AcTta UNIV. SAPIENTIAE, INFORMATICA, 16, 2 (2024) 139-159

DOI: 10.47745/ausi-2024-0009

Optimising the Force-Directed Layout
Generation

Matyas Komaromi Istvan Bozo
ELTE, E6tvos Lorand University ELTE, E6tvos Lorand University
Budapest, Hungary Budapest, Hungary
&8 makom789@gmail.com & bozo_i@inf.elte.hu
0000-0001-5145-9688

Melinda Té6th
ELTE, E6tvos Lorand University
Budapest, Hungary
M toth_m@inf.elte.hu

0000-0001-6300-7945

Abstract. A graph visualisation tool can be invaluable in code comprehen-
sion. It is a well-known and researched field of graphical informatics. Several
good algorithms were developed, but most of the graph drawing tools mainly
focus on the generation of static drawing. In this paper, we present an ap-
proach to force-directed layout generation that is orders of magnitudes faster
than the trivial implementation. This technique is based on the Runge-Kutta
methods and is efficient enough to visualise the user-requested parts (views)
quickly for relatively large Semantic Program Graphs of Erlang projects in soft
real-time. Such a graph might assist code comprehension in the RefactorErl
framework even better.

Key words and phrases: RefactorErl, Parallel computation, Graph drawing,
Erlang, GPU programming.

1 Introduction

Tool-supported software development is an accepted and desirable part of the soft-
ware development lifecycle. Several static source code analyser tools exist and aim
to help code comprehension by presenting the analysed data in various ways. Tak-
ing the size of the presented data into account, a focused graph representation of
the required data is one of the most useful.

139

http://dx.doi.org/10.47745/ausi-2024-0009
mailto:makom789@gmail.com
mailto:bozo_i@inf.elte.hu
https://orcid.org/0000-0001-5145-9688
mailto:toth_m@inf.elte.hu
https://orcid.org/0000-0001-6300-7945

140 M. Komaromi et al.

The tool RefactorErl [1] is a static source code analyser and transformer tool for
Erlang. It aims to present source code dependencies and help in code comprehen-
sion tasks with different graphs. However, the size of these graphs represented in a
static format for industrial-scale software goes beyond the limits a human can com-
prehend. To overcome this, we needed to define new dynamic graph views for the
users of RefactorErl.

Graph visualisation is a well-known and researched field of graphical informatics.
Several good algorithms were developed and reviewed by our days [2]. However,
most of the graph drawing tools mainly focus on the generation of static drawing.
Our goal is to create a tool to support dynamic views and provide an efficient layout
generation.

In this paper, we present an approach to a force-directed layout [3] generation
based on the Runge-Kutta methods. This method is efficient enough to quickly visu-
alise the user-requested parts (views) of relatively large Semantic Program Graphs of
Erlang projects in soft real-time. We studied different parallelisation of the method
on GPUs to achieve a better performance.

The rest of the paper is structured as follows. In Section 2 we introduce the Refac-
torErl tool and our first dynamic graph visualisation prototype, Gview. Sections 3
and 4 present our motivation to use force-directed layout generation, and demon-
strate our solutions for efficient parallelisation and improvements of the algorithms.
In Section 5 we evaluate our results. Sections 6 and 7 describe related works and
conclude the paper.

2 Background

RefactorErl [1] is an open-source static source code analyser and refactoring tool for
Erlang, developed by the Department of Programming Languages and Compilers
at the Faculty of Informatics, E6tvos Lorand University, Budapest, Hungary. The
phrase “refactoring” [4] means a semantic preserving source code transformation,
so a structural change is performed in the program while it does not alter its original
behaviour. Erlang is a dynamically typed functional programming language, thus to
gather all of the necessary information for a behaviour-preserving transformation
is not straightforward. The RefactorErl comes with an easily extensible lexer and
parser. The framework of RefactorErl applies several static semantic analyses on
the source code and represents the source code and the gathered information in a
Semantic Program Graph [5].

