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1 Introduction

A typical disjoint bilinear programming (DBLP) intends to minimize a non-convex
quadratic function over disjoint constraint sets defined by two bounded and non-
empty polytopes. Mathematically, it can be formulated as below,

min f(x,y) =c'x+d'y +x'Qy,
st xeX={xeR":Ax <a, x >0}, AecR™ " gecR™, (1)
yeY={yeR™2:By<b,y>0}, BeR"™"2 phecR™,

As a subset of bilinear programming, DBLP is a mathematical optimization frame-
work that has gained significant attention due to its extensive applications in various
fields including game theory, facility location, numerical linear algebra and stochas-
tic processes; see [1]. More recent applications also cover DBLP related issues in
supply chain management [2], [3], chemical engineering [4], two-dimensional pack-
ing [5], Markov decision process [6], [7], operations research [8], [9], etc. This paper
focuses on the field of imprecise decision analysis, in which a typical decision model
intends to solve many disjoint bilinear programs; see for example [10]-[15]. Each
program in general possesses no more than 100 dimensions, but may encounter
various degrees of degeneracy ranging from 1 to 5.

The unique challenge in solving DBLP lies in its bilinear objective function and
disjoint constraints. Based on the structural properties, various solution techniques
have been developed, among which, two major deterministic approaches are cutting
plane methods and branch and bound methods.

In cutting plane methods, great effort has been devoted to the establishment of
deep cuts like concavity cuts [16], polar cuts [17], decomposition cuts [18], etc. Nev-
ertheless, the computational issue of degeneracy arising at a local solution can be
frequently confronted in real-world applications. The development of an effective
cut at a degenerate vertex has been long-standing with few computational results
[17], [19]-[21]. Recently, the concept of conservative cuts was first introduced in
[22]. From theoretical and computational viewpoints, a conservative cut neither
sacrifices the local optimum by pivoting to a non-degenerate neighboring vertex
[19], nor imposes too much computational load by generating a disjunctive cut [19],
[23]. Accompanying the concept, a distance-following algorithm was proposed in
search of a conservative cut, in which considerable computational effort is spent in
the projection operation for each qualified adjacent vertex with respect to an estab-
lished hyperplane. Additionally, the investigations of both a candidate’s neighbor-
hood and the distance between the degenerate vertex and an established hyperplane
appear time-consuming. In [21], several heuristic algorithms aiming to further im-
prove the computational performance for the location of a conservative hyperplane
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were proposed, among which, Algorithm 1 and 5 (will be referred to as Random
throughout the rest of this paper; see Appendix), appeared quite promising in terms
of computing time. By utilizing the property of non-uniqueness of a conservative
hyperplane, Random is able to solve the bilinear models with low degrees of degen-
eracy arising in imprecise decision analysis, but may suffer from memory problems
when the degree of degeneracy rises.

Since confronting heavy storage load of memory can severely restrict its appli-
cation to a cutting plane method on PCs, we try to improve Random from the
perspective of memory by utilizing Pascal’s Triangle. With a static Pascal’s Trian-
gle table, we develop the inverse function of nchoosek_enum(n, k,i) to derive the
serial number of a combination. It spares the need to save all combinations dur-
ing the search in order to keep away from the memory problem. The improvement
comes at a cost of computing time, and well illustrates the algorithmic space-time
continuum in data structure.

In what follows, Section 2 briefly describes the issue of degeneracy arising in the
local optimization phase of a cutting plane method for DBLP. Section 3 develops
the memory-efficient algorithm for the location a conservative hyperplane. Section
4 discusses the generation of required test instances, following which Section 5 re-
ports their computational performance based on the programs in imprecise decision
analysis. Section 6 concludes our paper.

2 Degeneracy

The essential solution property of DBLP exploited in the local optimization phase of
almost all cutting plane methods is that even though f(x,y) is not quasi-concave,
the global optimizer, (x*,y*), is attained at a vertex of X X Y, which means that x
and y are vertices of X and Y, respectively [24].

To facilitate our presentation, denote by X' the original feasible region X when
i = 0, or its subset obtained after i cuts have been introduced.

Definition 2.1. A local minimizer ofg(-) over X' is a vertex, X ¢, such that g (X¢p,) <
g(x) foreachx € Bs(x¢m) N XY, where Bs(X¢m) is a 5-neighborhood around x¢p, in
X', and g(x¢p,) is the corresponding local minimum.

