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Abstract. Colposcopy imaging is pivotal in cervical cancer diagnosis,
a major health concern for women. The computational challenge lies
in accurate lesion recognition. A significant hindrance for many exist-
ing machine learning solutions is the scarcity of comprehensive training
datasets.

To reduce this gap, we present AnnoCerv: a comprehensive dataset
tailored for feature-driven and image-based colposcopy analysis. Distinc-
tively, AnnoCerv include detailed segmentations, expert-backed colpo-
scopic annotations and Swede scores, and a wide image variety including
acetic acid, iodine, and green-filtered captures. This rich dataset supports
the training of models for classifying and segmenting low-grade squamous
intraepithelial lesions, detecting high-grade lesions, aiding colposcopy-
guided biopsies, and predicting Swede scores — a crucial metric for med-
ical assessments and treatment strategies.

To further assist researchers, our release includes code that demon-
strates data handling and processing and exemplifies a simple feature
extraction and classification technique.

1 Introduction

Cervical cancer, characterized by a malignant tumor in the cervix, ranks as
the fourth most prevalent cancer in women worldwide [19]. It accounts for ap-
proximately 6.6% of all female cancer cases due to its high incidence rate [19].
A critical concern is the absence of symptoms in the early stages, leading to
a notably high mortality rate. According to the World Health Organization,
there were an estimated 604000 new cases and 342000 deaths in 2020 [27].
Distressingly, around 90% of these instances were in low- and middle-income
nations [27]. The key to combating this disease lies in the timely detection
of precancerous lesions, early diagnosis, and prompt treatment. In this con-
text, colposcopy emerges as a pivotal tool, significantly enhancing the cervical
cancer detection rate and serving as an effective screening method for precan-
cerous lesions [21, 24, 28].

Used primarily as a follow-up to abnormal Pap smear results, colposcopy
provides a magnified view of the cervix, enabling healthcare providers to pin-
point potential areas of concern. This procedure aids in detecting and diagnos-
ing various cervical issues, including cervical dysplasia, HPV infections, and
inflammation [21, 24, 28]. By discerning the gravity and reach of these abnor-
malities, practitioners can make informed decisions. For instance, if anomalies
are spotted during a colposcopy, a biopsy might be conducted. Furthermore,
colposcopy is instrumental in monitoring treatment effectiveness for cervical
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abnormalities. After certain treatments, like tissue removal, consistent col-
poscopy exams ensure the healing process is on track and no new abnor-
malities arise. In scenarios demanding a more intensive treatment approach,
colposcopy can guide surgical interventions, such as the loop electrosurgical
excision procedure (LEEP) or cold knife cone biopsy [21, 24, 28].

Recognizing the pivotal role of colposcopy images in the diagnosis of cervi-
cal cancer, it is imperative to emphasize the significance of image quality for
accurate analysis, particularly precancerous cervical lesions [11]. The need for
high-quality imagery is amplified in telemedicine discussions among multiple
doctors. Given the potential impact of variables - such as camera angles, light-
ing and shaking - on image quality, defects such as low contrast and distortion
can compromise diagnosis precision [11].

Extensive research confirms high-risk human papillomavirus infection as a
primary cause of cervical cancer [12, 17, 8, 25]. Early screening, when paired
with HPV testing and cytology, has the potential to identify 80.7-98.7% of
cervical intraepithelial neoplasia [26, 3]. Colposcopy-guided biopsies are the
gold standard for detecting cervical cancer and its precancerous lesions. How-
ever, the precision of diagnosis can be influenced by various factors, from the
expertise of the gynecologist to the woman’s menstrual status. In particular,
even for experienced gynecologists, the sensitivity of colposcopy for identify-
ing cancerous lesions ranges from 81.4% to 95.7%, with a specificity between
34.2% and 69% [7, 23, 22]. Consequently, improving colposcopy precision is
becoming a priority in the management of intraepithelial cervical neoplasia.

In contemporary medicine, artificial intelligence (AI) and deep learning have
carved a niche, enabling efficient analysis of vast clinical data. Recent findings
highlight the utility of medical Al and computer-assisted diagnosis in identify-
ing cancerous lesions, leveraging deep learning and medical image processing
techniques. Studies spanning optical tomography [18], radiology [14], comput-
erized tomography [9], colonoscopy [2], and morphopathology [10] suggest that
with ample training data, machine learning can rival or even surpass clinicians
in diagnostic accuracy.

Historically, Acosta et al. [1] employed the K-NN algorithm to discern nor-
mal from abnormal cervical tissues, achieving 71% sensitivity and 59% speci-
ficity. Asiedu et al. [4] reported 81.3% sensitivity and 78.6% accuracy in dis-
tinguishing between cervical neoplasia and normal tissues. Liming Hu et al.’s
[15] seven-year cohort study trained a deep learning algorithm on colposcopy
images, achieving higher accuracy than the Pap smear. Additionally, Bing Bai
et al. [5] in 2018 used the K-means algorithm for automatic cervical region
segmentation. Deep learning methods, with their capacity to autonomously
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extract pertinent features from training data, underscore their value alongside
conventional diagnostic techniques. However, a pertinent challenge remains:
medical image datasets are often limited, constraining training capabilities.

Many studies keep their image datasets private. As a result, only a select few
databases are available for developers [16, 30, 20, 13, 29]. Notably, the existing
datasets primarily consist of acetic acid images. In light of this, there is an
urgent need to develop or expand datasets, aiming to incorporate a diverse
range of images, including acetic acid, iodine, and green-filter types.