The main focus of RefactorErl is to support the daily code comprehension tasks
of Erlang developers. Among the features of RefactorErl is included a user-level Se-

Optimising the Force-Directed Layout Generation 141

mantic Query Language, that can assist Erlang developers in everyday tasks such as
program comprehension, debugging, finding relationships among program compo-
nents, etc. The queries are mapped to traversals in the Semantic Program graph. For
industrial-scale software, the size of this graph can become incredibly huge. There-
fore, the processing of a query may take from a few seconds up to several hours
depending on its complexity.

2.1 The Semantic Program Graph

RefactorErl keeps the information extracted through static semantic analyses in a
special data structure called the Semantic Program Graph (SPG) [5]. This graph
represents the lexical, syntactic and semantic structure of the analysed program.
Typically the lexical, syntactic and semantic elements of a program map to one node
in the SPG, while the connection between these elements maps to tagged edges
between these nodes. The SPG is a rooted graph. The root is a special node which
does not represent a program unit. The role of this root node is to be the common
ancestor of nodes not having one naturally. Care must be taken when traversing
the SPG as it is not a tree and may contain directed loops.

Although it is not a tree, the SPG exposes hierarchical properties as well. As an
example taking the subgraph of SPG representing the syntactic data of the program,
we find the nodes of files right below the root node. Below the files, we find function
forms. Going one level deeper we have clauses that build up the previously men-
tioned forms. Finally, on one level deeper there are the symbols of clause names,
parameters of clauses and syntactic trees of expressions in the rows of bodies of
clauses.

2.2 Code comprehension

Nowadays code comprehension or program comprehension is an increasing duty of
IDEs and other tools for software development and maintenance. Be the user of such
atool a newcomer to the task, an employee transferring from one project to another,
a project manager or a team picking up a new piece of technology, understanding
the code base and getting familiar with it leads to a much higher efficiency on both
building functional and stable software and keeping such systems running.

It is common knowledge that humans can process much more information visu-
ally than through text or audio in a short amount of time. RefactorErl already has
methods for supporting code comprehension. Therefore, our goal is to extend these
features with a tool (Gview) for dynamically visualising parts of the SPG (so-called
views) in soft real-time, through which the user can explore aspects of this huge

142 M. Komaromi et al.

graph and learn about the project at hand. In our previous work [6], we studied the
structure of such a tool and the way the data can be transferred from RefactorErl to
Gview. We also examined the different aspects of the rendering environment.

In this paper, we investigate one of the popular graph drawing methods: the
force-directed layout generation method. Particularly the probe of algorithmic and
computational optimisation through the usage of higher-order methods and the
more efficient usage of the GPU is the target of this work.

2.3 Euler’s method

As we will see in Section 3.1, the problem of generating the force-directed layout of
a directed or undirected graph can be formulated as simulating a physical system
over time and running this simulation until the layout is sufficiently close to a fixed
point. This physical system, as shown below, is described by a set of differential
equations, which ought to hold throughout the entire lifespan of the system. To en-
sure convergence, the simplest method that can be applied in this context is Euler’s
method [7].

The essence of Euler’s method in this context is to start the simulation from an
initial layout of the graph (random or generated by other means), and then take dis-
crete steps. In each step the algorithm calculates the derivative of the approximated
function, which can be interpreted as accumulating the acting forces on each body
of the system and letting the simulation run for a given h constant amount of time
and use the resulting layout as the next best setup, continuing the loop.

2.4 Room for improvements

The dilemma of Euler’s method is how to choose h. When choosing a too-small
value, the simulation may take ages. On the other hand, too large values will lead
to oscillations and the potential lack of convergence. Our previous approach was
to decrease h over time to ensure convergence. However, the optimal A may not
only depend on the arrangement of the graph but on the currently approximated
optimal layout. To address both issues, in this paper, we inspect the adoption of a
well-known generalisation of the above method: the adaptive Runge-Kutta method
family [8].

3 Motivation

Our goal was to create a tool for dynamically and interactively displaying parts of
the SPG in RefactorErl to aid code comprehension. To this end, we want to research

Optimising the Force-Directed Layout Generation 143

the possibilities of speeding up the above-mentioned algorithm. One of such plots
by Gview can be seen in Figure 1.

Figure 1: Function call view plotted using the researched algorithm.

