

𝑒𝑥𝑝
𝑚𝑖𝑛, 𝑓𝑘

= 9.8520 · 10−8.
The absolute of the interpolation errors in relation to the experimental error are:
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Figure 4: a) Interpolated signal 𝑓3(𝑥), interpolation function 𝑔3(𝑥) and interpolation
nodes n; b) Interpolation errors MSE, depending on the kernel parameter 𝛼, and c)
absolute interpolation errors e on the segment (9, 10).
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Figure 5: a) Interpolated signal 𝑓4(𝑥), interpolation function 𝑔4(𝑥) and interpolation
nodes n; b) Interpolation errors MSE, depending on the kernel parameter 𝛼, and c)
absolute interpolation errors e on the segment (9, 10).

a) third-order 1P kernel Δ𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,3 = |𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,3 − 𝑀𝑆𝐸𝑒𝑥𝑝𝑚𝑖𝑛 | = |3.319 · 10−6 −
9.8520 · 10−8 | = 3.2205 · 10−6,
b) fifth-order 1P kernel Δ𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,5 = |𝑀𝑆𝐸 𝑓 ,𝑡𝑚𝑖𝑛,5 − 𝑀𝑆𝐸

𝑒𝑥𝑝
𝑚𝑖𝑛 | = |1.5557 · 10−6 −

9.8520 · 10−8 | = 1.4572 · 10−6, and
c) seventh-order 1PΔ𝑀𝑆𝐸 𝑡𝑚𝑖𝑛 = |𝑀𝑆𝐸 𝑡𝑚𝑖𝑛,7−𝑀𝑆𝐸

𝑒𝑥𝑝
𝑚𝑖𝑛 | = |1.3995·10−6−9.8520·

10−8 | = 1.3010 · 10−6. In this way, the efficiency of the seventh order kernel is
indicated.
By analyzing the interpolation error for the case of applying the seventh-order

kernel, it can be concluded that the interpolation error, when interpolating using a
kernel that is optimized in the time domain, compared to a kernel that is optimized in
the spectral domain, is greater𝑀𝑆𝐸 𝑡𝑚𝑖𝑛,7/𝑀𝑆𝐸

𝑓
𝑚𝑖𝑛 = 1.3995 ·10−6/0.85211 ·10−6 =



214 Z. N. Milivojević et al.

Table 1: Minimum of the interpolation errors MSEs, when the interpolation of the
test function f is performed by the polynomial interpolation kernel r : a) third-order
(𝑀𝑆𝐸 𝑓 ,𝑡𝑜𝑝𝑡,3), b) fifth-order (𝑀𝑆𝐸

𝑓 ,𝑡
𝑜𝑝𝑡,5), c) seventh-order (𝑀𝑆𝐸

𝑓
𝑜𝑝𝑡,7), optimized in

the spectral domain and d) seventh-order (𝑀𝑆𝐸 𝑡𝑜𝑝𝑡,7), optimized in the time domain.

𝑟 𝛼
𝑓 ,𝑡
𝑜𝑝𝑡,3 𝛼

𝑓 ,𝑡
𝑜𝑝𝑡,5 𝛼

𝑓
𝑜𝑝𝑡,7 𝛼𝑡𝑜𝑝𝑡,7

𝑀𝑆𝐸 (𝑥10−6) 𝑀𝑆𝐸
𝑓 ,𝑡
𝑜𝑝𝑡,3 𝑀𝑆𝐸

𝑓 ,𝑡
𝑜𝑝𝑡,5 𝑀𝑆𝐸

𝑓
𝑜𝑝𝑡,7 𝑀𝑆𝐸 𝑡𝑜𝑝𝑡,7

𝑓1 2.8483 1.0957 0.58436 1.1543
𝑓2 0.87537 0.45616 0.20944 1.2105
𝑓3 2.6753 1.0536 0.60248 1.0253
𝑓4 6.8772 3.6171 2.0122 2.2082