Definition 2.2. A local star minimizer of g(-) over X' is a vertex, X ¢g,, such that
g(xpsm) < g(x) foreachx € N(x¢sm), where N (x¢sm) denotes the vertices adjacent
t0X¢sm in X', and g(Xpsm) is the corresponding local star minimum.

Since f(x,y) is not quasi-concave, a local star minimum is not necessarily a local
minimum, and thus the development of a cut from a local star minimizer cannot take
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effect as usual for those with quasi-concave objective functions. Moreover, for DBLP
(1), cuts involving variables associated with both X’ and ¥ may destroy their special
structure, and thereby fail the existing efficient algorithms to solve sub-problems.
As aresult, to develop a cut that involves only the x-variables and yet is convergent
from a local minimizer, a concept more than Definition 2.1, 2.2 is necessary [25].

Definition 2.3. A vertex (Ei,y) in DBLP is a Pseudo-Global Minimizer (PGM) if
f(xX'.y) < f(x,y) foreachx € Bs(x') N X' and for eachy € Y.

For DBLP (1), a vertex is adjacent to (x',y) if and only if it is either of the form
(xk,y) or (x', y*) where x* € Ny:i(x') and y* € Ny (¥). For a PGM, further im-
provement may be achieved by an idea analogous to that suggested by Definition
2.2, i.e., we can examine those vertices adjacent to x' for a better solution. A so
derived PGM can have the advantages from both a local minimum and a local star
minimum. Algorithm 1, originated from [24] to identify a PGM, (x',y), is cur-
rently acting as a building block in the local optimization phase of a cutting plane
method.

Algorithm 1: Augmented Mountain Climbing Method
Input: Q,c,d, X', Y,y €Y.
Output: x',y).
1 repeat
| X =argminey: f(*,5); ¥ =argmin,ey f(X,);
until X converges;
construct Ny (X);
if 3x¥ € Ny:(X) such that f(X,y*) = minycy f(¥,y) < f(x,y) then
L go to line 2 withy = y*;

[ V)

A G W

7 terminate with (¥',y) = (¥,¥) as a PGM.

In Algorithm 1, it turns out that ¥ ina PGM, (fi,i), derived in line 7, can be
degenerate. This will result in the inevitable computational difficulty in the estab-
lishment of a valid cut in the global optimization phase since we will have more than
nj cutting points along the edges emanating from x' ! not to mention its effectiveness
and efficiency.

Degeneracy can be further classified into weak degeneracy and strong degener-
acy. In a two-dimensional (2D) program, as has always been done in the literature,
it is only possible to introduce weak degeneracy by bringing in some redundant
constraints; see Example 1.
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Example 1. As shown in the left sub-figure of Figure 1, suppose that the reduced
feasible region is defined by P N Q as

P= {(Xl,XQ)t 10 <xp,x9 < 1} ,

4
Q= {(xl,xg)’ cd4x1+x9 > 1, §x1 +x9 < 1},

where P and Q can be regarded as the constraints to define the original feasible
region and introduced cuts, respectively.

aT2
A B
M N
0] \ C T

Figure 1: Weak Degeneracy versus Strong Degeneracy.

The feasible region in Example 1 is bounded by three bold lines. Apparently,
the degeneracy at vertex A can be resolved by removing two redundant linear con-
straints, x; > 0 and x3 < 1.

Intuitively, weak degeneracy occurs simply because of redundant constraints, and
can be avoided by carrying out some pre-processing procedure [26], [27]. For any
2D program, barring the extreme case where the feasible region consists of a single
point, only weak degeneracy exists, i.e., more than two linear constraints intersect
at a single point.

In Figure 1, a three-dimensional (3D) instance in the right sub-figure illustrates
strong degeneracy, in which ACD acts as an introduced cut to remove a portion of
the feasible region OACD. As aresult, there are four edges emanating from A in the
reduced feasible region. Having derived their respective maximal step-sizes, we can
hardly expect four cutting points to be coplanar, thus leading to the computational
difficulty in the generation of a valid cut from A in R3. Note that the removal of
any constraint cannot take effect in the resolution of strong degeneracy because it
changes the feasible region.
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3 Conservative Cuts

3.1 Basic Knowledge

According to our experience, strong degeneracy is frequently confronted in DBLP
(1) with multi-global minima. With one of the global minima derived as the cur-
rent best objective value, a cut can at most reach another global minimum and may
induce degeneracy therein. Consequently, it is essential to develop an efficient and
effective approach for establishing a valid cut from a degenerate vertex. A promising
technique specially designed for this purpose is conservative cuts.