Fay
ssh_info:is_coni ionfhaxlerfl
55hi§&mf%n_hand|er:info,!z

ssh_infogchannels/1

erlang:iskpid/1
ists:fegreach/2 A
fay /efﬁﬁg:whereisfl

AN
sU pervisor:whicﬁ)cmh:lér \

A /:/ Tush ﬁﬁﬁk@m 1

erlang:exit/2 erlang:self /0

erlang:is_list/1

D@
ssh_info:col Bids/l]

ssh_info

3.1 The force-directed layout generation

The method of force-directed layout [9] generation is a way of generating a two-
dimensional layout for directed and undirected graphs alike.

The core concept of creating such a layout involves fitting a physical system on
the graph, in the following way. Take a graph G = (V, E) with weighted vertices V
and weighted edges E, totalling n vertices, weight functions m and /! Each node of
the n nodes corresponds with a body in the system with a position denoted by p;(t),
a constant charge, m;, and a velocity v;(z). As the position and velocity depend on
the time passed since the start of the simulation, p; and v; have the type of R — R
The generation of force-directed layout for graph G starts with calculating an initial,
usually random, layout of the nodes, denoted by p;(0) for i = 1..n. After the initial
layout has been set up, the algorithm follows by simulating the evolution of the

144 M. Komaromi et al.

physical system using the following equations.

n

vi(t)= > el j,1) (1)
J=Li#j
o) = —— s | Hx In(d(, j,OII3) # 1y — ————=
O U T RU N S BC
d(i,j,1) =p@)i—p(1); 3)
_op
V= (4)

Equation 1 means that at any given time point ¢ the velocity of the i’ body equals
the sum of the forces exerted by other bodies. Here we use the term force, to describe
instantaneous forces, which have a direct effect on the velocity of the bodies rather
than the acceleration. Such forces are characterised by Equation 2: knowing the
position of the i’ and j*" body at time ¢, we can easily calculate the force acting on
body i at time 7.

Here H and G are arbitrary positive constants, used to regulate the strength of the
two types of acting force. In our research having H = 2 and G = 6100 turned up the
best-looking results. The most important equation is 4, which describes the analytic
connection between position and velocity in the physical system. It can be used
to rewrite the former equation system as a differential equation with the common
vector function of positions p = t — (p(t)1, p(t)2, ..., p(t),) as the unknown, as
follows.

Op(teur)
T - f(tcurs p(tcur)) (5)
p(to) = p(0) = po (6)
Fepy= > elij1) (7)
j=1,i#j

The canonical form of the ordinary differential equation is given in Equation 5
with the definition of f in Equation 7, while the initial position requirement is de-
fined in Equation 6.

Therefore, our goal is to approximate the vector function p for increasing values
of ¢ until we get close enough to its fixed point. For this purpose, we want to use
higher-order methods, to better utilise computational power and stable convergence
as t approaches co.

Optimising the Force-Directed Layout Generation 145

3.2 Higher order methods

The Runge-Kutta methods [10] are a family of explicit iterative methods, used in
temporal discretization for the approximate solutions of ordinary differential equa-
tions. The methods include the well-known routine called the Euler Method and
can be considered as the generalisation of the routine. The method has an adaptive
version, which can adjust the step size of the simulation and thus keep the error
below a given value, €.

These methods are called a family for the reason that they depend on numerous
parameters: a, b, and c. The latter two are vectors and the former one is a matrix [8].
These parameters can be arranged in a so-called Butcher tableau as can be seen in
Figure 2.

Figure 2: Example of an extended explicit Butcher tableau of degree s

0

Cg | @31

C3 | Q31 a3z

Cy gl @z " g1
by by - bsa b
by by .- by, B

With the initial positions given in pg, the method proceeds to create further ap-
proximations, p(#;+1), from the previous one, p(¢;) for i = 1..co, according to Equa-
tions 8 and 9. The difference in the result of these two equations is used to approx-
imate the error introduced by taking a step of length 4. Using this calculated error
term, we can choose a new step size to decrease the error below € or allow larger
steps in exchange for a larger error term.

N
pis1=pi+) bjk; (8)
j=1
S
Pis1 =Dit Z bk)
j=1

where

146 M. Komaromi et al.

j-1
kj=f(ti+cj*hapi+h*zaj,lkl) (10)
=1

The exact steps of choosing the next & and the very mathematics behind this
algorithm is a well-known topic and has been discussed in many papers. Our goal
is to apply this method to the problem at hand and to optimise it for the parallel
architecture of modern GPUs.