𝑀𝑆𝐸 3.319 1.5557 0.85211 1.3995

1.6425 times. The mean value of the optimal kernel parameter for all test functions
is 𝛼𝑒𝑥𝑝𝑜𝑝𝑡 =

∑4
𝑘=1 𝛼

𝑒𝑥𝑝
𝑜𝑝𝑡, 𝑓𝑘

= −6/6469 = −9.275 · 10−4. The absolute error of the
estimation of the optimal kernel parameters, which were obtained as a result of
optimization in: a) spectral domain Δ𝛼 𝑓𝑜𝑝𝑡 = |𝛼 𝑓𝑜𝑝𝑡,7 − 𝛼𝑒𝑥𝑝𝑜𝑝𝑡 | = | − 71/83232 −
(−6/6469) | = 2/26859 = 7.4463 · 10−5, and b) time domain Δ𝛼𝑡𝑜𝑝𝑡 = |𝛼𝑡𝑜𝑝𝑡,7 −
𝛼𝑒𝑥𝑝𝑜𝑝𝑡 | = | − 22/27931 − (−6/6469) | = 27/15742 = 19/135865 = 1.3985 · 10−4. It
can be seen that the absolute error in determining the optimal value of the kernel
parameter is smaller when the optimization is performed in the spectral domain.
Based on the conducted analysis, as well as the fact is 𝛼𝑡𝑜𝑝𝑡,7 ≈ 𝛼

𝑓
𝑜𝑝𝑡,7, it is con-

cluded that the optimal choice is the seventh-order polynomial kernel with kernel
parameter 𝛼 𝑓 ,𝑡𝑜𝑝𝑡,7 = −71/83232. The kernel constructed in this way is suitable for
practical application, i.e. implementation in real-time systems.

5 Conclusion

In this paper, the optimization of the seventh-order polynomial convolutional inter-
polation 1P kernel is described. The optimization of the kernel, which was realized
in the time domain, implied the selection of the optimal value of the kernel param-
eter 𝛼. The optimization criterion was the minimization of the interpolation error
e, which is defined as the difference between the interpolated function f and the
interpolation function g. With the condition that the interpolated function f has
at least seven continuous derivatives in the interval where the interpolation is per-
formed, the interpolation error e is developed in the Taylor series up to the seventh
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term. By minimizing the first seven terms of the Taylor series, the optimal value of
the kernel parameter, 𝛼𝑜𝑝𝑡 , is calculated. In order to calculate the optimal kernel
parameter, a system of 27 equations with one unknown was formed. In this case,
there is no unique solution, and, therefore, the least squares method (LSM) was ap-
plied. As a result of applying LSM, the optimal kernel parameter was calculated:
𝛼𝑜𝑝𝑡 = −22/27931.
The validity of the proposed optimal kernel parameter was experimentally tested.

For the purposes of the experiment, four test functions, whose shape is complex,
were created. Each test function is interpolated by convolutional interpolation, us-
ing third-order and fifth-order interpolation 1P kernels, whose kernel parameters
are calculated in both the spectral and time domains, as well as with a seventh-
order kernel that is optimized in the time domain. The results of the experiment
show that the precision of the interpolation, which was calculated using MSE, when
the seventh-order kernel was applied, is higher than the third-order (2.3714 times),
and the fifth-order (1.1115 times). However, the interpolation error of the seventh-
order kernel, which is optimized in the time domain, compared to the seventh-order
kernel, which is optimized in the spectral domain, is greater by 1.6425 times. With
the fact that the optimal parameters, calculated in time (𝛼𝑡𝑜𝑝𝑡,7 = −22/27931 =

7.8765 · 10−4) and spectral (𝛼 𝑓𝑜𝑝𝑡,7 = −71/83232 = −8.53037 · 10−4) domains are
approximately equal (𝛼𝑡𝑜𝑝𝑡,7 ≈ 𝛼 𝑓𝑜𝑝𝑡,7), based on experimental results, it is possible
to give a recommendation for the implementation of the seventh-order kernel with
the kernel parameter 𝛼 𝑓 ,𝑡𝑜𝑝𝑡,7 = −71/83232 in the real-time system.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

References

[1] A. Kazuyuki, K. Shoichi, and S. Hiroshi, “Spatial active noise control based
on individual kernel interpolation of primary and secondary sound fields,” in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Singapore, 2022, pp. 1056–1060 (⇒ 199).