In what follows, we will omit the superscript i in x' and X’ given a clear context.
That is, in the i’ iteration, we simply take X as X ina PGM, (fi,i), provided by
Algorithm 1, and X as X I the reduced feasible region. Besides, the procedure in
search of a conservative hyperplane is formulated in R” rather than R™ as in (1).

Geometrically, for a polytope defined by X in R", a degenerate vertex X has more
than n incident edges. During the development of a cut, say, a polar cut, given the
appropriate step-sizes along their positive or negative extensions, the probability
that all cutting points are coplanar is fairly low. We thus have more than » points
in R” to establish a cut that should not exclude any potential optimal solution [22].

Denote by A = Nx,(X) = {x1,X2,..., X5, Xn+1,Xn42, . . ., Xnso} the set of all
vertices adjacent to X, by o (o0 > 1) the degree of degeneracy, by Q (Q c A) the
set containing n vertices selected from A to establish a hyperplane I1, and by Q the
set of adjacent vertices that lie to the same side of IT as X does.

Definition 3.1. In R", given a degenerate vertex, X, of a polytope, a conservative
hyperplane, 11, is defined as the hyperplane generated by n vertices neighboring to x
such that Q = 0.

Definition 3.2. InR", at a degenerate vertex, X, of a polytope, a conservative cut used
to cut off X is the inequality generated by a conservative hyperplane.

3.2 Pascal’s Triangle

Random, by utilizing implicit enumeration, acts as a promising procedure in search
of a conservative cut. Although Random selects a candidate randomly in exchange
for one of the vertices establishing the current hyperplane, it remains inevitable to
keep a record on those already visited combinations. Otherwise, we may sacrifice
the computing time for visiting the same combination and even step into infinite
loops. In MATLAB, the function nchoosek(V, K) suits well for this purpose. It
returns a matrix containing all possible combinations of the elements of vector V
taken K at a time.
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Suppose we confine an instance to the dimension of 125, which is sufficiently high
for programs in imprecise decision analysis. To figure out a conservative cut, a PC
equipped with 8G memory will throw an error such as “Requested 234531275x5
(8.7GB) array exceeds maximum array size preference (8.0GB)” when Random
carries out nchoosek(V,5) where V = [1,2,...,125]". Though we can partially
resolve this issue by configuring “MATLAB array size limit” in “Workspace”, the
generation process will run extremely slow and cause MATLAB to become unre-
sponsive. This is reasonable because nchoosek(V,5) intends to enumerate a total
of 234531275 combinations. They will then serve as the indices to locate corre-
sponding adjacent vertices in A to establish . The number of combinations of
nchoosek(V, K) increases particularly fast as K rises. We can hardly expect each
PC is equipped with 8G memory so that the aforementioned memory problem can
severely hinder Random’s application.

To circumvent this issue, we introduce a critical technique that is able to take
effect throughout the implementation of our memory-efficient approach. To avoid
building the full combination array in memory like what nchoosek(V,K) does,
we take advantage of the function nchoosek_enum(n, k,i) with an enumerating
selection of the i’ combination.

Consider an example for all six combinations of C2ie.,(1,1,2),(2,1,3),(3,1,4),
(4,2,3), (5,2,4), and (6, 3, 4), with the first entry as the corresponding serial num-
ber. The 3¢ combination ofCZ derived by nchoosek_enum (4,2, 3) is (1, 4), the 5"
combination by nchoosek_enum(4,2,5) is (2,4), etc. By referring to the Pascal’s
Triangle table, we need to develop its inverse, inverse_nchoosek_enum(n, k,c),
such that, given an appropriate combination ¢, we can derive its serial number.
By “appropriate”, we mean herein that all elements in ¢ are organized in accor-
dance with their natural order. Still with the previous example, the output for
inverse_nchoosek_enum(4,2,[3,4]) is 6. The rationale can be found in Exam-
ple 1 with detailed explanations.

Example 1. Here comes an example with a detailed workflow for illustration. We
list only the necessary rows of Pascal(9) provided by MATLAB for our purpose;
see Table 1.