As we can see in Equation 7, our f does not depend on the p parameter directly.
The indirect dependence through d is replaced by the previous best approximation
pi for k1 and p; + h * ¢ 41 * k; for k41, thus eliminating the need for the matrix a
of the RK method. This property of the simulation resulted from the fact that we do
not employ friction, which would depend on the velocity of the bodies but rather
use instantaneous forces.

4 Methodology

Our goal is to find ways to improve the performance of the force-directed layout
generation by utilising the massively parallel architecture of modern GPUs.

The final form of the equation that we are using, taking into consideration the
relevant properties of the physical system, described at the end of Section 3.2, is
Equation 11. In each step of the simulation, we have to calculate the k coefficients
for each of the n bodies. Since the dimension of k is s and evaluating f requires
O(n) operations, the total cost of advancing one step comes out to be O(sn?).

n

kj=f(ti+cixh)= » e(ab,) (11)

b=1,a#b

4.1 Linear parallelisation

The first idea for parallelisation that one should consider is simply assigning the
task of evaluating the exerted forces of all other bodies to a single body. Thread
i allocates a single two-dimensional vector v, loops through all the bodies in the
system and calculates the force exerted on body i through body j at the current time
point #,'. The calculated forces are accumulated on the fly into the local variable
v of the thread and the result is stored in the kq array. The k;,; approximations
are generated in a similar manner, however p; is replaced by p; + h % cjy1 * kj. A
schematic representation of the linear parallelisation method can be seen in Figure 3.

lwith exception of the i’”* body

Optimising the Force-Directed Layout Generation 147

Figure 3: Architecture of basic parallelisation technique

[1 2]3 4]5 6 7 8 . . .| Threads

Sync
Sync

Sync

Sync

IHHHH

1 | Result

The above-mentioned dependence of k;,1 on k; results in the need for global
synchronisation of all the employed threads to make the calculated & ; values visible
to the other threads. This explicit synchronisation can only be realised on the GPU
if the number of invocations is below certain driver-defined limits, which can be
queried using the OpenGL command and is usually at least 1024.

In case of having a larger amount of bodies in the system than the hardware
exposed limit, we need CPU synchronisation, which means splitting the calculation
of each k; vector into different dispatches.

The performance bottleneck, however, comes from the fact that the amount of
work each thread is doing is proportional to sn which can grow too large. The
OpenGL standard guarantees [11] the ability to dispatch at least a maximum of 21
workgroups, all of which may consist of a maximum of at least 1024 work items
(threads). This means that reducing the number of threads dispatched from n can
potentially result in a great increase in performance. This idea is further supported
by the fact that GPU cores are much less powerful than CPU cores and thus em-
ploying more of them can lead to better resource utilisation, which gives reason to
the optimisation in Section 4.2.

4.2 Refining work per thread

To better utilise the parallel architecture of modern GPUs for the problem at hand,
we want to dispatch more than O(n) threads. Thus we take Equation 11, and for
each (a, b) pair, we create an invocation, totalling in n(n — 1) threads. After calcu-
lating each e(a, b, t) value in the summation on Equation 11, however, we need to

148 M. Komaromi et al.

evaluate the actual sum of these two-dimensional vectors and this is where parallel
reduction comes in. Reduction (or folding) is the generalisation of summation: for a
given A array of size n and a binary combining function f, the result of the folding
expression is b = f(A1, f (A2, f(As,...))) where the ... goes until n. Parallelising a
reduction is not a trivial task and is a well-known candidate for optimisation [12].
In our example, we have the benefit that our combination function is associative
and commutative. Thus enabling us to employ a divide and conquer technique as
shown in Figure 4.

Figure 4: Basic idea of divide and conquer strategy used in the parallel reduction.
The circles with T represent threads of execution.

(A, (A A (A] « [aslAs]a.]a,
T T T T
! | L !
‘ A1..2 ‘ A3 4 ‘ ‘ An-3..n-2 ‘ An-1..n
[N J N /
Y Y
T T
| }
‘ Al 4 ‘ ‘ An 3..n ‘
X J
Y
T
!