[2] R. Sikora, P. Markiewicz, M. Maczka, S. Pawłowski, and Plewako, “Using in-
terpolation method to estimation step and touch voltage in grounding sys-
tem,” Przeglad Elektrotechniczny, vol. 99, no. 2, pp. 263–266, 2023 (⇒ 199).



216 Z. N. Milivojević et al.

[3] L. Yingmin, Q. Feifei, and W. Yi, “Improvements on bicubic image interpola-
tion,” in Proceedings of IEEE 4th Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC), Chengdu, China, 2019, pp. 1316–
1320 (⇒ 199).

[4] W. Citko and W. Sienko, “Using interpolation method to estimation step and
touch voltage in grounding system,” Przeglad Elektrotechniczny, vol. 98, no. 9,
pp. 154–157, 2022 (⇒ 199).

[5] B. Sun and S. Xin, “An edge-guided weighted image interpolation algorithm,”
in Proceedings of International Conference on Electronics Information and Emer-
gency Communication, Beijing, China, 2023, pp. 139–143 (⇒ 199).

[6] N. Azam, H. Yazid, and S. Rahim, “Performance analysis on interpolation-
basedmethods for fingerprint images,” in Proceedings of : IEEE 10th Conference
on Systems Process and Control (ICSPC), Malacca, Malaysia, 2022, pp. 135–140
(⇒ 199).

[7] D. Romano, F. Loreto, G. Antonini, I. Kovačević-Badstübner, and G. U., “Ac-
celerated partial inductance evaluation via cubic spline interpolation for the
peec method,” in Proceedings of 52nd European Microwave Conference (EuMC),
Milan, Italy, 2022, pp. 357–360 (⇒ 199).

[8] Z.Milivojevic, D. Brodic, and B. D., “The impact of the acute hypoxia to speech
inharmonicity,” Elektronika IR Elektrotechnika, vol. 20, no. 5, pp. 136–143, 2014
(⇒ 199).

[9] K. Lee andM. Slaney, “Acoustic chord transcription,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 16, no. 2, pp. 291–301, 2008 (⇒ 199).

[10] M. Müller, D. Ellis, A. Klapuri, and G. Richard, “Signal processing for music
analysis,” IEEE Journal Of Selected Topics In Signal Processing, vol. 5, no. 6,
pp. 1088–1110, 2011 (⇒ 199).

[11] D. Occorsio, G. Ramella, and W. Themistoclakis, “Lagrange–chebyshev in-
terpolation for image resizing,” Mathematics and Computers in Simulation,
vol. 197, pp. 105–126, 2022 (⇒ 199).

[12] N. Dodgson, “Quadratic interpolation for image resampling,” IEEE Transac-
tions On Image Processing, vol. 6, no. 9, pp. 1322–1326, 1997 (⇒ 199).

[13] M. Maczka, S. Pawłowski, and G. Hałdaś, “Application of polynomial approxi-
mation in simulations of quantum cascade lasers,” Przeglad Elektrotechniczny,
vol. 98, no. 12, pp. 321–324, 2022 (⇒ 200).



Optimization of the Seventh-order Polynomial … 217

[14] E.Meijering, “A chronology of interpolation: From ancient astronomy tomod-
ern signal and image processing,” proceedings of the IEEE, vol. 90, no. 3, pp. 319–
342, 2002 (⇒ 200).