We take the following procedures to figure out the serial number corresponding to
the combination, ¢ = [3, 5, 6, 8, 9], among all combinations of choosing 5 elements
outof V.= [1,2,...,9]". For the first element 3, two preceding elements are 1 and
2. First, for 1, there are eight elements, i.e,, 2, 3, . . ., 9, left for the rest four positions,
and therefore it possesses C g = 70 combinations in total. Once the four elements are
selected, their order is fixed in consistence with the natural order. Next, for 2, there
are seven elements, i.e., 3,4,...,9, left for the rest four positions, and therefore it
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Table 1: Pascal(9)

1[1] 1] 1 1
1/2]®] 4 6| 7] 8] 9
13 6|@/[15] 21| 28] 36| 45
1410208 56| 84120 | 165
15[ 15]35]@ | 126 | 210 | 330 | 495

possesses C2 = 35 combinations in total. When it comes to 5, we need to count
the number of combinations starting with [3,4,...]. By an analogous logic, it is
Cg = 10 in total. Finally, we come to 6, which has Cg combinations with [8, 9] as
the last one. As a result, the output of inverse_nchoosek_enum(9,5,[3,5,6,8,9])
is Cél + C;l + Cg + Cg =70+ 35+ 10+ 3 = 118, as indicated by the circled numbers.

Note that it is unnecessary to handle [5, 6] and [8, 9] in [3, 5, 6, 8, 9] because they
are two pairs of consecutive natural numbers.

Example 1 illustrates that by choosing appropriate numbers from a static Pas-
cal’s Triangle table, we can readily derive the serial number of an appropriate com-
bination. Generally speaking, it is unnecessary to save a complete Pascal’s Triangle
table in memory because on the one hand, we could rarely expect such an ugly de-
generate problem with o > 5. On the other hand, since a Pascal’s Triangle table is
symmetric, the storage is so cheap that it can serve as a very efficient and effective
means of deriving the serial number of some combination of choosing K out of N
elements.

3.3 Implementation

With inverse_nchoosek_enum(), denote by # the serial number of an appropriate
combination of choosing K out of N elements, by v the normal vector of IT*, by
A and b the parameters in the constraint set, Ax < b, by Q a structure to save
the serial numbers of those s whose candidates for exchange have already been
exhausted; and by Q a structure array to save those Qs with the same |Q|, where
| - | is the cardinality of a set. The so constructed structure array Q indexed by Q|
is used to accelerate the search among candidates. Moreover, there exists another
structure, abnormal, which saves those Qs constituting (close to) singular matrices.
Such Qs are considered inappropriate to establish hyperplanes.

Algorithm 2 realizes the memory-efficient randomized algorithm with details.
Notice that it is the essential property of non-uniqueness of a conservative hyper-
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plane that enables Random to surpass its other counterparts in [21], [22] and be
competitive with Algorithm 2 in terms of different os.

Algorithm 2: Conservative Hyperplane (Improved Randomized)

Input: A, x
Output: v, Q
1 setv =0;
2 whilev =0 do
3 randomly extract # from Q, where £ = arg min,, {¢'|Q, # 0};
4 if { = -1 then
5 randomly collect n vertices from A into Q to set up a IT;
6 if |Q| = 0 then return v of I1* and Q;
7 if # ¢ O U Q U abnormal then
8 t insert # of Q, and all x; € Q into alﬁl;
9 else
10 recover Q corresponding to the extracted #;
11 randomly select x ; € Q, and set Q = ﬁ\ {x;}
12 if |Q| = 0 then move # of Q from Q, to Q;
13 foreach x; € Q do
14 exchange x ; with x to set up Q" and IT';
15 if || = 0 then return v of IT* and ';
16 if # ¢ O U Q U abnormal then
17 t insert # of ', and all x;, € Q' into a@ﬁ

In Algorithm 2, in order to validate the availability of one €, it is necessary to
check Q, O, and abnormal first; see line 7, 16. We can save in Q, Q and abnormal
only the serial number associated with each Q rather than specific elements. This
can greatly alleviate the usage of memory since it is unnecessary to visit all combi-
nations in search of a conservative hyperplane. Otherwise, it would become quite
unclear on the memory size we need to allocate in advance, or an arbitrary alloca-
tion may simply lead to “out of memory”; see line 3, 7, 12 and 16. Additionally,
the utilization of actual combinations will compel the program to compare a sorted
candidate with each entry, e.g., ismember() in MATLAB. The comparison of vectors
may also slow down the computations.