‘ Al..nlz ‘ An,’z..n ‘
\ J
Y
T
|

In the presented approach, we divide the reduction into levels of reduction, in
each level, the size of the array that is to be combined is decreased by half. In each
level, one thread only has to combine two elements of the array of the current level,
which would imply that the work per thread has changed to be O(1). However, by
noting that the levels must come in increasing order, each one depending on the
previous one, after reusing the allocated threads through levels, the total work per
thread totals O(loga(n)).

Figure 4 shows an optimal scenario, with n being a power of two, if n is not a
power of the amount of work one thread is responsible for, then the last thread
may index out of the array. To avoid this, we need to employ bound checking. An
example of the size of 5 can be seen in Figure 5. This bound checking may induce a
maximum of O(n) extra work.

The theoretical optimum of giving one thread O(I/n(n)) work can also be achieved.

Optimising the Force-Directed Layout Generation 149

Figure 5: Example of the maximum amount of extra work introduced by not a power

of two n, forn = 5.

A | A | A; | Ay | A
J
Y Y Y
T T @
¥] ¥
Al..Z A3..4 AS
\ J
Y Y
T) T)
}]
Al..4 AS
Y
i
A1..5

However, it requires extra mathematics behind the indexing and bound checking,
and also the potential extra work growth to O(n/n(n)). A visual representation is

shown in Figure 6.

Figure 6: Optimal /n(n) work per thread.

In(n) elements

I

T
} In%(n) elements

D <

4.3 Memory usage and synchronization

When programming for a modern GPU, it is possible to arrange threads of execution
(say invocations) into so-called workgroups. Threads (also referred to as work items

150 M. Komaromi et al.

in this context) in a workgroup can share group local memory and can synchronise
group-wise without the need for CPU intervention.

Because the levels of reduction are calculated linearly, we can store the partial
results in place, which thanks to workgroups, can be synchronised on the GPU. This
in-place storing of partial results can be seen in Figure 7. Thanks to this technique,
we only need O(n) memory and need to transfer one element to the CPU each frame.

Figure 7: In-place memory usage of the parallel reduction.

“\‘,‘—'Mw““d—%’w“’ o]

1 2) 3) 4

\milmlmilmlmll&lmil%l .

(1] 3

Al A [Asal A [Ass] A [As A [. |
\V J

(1)

Avs| A [Asa] A [Ase] A (Al A] o]

However, to be able to utilise the local synchronisation of the GPU workgroups, a
workgroup size equal to the number of bodies is needed, which brings us back to our
previous problem. To solve this, we investigated how we could organize the parallel
reduction into batches of maximal size, and recursively apply the already presented
reduction method. As Figure 8 shows, by creating partial results of maximal size,
using multiple workgroups and then applying a global synchronisation, we can take
advantage of the parallel architecture.

5 Results

The researched techniques were tested on a laptop with 5/ generation Intel Core i5
processor, 8GB of memory, using Intel HD 6000, running OpenGL 4.5. Parallel GPU
programs were realised with GLSL version 430 [13].

In our tests, we incrementally generated square grids of increasing sizes from
1x1 to 11x11, with random starting positions and ran first the CPU, then the GPU
and refined GPU algorithms on the same starting points, around 100 times each.
As these measurements may vary according to environment properties such as the
OS scheduler or extra load from updates and scheduled cleaning etc, we ignore the

Optimising the Force-Directed Layout Generation 151

Figure 8: Dividing the parallel reduction into smaller tasks that can be handled by
one workgroup.

Invoked in parallel

One work group

Executed in linear order

highest and lowest 5% of data and perform a normal distribution fitting on the rest.
The resulting expected value of generation time is plotted against the number of
nodes in Figure 9 and Figure 10.

Figure 9: The huge difference of CPU and GPU algorithm, note the logarithmic scale!
Tested on grid graphs.

Logtime (In(ms))

20 40 60 B0 100 120
Number of nodes

| basic mem waork logn cpul

152 M. Komaromi et al.

Figure 9 clearly shows the enormous improvement of the GPU parallel algorithm,
even on the integrated card used in testing. We expect that with a higher-tier dedi-
cated card, this gap is to increase further.

Figure 10: Comparison of the refined GPU algorithms, tested on different-sized grid
graphs.