[15] O. Rukundo and B. Maharaj, “Optimization of image interpolation based on
nearest neighbor algorithm,” in Proceedings of International Conference on Com-
puter VisionTheory andApplications (VISAPP), Lisbon, Portugal, 2014, pp. 641–
647 (⇒ 200).

[16] R. Hanssen and R. Bamler, “Evaluation of interpolation kernels for sar inter-
ferometry,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 1,
pp. 318–321, 1999 (⇒ 200).

[17] J. Shangguan, L. Yan-ling, W. Yong, and H.-l. Li., “Fast algorithm of modi-
fied cubic convolution interpolation,” in Proceedings of 4th IEEE International
Congress on Image and Signal Processing, Shanghai, China, 2011, pp. 1072–
1075 (⇒ 200).

[18] S. Rifman, “Digital rectification of erts multispectral imagery,” in Proceedings
of Significant Results Obtained From the Earth Resources Tehnology Satellite-
1, NASA. Goddard Space Flight Center Interpretation Tech. Develop, 1973,
pp. 1131–1142 (⇒ 200).

[19] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
Trans. Acout. Speech, and Signal Processing, ASSP, vol. 29, no. 1, pp. 1153–1160,
1981 (⇒ 200, 201, 203, 209, 211).

[20] E. Meijering, K. Zuiderveld, and M. Viegever, “Image reconstruction by con-
volutionwith simetrical piecewise n-th-order polynomial kernels,” IEEE Trans-
actions on Image Processing, vol. 8, no. 2, pp. 192–201, 1999 (⇒ 200–203, 208,
209, 211).

[21] E. Meijering and M. Unser, “A note on cubic convolution interpolation,” IEEE
Transactions on Image Processing, vol. 12, no. 4, pp. 477–479, 2003 (⇒ 200).

[22] Z. Milivojević, N. Savić, and D. Brodić, “Three-parametric cubic convolution
kernel for estimating the fundamental frequency of the speech signal,” Com-
puting and Informatics, vol. 36, no. 2, pp. 449–469, 2017 (⇒ 200).

[23] Z. Milivojević, R. Ivković, B. Prlinčević, and D. Kostić, “Optimization of the
polynomial fifth-order interpolation 1p kernel in the time domain,” Przeglad
Elektrotechniczny, vol. 10/2024, pp. 79–83, 2024 (⇒ 200, 201, 203, 209, 211).



218 Z. N. Milivojević et al.

[24] N. Savic, Z. Milivojevic, and B. Prlincevic, “Development of the 2p fifth-degree
interpolation convolutional kernel,” International Journal of Innovative Re-
search in Advanced Engineering (IJIRAE), vol. 11, no. 8, pp. 306–311, 2021
(⇒ 200).

[25] Z. Milivojević, N. Savić, and B. Prlinčević, “Spectral characteristics of two-
parameter fifth degree polynomial convolution kernel,” Bulletin of Natural
Sciences Research, vol. 12, no. 1, pp. 15–20, 2021 (⇒ 200).

[26] N. Savić, Z. Milivojević, and B. Prlinčević, “Optimization of the 2p fifth-degree
convolution kernel in the spectral domain,” Bulletin of Natural Sciences Re-
search, vol. 13, no. 1, pp. 19–29, 2023 (⇒ 200).

[27] I. German, “Short kernel fifth-order interpolation,” IEEE Transactions on Signal
Processing, vol. 45, no. 5, pp. 1355–1359, 1997 (⇒ 203).

Received: 20.08.2024; Revised: 18.12.2024; Accepted: 26.12.2024


	1 Introduction
	2 Seventh-order Polynomial One-parameter Kernel
	3 Optimization of the 1P Kernel in the Time Domain
	4 Experimental Results and Analysis
	4.1 Experiment
	4.2 Results
	4.3 Analysis of results 

	5 Conclusion