Several other aspects need to be further clarified. Firstly, a normal vector, v, exists
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provided that Q is well-defined to establish a hyperplane, i.e., Q is not in abnormal,
otherwise v is kept empty. As a result, the only stopping criterion is either |Q| = 0
or || =0 regardless of v; see line 6, 15. One exception is that, in line 12, Q=0
indicates that all candidates for exchange regarding some Q have been exhausted
so that we should move it from Q to Q. Secondly, although it is suggested that Q or
Q in Algorithm 2 contain qualified adjacent vertices, we actually take advantage
of their row indices in A to indicate their positions and then extract them. By doing
so, we intend to relieve the storage load of memory. Thirdly, in line 4, £ = -1
means that no Q exists for search, which may arise provided that all available Qs
have been exhausted or when initializing the entire algorithm. Finally, in line 7, 16,
each operation inserts into Q one serial number and appends to it a set containing all
qualified vertices. The algorithm extracts these candidates one by one for exchange
until the set becomes empty (line 11, and line 13 through 17).

4 Test Instances

Algorithm 3 is used to generate a test instance with n + o vertices adjacent to a
o-degenerate vertex x in R”.

Algorithm 3: Test Instances

Input: n, o
Output: A
generate a polytope with n + 1 points {x1,x2,...,X,,Xp+1} in R
fix one point, say, x,+1 as X, and collect the remaining into A;
while |A| < n+ 0 do
select x; € A;
foreach x;, j # i, adjacent to x; do
generate a new point x|z,; and set A = AU {x|a+;}

R R R

X|Al4j = Zajkxk, ajr € (0,1), k # J, Z(Xjk =1;
k) k)

7 | set A = A\{x;}, and re-order so that A = {x1,x2,..., x|z };

8 randomly select n + o points from A so that A = {x1,X2,...,Xn+0};
9 foreach x; € A do randomly extend or shorten xXx;;

In Algorithm 3, between line 3 and 7, the while loop will not stop until the
number of elements in A exceeds n + o, the required number of adjacent vertices.
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This provides us with great flexibility in the generation of a degenerate instance,
despite the cost of some excessive computational effort. In line 6, the operation
is in fact the convex combination of x; with all the remaining x;s except x; for
each j # i. Therefore, we generate n — 1 new points in total. Together with X, a
hyperplane can be generated to remove x;, and the number of vertices adjacent to
X becomes |A| + n — 2. In line 9, by randomly extending or shortening xx;, there
may still exist more than n points on some hyperplane. However, a test instance
is considered inappropriate only if all adjacent vertices lie on the same hyperplane.
By carrying out the critical operation in line 9, this could seldom happen.

X

X X X
0
)
1
1
1
X1 !
X 1
5
X1 X2 X1 X2 X1 )
X4 X4 X3 X4
X3 X3 X3

Figure 2: Illustration of Algorithm 3.

Algorithm 3 can be illustrated by a 3D example in Figure 2, where n = 3 and
o = 1. By Figure 2, each construction of a cut to remove some x; will generate one
more point adjacent to X. As a result, we are able to generate any number of points
adjacent to x, regardless of how high the degree of degeneracy is.

5 Numerical Results

In order to evaluate the performance of two randomized algorithms, especially Al-
gorithm 2, we take advantage of Algorithm 3 to generate the required test in-
stances and carry out the experiments on a PC equipped with Intel(R) Core(TM)
i5-6267U CPU @ 2.90GHz and 4G memory. We deliberately impose a limit of 60
seconds over the total computing time for each instance, which appears reason-
able for an interactive decision analysis software package. For each combination of
dimension (n) and degree of degeneracy (o), we generate 24 test instances and av-
erage their corresponding results with respect to total computing time, the number
of performing nchoosek_enum(n, k, i), etc. In the following, we intend to evaluate
the performance of two algorithms for test instances with low o~ and », high o and
low n, and low o and high n, respectively. The exception is for test instances with
high o and n due to the memory issue raised by nchoosek(n, k). With the current
environment, we can only try to increase either n or o, but not both, as will be
demonstrated by the experiments.
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5.1 Low Degree of Degeneracy and Dimension

Figure 3 illustrates the performance for test instances with low o (o = 1, 2, 3) and
n (n = 30,35,...,100). Three sub-figures on the first row of Figure 3 illustrate
the performance of two algorithms regarding o = 1, 2, 3, respectively. It can be ob-
served that Random runs faster than Algorithm 2 most of the time. Nevertheless,
the gaps in terms of computing time are rather small, say, within only around 1.5
seconds. Two sub-figures on the second row of Figure 3 illustrate their individ-
ual performance with respect to o = 1,2, 3. For both algorithms, the computing
time increases exponentially as n rises given o = 2, 3, whereas the performance of
Random keeps relatively steady when o = 1, as apposed to that of Algorithm 2.