1600
1400

- 1200
1000
200

600

Generation time (m

400

200

20 40 &0 B0 100 120
Number of nodes

| basic mem work logn |

The comparison presented in Figure 10 shows how different techniques described
in Section 4 improve generation time for increasing sizes of grids. The interesting
thing to note is that the memory (but not workload) optimised method performs
poorer than the trivial approach. This can be due to the hardware memory locality
of Intel integrated GPUs, which implies that the extra copy operations introduced by
memory optimisation by hand have a higher toll on performance than the improve-
ments in the locality it creates. Thus on a dedicated card, the memory-optimised
version might improve performance considerably.

We also investigated the performance of different realisations of the Runge-Kutta
family: the Heun-Euler method, the less famous Bogacki-Shampine method and a
high-order Fehlberg method. The tests were performed on a tree graph with nodes
ranging from 3 to 133 and the same refining techniques were applied as mentioned
previously. The results of this comparison can be seen in Figure 11. One can see

Optimising the Force-Directed Layout Generation 153

how the advantage of being able to take larger steps turns into a disadvantage of
higher required work per step. Based on these measurements, we can conclude that
the Bogacki-Shampine method is most efficient for our problem.

Figure 11: Comparison of different RK methods, tested on varying-sized tree graphs.

10000

BOO0
E
T 6000
=
=

4000

2000

20 40 60 a0 100 120
Number of nodes
Heun-Euler Bogacki-Shampine Fehlberg

5.1 Usage in RefactorErl

Figures 12 and 13 demonstrate a generated graph about the Mnesia application and
a function call graph generated by clicking on verify_merge/1.

6 Related work

In the following, we would like to compare our tool with some well-known graph
visualisation tools.

154 M. Komaromi et al.

Figure 12: View of all the modules in the Mnesia DBM.

Figure 13: View generated be clicking on verify_merge/1 in the main view of
Mnesia.

ets: Iu-ukup
nesia re$v /;get master_nodes, 1
mnesia schema D mnesia_Jiltwrap_exte

mnesia_: ma:verify _merge/1 AN

mnesia_lib:m_tu_é&rage_type!l

erlang:node /0 &
mnesia _;hgma:prepa re_op/3 mnesia_lib:search_key

TAN

schema:prepare_ops/6

Optimising the Force-Directed Layout Generation 155

6.1 Graphviz

Graphviz [14] is an open-source graph visualisation software developed by AT&T
Labs Research.

The Graphviz layout programs take descriptions of graphs in a simple text lan-
guage and make diagrams in useful formats, such as images and SVG for web pages;
PDF or Postscript for inclusion in other documents; or display in an interactive
graph browser. It supports many layout generation algorithms, such as hierarchi-
cal or the energy-minimizing stress-majoring technique. The software package has
many useful features for concrete diagrams, such as options for colours, fonts, tab-
ular node layouts, line styles, hyperlinks, and custom shapes.

Many software use Graphviz as an intermediate tool for displaying graphs. For
example, ArgoUML has an alternative UML Diagram rendering, called argouml-
graphviz, ConnectedText has a Graphviz plugin, and FreeCAD uses Graphviz to
display the dependencies between objects in documents. Other programs can out-
put in DOT [15] format and thus generate drawings with Graphviz. Doxygen also
uses Graphviz to generate diagrams including class hierarchies and collaboration
for source code. Graphviz targets static rendering of graphs; it optimises the draw-
ing as much as possible and thus takes considerable time on very large graphs, and
also limits the interactivity between software and user.

6.2 D3.js

D3.js [16] is a JavaScript library for manipulating documents based on data. D3.js
helps bring data to life using HTML, SVG, and CSS. It emphasises on web standards
giving the full capabilities of modern browsers without the need of tying to a propri-
etary framework, combining powerful visualisation components and a data-driven
approach to DOM manipulation. This library is a modern, browser-based solution to
visualisation problems with countless useful features such as pie charts, hierarchical
graph drawing and force-directed layout generation.