o=1

o=2

o=3

Random

°
°
I
&

Computing Time
o o

A

—e— Algorithm 2

—e— Algorithm 2
Random

—e— Algorithm 2
Random

fa/’\om e

30 40 50 60 70 80 90 100

Computing Time

Dimensions

o

in

o
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o

°
B

Algorithm 2

v eoo 00000000

30 40 50 60 70 80 90 100
Dimensions

30 40 50 60 70 80 90 100

Dimensions

30 40 50 60 70 80 90
Dimensions

100

Random

30 40 50 60 70 80 90 100
Dimensions,

Figure 3: Performance of Algorithm 2 and Random (Low o and n).

The fact that Random runs faster than Algorithm 2 in the current setting ap-
pears reasonable due to the sufficient memory. Random can take advantage of
nchoosek(V, K), which generates all possible combinations and save them in mem-
ory. However, as n or o increases, the memory problem will emerge.
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5.2 High Degree of Degeneracy and Low Dimension

Figure 4 illustrates their results for instances with high o (o0 = 4, 5) when n goes
from 30 to 100. Two sub-figures on the first row of Figure 4 demonstrate their
performance. Provided o = 4, Random can run up to around n = 100 before
its computing time exceeds the pre-specified time limit, or the test instance incurs
“out of memory”, whereas provided o = 5, similar situations take place around
n = 75. To some extent, this demonstrates that each increase in o can dramatically
impact the computational performance of Random. Meanwhile, the computing
time of Algorithm 2 is acceptable. By two sub-figures on the first row of Fig-
ure 4, the performance of Algorithm 2 dominates that of Random for o = 4, 5.
Two sub-figures on the second row of Figure 4 illustrate the number of performing
nchoosek_enum(n,k,i) and the number of solving linear equations, respectively, re-
garding Algorithm 2 when o = 4, 5. In the bottom-left sub-figure, the numbers of
performing nchoosek_enum(n,k,i) are competitive when n < 70. However, when
n > 75, a clear increase in the number for o = 5 can be observed, as compared with
that for o = 4. Besides, a higher o, in general, corresponds to a larger number of
solving linear equations; see the bottom-right sub-figure of Figure 4.

60 60
—e— Algorithm 2 —e— Algorithm 2
Random Random

o 40 40
£
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£30 30
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20 20

30 40 50 60 70 80 90 100 30 40 50 60 70
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Dimensions, Dimensions,

The Number of Performing nch
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Figure 4: Performance of Algorithm 2 and Random (High o, Low n).
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Most computing time of Algorithm 2 is spent in nchoosek_enum(n, k, i) to gen-
erate serial numbers in exchange for memory. By contrast, solving linear equations
only accounts for a very small portion of total computing time. As o rises, the com-
puting time rises sharply. Nonetheless, the impact from the rise in n on the total
computing time seems much less when o is not that high. Additionally, the higher
the o, the more number of nchoosek_enum(n, k,i) Algorithm 2 performs. The
trend becomes much clearer as 7 rises. This is reasonable since the number of can-
didates in search of a conservative hyperplane increases exponentially. By contrast,
inverse_nchoosek_enum(n, k, c) costs almost nothing since the Pascal’s Triangle
table is static.

5.3 Low Degree of Degeneracy and High Dimension

Figure 5 illustrates their performance for instances with low o (o = 1,2, 3) and
high n (n = 100,105, ...,250). For the purpose of comparison, it is impossible
to perform Random with respect to these dimensions when o = 4,5 due to the
pre-specified time limit or “out of memory” issue; see also the previous illustration
when n < 100. It can be observed that for o = 1, their performance overlaps most
of the time. Nevertheless, for o = 2, 3, Algorithm 2 outperforms Random across
all most dimensions, which demonstrates its ability and qualification in handling
problems with higher dimensions. Note also that the gaps in computing time for
o =1, 2 are relatively small, showing two algorithms are very competitive.

6 Conclusions

This paper investigates an improved randomized algorithm, i.e., Algorithm 2, in
addressing the memory challenge associated with the previously developed search-
ing process, Random, for a conservative cut. By leveraging the inherent structure
of Pascal’s Triangle, the memory-efficient Algorithm 2 well illustrates the algo-
rithmic space-time continuum in data structure.

Computational experiments demonstrate that Algorithm 2 is particularly bene-
ficial to programs characterized by high n or o, whereas Random is more suitable
for programs with low 0. However, once the memory problem appears, Random
will become less preferred so that Algorithm 2 should come into play. By refin-
ing Random, we anticipate its application to a cutting plane method in imprecise
decision analysis where DBLP plays a pivotal role.

What should be noted is that the Matlab environment utilized herein is an inter-
preter compiler, which slows down the test significantly unless a special-purpose
command line was used in the compilation. To accelerate, an even better approach
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Figure 5: Performance of Algorithm 2 and Random (Low o and High n).

is to develop the entire cutting plane method using C/C++.
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Appendix

In R", suppose that in a polytope, a degenerate vertex, X, has been located with
n + m adjacent vertices, A = {B1, Ba, . .., By, But1, B2, - - -, Buym }- By randomly
selecting n points, we can obtain Rg to establish a hyperplane € and Sg with |Sg| =
k where |-| is the number of elements in a set. For each possible k, we set up a queue,
0, to save all Rgs with |Sg| = k that have been found but not yet utilized as the
starting set of points for the branching process. Similarly, we establish another
queue, Qy, to save all Rgs with |Sg| = k that have already been utilized for the
branching process.

Algorithm 4: General Algorithm
Input: A, x
Output: Re
1 randomly choose 7 points from A as Re and establish Q with Re;

update with £ = |Sg| = k, and save Rg in ég;
while £ # 0 do
extract one Rg from Qy;

update with O, = Q,/{Re}, Q¢ = Q¢ U {Re};
6 ¢ = Algorithm 5(Rg);

W N

(5]

7 return Re.

Algorithm 5: Branching Algorithm (Randomized)
Input: Re
Output: ¢
1 randomly choose one R; in Re and one §; in S;
2 set Rer = {Re/{Ri}} U{S;}:
3 if Rey ¢ Opr U ak,, (|S(;),| = k’) then save Re in @k,, and set £ = k’;
4 else ¢ = argmin,, {m|Q,, # 0};
5 return {.




36 X. Ding, C. Liu, . Ma, X. Chen, and Q. Sun.

References

[1] H. Konno, “Bilinear programming: Part II. Application of bilinear program-
ming,” Tech. Rept. No. 71-10, Department of Operations Research, Stanford
University, Stanford, Calif,, 1971 (= 21).

[2] S. Rebennack, A. Nahapetyan, and P. Pardalos, “Bilinear modeling solution
approach for fixed charge network flow problems,” Optimization Letters, vol. 3,
no. 3, pp. 347-355, 2009 (= 21).

[3] A.Nahapetyan, “Bilinear programming: Applications in the supply chain man-
agement,” in Encyclopedia of Optimization, Springer, 2009, pp. 282-288 (= 21).

[4] D. Wicaksono and I. Karimi, “Piecewise MILP under- and overestimators for
global optimization of bilinear programs,” AIChE Journal, vol. 54, no. 4, pp. 991-
1008, 2008 (= 21).

[5] A.Capraraand M. Monaci, “Bidimensional packing by bilinear programming,’
Mathematical programming, vol. 118, no. 1, pp. 75-108, 2009 (= 21).

[6] M. Petrik and S. Zilberstein, “Robust approximate bilinear programming for
value function approximation,” The Journal of Machine Learning Research, vol. 12,
pp- 3027-3063, 2011 (= 21).

[7] M. Valdebenito, C. Pérez, H. Jensen, and M. Beer, “Approximate fuzzy analy-
sis of linear structural systems applying intervening variables,” Computers &
Structures, vol. 162, no. 1, pp. 116-129, 2016 (= 21).

[8] A. Nahapetyan and P. Pardalos, “A bilinear relaxation based algorithm for
concave piecewise linear network flow problems,” Journal of Industrial and
Management Optimization, vol. 3, no. 1, p. 71, 2007 (= 21).

[9] A. Nahapetyan and P. Pardalos, “A bilinear reduction based algorithm for
solving capacitated multi-item dynamic pricing problems,” Computers & Op-
erations Research, vol. 35, no. 5, pp. 1601-1612, 2008 (= 21).