D3.js supports force-directed layout generation using velocity Verlet integration
which may require a much smaller step size than the RK methods to minimize os-
cillations in the solution, but the method is symplectic. Thus the two methods were
meant to solve different kinds of problems, as our version of the force-directed lay-
out generation uses logarithmic springs and instantaneous forces, our simulation
need not be energy conserving or symplectic for short. The key difference between
our research and D3.js is that we aim to exploit the parallel architecture of modern
GPUs, while the simulations of D3.js get calculated on the CPU?.

Zunless some JavaScript optimisation happens

156 M. Komaromi et al.

6.3 Gephi

Gephi [17] is an open-source software for graph and network analysis. It uses a 3D
render engine to display large networks in real time and to speed up the exploration.
Gephi advertises itself as having a flexible multitasking architecture that brings new
possibilities to work with complex data sets and produce informative graphics. It
has been used in several research projects in academia, journalism and elsewhere.
For instance, it was used in visualising the global connectivity of New York Times
content and examining Twitter network traffic during social unrest along with more
traditional network analysis topics.

Development of Gephi was started in the summer of 2008, while the last stable
update was in 2017. It was created in the Java programming language and although
it features an OpenGL renderer, it uses immediate mode rendering, which became
obsolete with OpenGL 3.1 in 2009 which means Gephi does not use GPU for layout
generation. Today, with OpenGL 4.6, much faster rendering tools are available, such
as instanced rendering, VBOs and compute shaders. Also, it is built on top of the
NetBeans IDE, which means it cannot be integrated into another project, only added
as an external tool.

6.4 GoJS

GoJS [18] is a JavaScript and TypeScript library for building interactive diagrams
and graphs. GoJS claims to let the user build all kinds of diagrams and graphs, rang-
ing from simple flowcharts and org charts to highly specific industrial diagrams,
SCADA and BPMN diagrams, medical diagrams like genograms, and more. The li-
brary is meant for the implementation of interactive diagrams and visualization on
modern web browsers and platforms. It allows easy construction of custom and
complex diagrams of nodes, links, and groups with customizable templates and lay-
outs. It does not depend on any JavaScript libraries or frameworks, so it should work
with any web framework or with no framework at all. The library focuses on inter-
activity and flexibility. There are many demos available online on the webpage of
the tool. It also offers rich features like drag-and-drop, copy-and-paste, in-place text
editing, tool-tips, templates, data binding and models, transactional state and undo
management, palettes, event handlers, commands, and an extensible tool system for
real-time custom operations on the diagram. It also features many automatic layout
generation algorithms, which can be extended by the user of the library.

One such automatic layout is the force-directed layout generation algorithm. They
describe the method as a layout generation method that treats the graph as if it
were a system of physical bodies with repulsive electrical, attracting gravitational,

Optimising the Force-Directed Layout Generation 157

and spring forces acting on them and between them. The engine uses the CPU for
layout generation, thus it is not optimized for modern parallel GPUs.

7 Conclusion

The RefactorErl framework has several graphical and command-line interfaces, that
support refactoring, static code analysis and code comprehension as well. The tool
uses the so-called Semantic Program Graph as the intermediate representation of
the source code which includes static semantic information beside the syntactic and
lexical information. We have extended RefactorEr]l with Gview. Gview is an efficient
and interactive graph visualisation tool, that uses force-directed layout generation.
This algorithm was implemented using Euler’s method which is only stable with
potentially very small step sizes.

In this paper, we presented a better approach to simulating the evolution of the
physical system that is the system of bodies and springs defined by graphs we want
to plot. The above-described method is based on the well-known adaptive Runge-
Kutta method family, a generalisation of Euler’s method. We presented a trivial
approach for parallelising the RK methods on the GPU and analysed this linear
technique. We further investigated and measured optimisation opportunities for
the GPU algorithm. These optimisations included different ways of refining the
memory usage, changing the distribution of work among threads to reach a better
configuration and the importance of different synchronisation functionalities.

In our future work, we plan to investigate other layout generation methods and
optimise them for GPU.

Gview is open source and available on GitHub. The integration with RefactorErl
will be released soon with the upcoming release of the tool:

https://github.com/Frontier789/Gview.

Funding: “Application Domain Specific Highly Reliable IT Solutions” project that has
been implemented with the support provided from the National Research, Development,
and Innovation Fund of Hungary, financed under the Thematic Excellence Programme no.
2020-4.1.1.-TKP2020 (National Challenges Subprogramme) funding scheme.