[10] M. Danielson, “Generalized evaluation in decision analysis,” European Journal
of Operational Research, vol. 162, no. 2, pp. 442-449, 2005 (= 21).

[11] M. Danielson and L. Ekenberg, “A framework for analysing decisions under
risk,” European Journal of Operational Research, vol. 104, no. 3, pp. 474-484,
1998 (= 21).

[12] M. Danielson and L. Ekenberg, “Computing upper and lower bounds in inter-
val decision trees,” European Journal of Operational Research, vol. 181, no. 2,
pp. 808-816, 2007 (= 21).



A memory-efficient algorithm for conservative cuts in DBLP 37

[19]

[20]

[21]

[22]

(23]

M. Danielson and L. Ekenberg, Real-Life Decision-Making, 1st ed. CRC Press,
2023, 1SBN: 9781003406709 (= 21).

A. Sage and C. White, “Ariadne: A knowledge-based interactive system for
planning and decision support,” IEEE Transactions on Systems, Man and Cy-
bernetics, vol. 14, no. 1, pp. 35-47, 1984 (= 21).

A. Salo and R. Hdmdldinen, “Preference programming through approximate
ratio comparisons,” European Journal of Operational Research, vol. 82, no. 3,
pp. 458-475, 1995 (= 21).

H. Tuy, “Concave programming under linear constraints,” Soviet Maththemat-
ics, vol. 5, pp. 1437-1440, 1964 (= 21).

H. Sherali and C. Shetty, “A finitely convergent algorithm for bilinear pro-
gramming problems using polar cuts and disjunctive face cuts,” Mathematical
Programming, vol. 19, no. 1, pp. 14-31, 1980 (= 21).

M. Porembski, “How to extend the concept of convexity cuts to derive deeper
cutting planes,” Journal of Global Optimization, vol. 15, no. 4, pp. 371-404,
1999 (= 21).

S. Alarie, C. Audet, B. Jaumard, and G. Savard, “Concavity cuts for disjoint
bilinear programming,” Mathematical Programming, vol. 90, no. 2, pp. 373—
398, 2001 (= 21).

M. Porembski, “On the hierarchy of y-valid cuts in global optimization,” Naval
Research Logistics, vol. 55, no. 1, pp. 1-15, 2008 (= 21).

X. Chen, J. Zhang, X. Ding, T. Yang, and J. Qian, “Location of a conserva-
tive hyperplane for cutting plane methods in disjoint bilinear programming,’
Optimization Letters, vol. 13, no. 7, pp. 1677-1692, 2019 (= 21, 28).

J. Zhang, X. Chen, and X. Ding, “Degeneracy removal in cutting plane meth-
ods for disjoint bilinear programming,” Optimization Letters, vol. 11, no. 3,
pp- 483-495, 2017 (= 21, 25, 28).

C. Audet, P. Hansen, B. Jaumard, and G. Savard, “A symmetrical linear maxmin
approach to disjoint bilinear programming,” Mathematical Programming, vol. 85,
no. 3, pp. 573-592, 1999 (= 21).

H. Konno, “A cutting plane algorithm for solving bilinear programs,” Mathe-
matical Programming, vol. 11, no. 1, pp. 14-27, 1976 (= 22, 23).

H. Vaish and C. Shetty, “A cutting plane algorithm for the bilinear program-
ming problem,” Naval Research Logistics, vol. 24, no. 1, pp. 83-94, 1977 (= 23).



38 X. Ding, C. Liu, J. Ma, X. Chen, and Q. Sun.

[26] T. Gal, “A method for determining redundant constraints,” in Redundancy in
Mathematical Programming, Berlin, Heidelberg: Springer Berlin Heidelberg,
1983, pp. 36—52, 1SBN: 978-3-642-45535-3 (= 24).

[27] T. Gal, “Weakly redundant constraints and their impact on postoptimal anal-

yses in LP,” European Journal of Operational Research, vol. 60, no. 3, pp. 315-
326, 1992 (= 24).

Received: 26.01.2024; Revised: 13.05.2024; Accepted: 10.06.2024



	1 Introduction
	2 Degeneracy
	3 Conservative Cuts
	3.1 Basic Knowledge
	3.2 Pascal's Triangle
	3.3 Implementation

	4 Test Instances
	5 Numerical Results
	5.1 Low Degree of Degeneracy and Dimension
	5.2 High Degree of Degeneracy and Low Dimension
	5.3 Low Degree of Degeneracy and High Dimension

	6 Conclusions