Data Availability: The study did not generate new data.

158 M. Komaromi et al.

References

[1] L Bozo,D.Horpacsi, Z. Horvéth, et al., “RefactorErl, Source Code Analysis and
Refactoring in Erlang,” in Proceeding of the 12th Symposium on Programming
Languages and Software Tools, Tallin, Estonia, 2011 (= 140).

[2] G. D. Battista, P. Eades, R. Tamassia, and L. G. Tollis, “Algorithms for draw-
ing graphs: An annotated bibliography,” Computational Geometry: Theory and
Applications, vol. 4, no. 5, pp. 235-282, 1988 (= 140).

[3] T.KamadaandS.Kawai, “An algorithm for drawing general undirected graphs,”
Information Processing Letters, vol. 31, no. 1, pp. 7-15, 1989 (= 140).

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley, 1999 (= 140).

[5] Z.Horvath, L. Lovei, T. Kozsik, et al., “Modeling Semantic Knowledge in Er-
lang for Refactoring,” in Knowledge Engineering: Principles and Techniques,
Proceedings of the International Conference on Knowledge Engineering, Princi-
ples and Techniques, KEPT 2009, ser. Studia Universitatis Babes-Bolyai, Series
Informatica, vol. 54(2009) Sp. Issue, Cluj-Napoca, Romania, Jul. 2009, pp. 7-16
(= 140, 141).

[6] Matyas Komaromi, Melinda Téth, Istvan Bozd, An Efficient Graph Visualisa-
tion Framework For RefactorErl, Paper accepted into the Special Issue of Studia
Universitatis Babes-Bolyai, series Mathematica, Informaticaand Physica, MACS’18,
12th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, June
14-17, 2018 (= 142).

[7]1 K. Atkinson, An Introduction to Numerical Analysis. Wiley, 1989, 1sBN: 9780471500230
(= 142).

[8] J.Dormand and P. Prince, “A family of embedded runge-kutta formulae,” Jour-
nal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19-26, 1980
(= 142, 145).

[9] T. M.]J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed
placement,” Software - Practice and Experience, vol. 21, no. 11, pp. 1129-1164,
1991 (= 143).

[10] C.Harper, Introduction to mathematical physics (Prentice-Hall physics series).
Prentice-Hall, 1976, 1sBN: 9780134875385 (= 145).

[11] D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane, OpenGL programming
guide: The Official guide to learning OpenGL, version 4.3. Addison-Wesley, 2013
(= 147).

Optimising the Force-Directed Layout Generation 159

[12]
[13]

(14]

[15]
[16]

(17]

(18]

M. Harris et al., “Optimizing parallel reduction in cuda,” (= 148).

R. J. Rost, B. Licea-Kane, D. Ginsburg, et al., “Opengl(r) shading language’
2004 (= 150).

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—
open source graph drawing tools,” in International Symposium on Graph Draw-
ing, Springer, 2001, pp. 483-484 (= 155).

E. E. Koutsofios and S. C. North, “Drawing graphs with dot,” 1991 (= 155).

N. Q. Zhu, Data visualization with D3. js cookbook. Packt Publishing Ltd, 2013
(= 155).

M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for

exploring and manipulating networks,” in Third international AAAI conference
on weblogs and social media, 2009 (= 156).

F. Shahzad, T. R. Sheltami, E. M. Shakshuki, and O. Shaikh, “A review of latest
web tools and libraries for state-of-the-art visualization,” Procedia Computer
Science, vol. 98, pp. 100-106, 2016 (= 156).

Received: 06.07.2024; Revised: 09.10.2024; Accepted: 10.10.2024

	1 Introduction
	2 Background
	2.1 The Semantic Program Graph
	2.2 Code comprehension
	2.3 Euler's method
	2.4 Room for improvements

	3 Motivation
	3.1 The force-directed layout generation
	3.2 Higher order methods

	4 Methodology
	4.1 Linear parallelisation
	4.2 Refining work per thread
	4.3 Memory usage and synchronization

	5 Results
	5.1 Usage in RefactorErl

	6 Related work
	6.1 Graphviz
	6.2 D3.js
	6.3 Gephi
	6.4 GoJS

	7 Conclusion