In our study, we amassed a collection of colposcopy images. These images
were meticulously segmented and annotated by specialists to distinctly vi-
sualize both healthy and pathological changes in cervical tissue. What sets
this curated collection apart is its inclusion of acetic acid images, iodine im-
ages, and green-filtered images. This comprehensive dataset is now available
for training machine learning models, aiding in the automatic classification
and segmentation of low-grade squamous intraepithelial lesions (LSIL), de-
tection of high-grade squamous intraepithelial lesions (HSIL), and assisting
with colposcopy-guided biopsies. All curated data were cross-referenced with
gynecological evaluations based on the patients’ medical record.

2 Materials and methods

2.1 Comprehensive assessment in colposcopy: techniques and
criteria

Colposcopy, a diagnostic procedure employed primarily in gynecological ex-
aminations, relies heavily on the discerning observation of cervical tissues to
detect anomalies and potential malignancies. This procedure utilizes different
techniques and criteria, each tailored to accentuate specific aspects of cervi-
cal tissue and enhance diagnostic precision. In the subsequent sub-sections,
we will delve into the principal components and characteristics pivotal to col-
poscopy images, understand the significance of the Swede score evaluation
as a diagnostic tool, and shed light on the transformation zone’s classifica-
tion methodology. Together, these criteria and methods offer a comprehensive
overview, enabling a nuanced understanding of colposcopic examinations and
the annotated images in the dataset.
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2.1.1 Key elements and features of colposcopy images

The accurate diagnosis of cervical neoplasia using colposcopy is contingent on
four primary features:

1. Intensity of Aceto-whitening: This refers to the color tone variations seen
in the cervix upon application of acetic acid.

2. Demarcation and Surface Contour of Aceto-white Areas: This encom-
passes the clarity and texture of the white regions appearing after the
acetic acid application.

3. Vascular Features: The visibility of blood vessels provides insights into
the health of the cervical tissue.

4. Todine-Induced Color Changes: Observing how the cervix responds to
iodine application can give vital diagnostic clues.

Additional diagnostic considerations include:

e Anomalies in the transformation zone can be indicative of neoplasia.

e Expert gynecologists can differentiate between low-grade cervical in-
traepithelial neoplasia, immature squamous metaplasia, and inflamma-
tory lesions.

e A biopsy, guided by colposcopy, becomes vital when the presence of
neoplasia is uncertain.

e Recognizing dense and opaque aceto-white regions, particularly near the
squamo-columnar junction, is essential for detecting intraepithelial neo-
plasia.

Characteristics of CIN (Cervical Intraepithelial Neoplasia):

o Low-grade CIN: Manifests as thin aceto-white lesions with irregular or
feathered margins.

e High-grade CIN: These regions are more pronounced—thicker and more
opaque with distinct boundaries. Their expansion might reach the endo-
cervical canal, and they exhibit a rough, nodulated texture. Variability
in color intensity can be noted within these lesions.

Vascular observations play a pivotal role:

e Both fine and pronounced vascular features, such as punctations and
mosaics, are mostly confined to aceto-white areas.
e Low-grade malignancies often show fine punctations or mosaics.
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e Conversely, coarse punctations or mosaics hint at high-grade lesions.

e Utilizing green filters can significantly enhance vascular visibility.

For more precise and standardized assessments, incorporating scoring sys-
tems like the Swede score [6] can offer valuable guidance in colposcopic eval-
uations and determinations.

2.1.2 Swede score evaluation

The Swede score [6] is an established metric used in colposcopic evaluations. It
provides a systematic approach to assess cervical lesions based on specific char-
acteristics. Each characteristic is scored according to the criteria presented in
Table 1, and the cumulative score predicts the severity of the lesion according
to the brackets presented in Table 2.

Characteristics 0 1 2
Uptake of acetic acid | Zero or trans- Shady, milky Distinct,
parent (not trans- opaque white
parent, not
opaque)

Margins and surface

Diffuse

Sharp but ir-
regular, jagged,
“geographi-

cal”. Satellites

Sharp and
even; difference
in surface level,
including “cuff-

lng”

Vessels Fine, regular Absent Coarse or atyp-
ical
Lesion size <5 mm 5 — 15 mm > 15 mm or
or spanning 2 spanning 3 —4
quadrants quadrants, or
endocervically
undefined
Iodine staining Brown Faint or patchy Distinct yellow

yellow

Table 1: Swede score assessment
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Score | Colposcopic Prediction
0-4 | Low-grade/CIN 1
5-6 | High-grade/non-invasive cancer/CIN2+
7-10 | High-grade/suspected invasive cancer/CIN2+

Table 2: Interpretation of Swede score

2.1.3 Classification of the transformation zone (TZ) in Colposcopy

In colposcopic evaluations, the visibility and positioning of the squamocolum-
nar junction play a crucial role in categorizing the transformation zone. On
the basis of this, the transformation zone can be systematically classified as:

Type 1: The transformation zone, which encompasses the entire squamo-
columnar junction, is located in the ectocervix. In simpler terms, the
entirety of the upper limit of the TZ is ectocervical.

Type 2: The upper boundary of the TZ is partially or entirely observed
within the canal, ensuring visibility throughout a 360-degree angle.

Type 3: The upper boundary of the TZ remains elusive, implying that the
upper limit is not visible during examination.

2.1.4 Categorization of aceto-white changes in abnormal colpo-
scopic findings

Post the application of acetic acid during colposcopy, typical aceto-white
changes manifest, helping identify potential abnormalities. These can be grouped
based on severity as:

Minor (Grade 1): This category predominantly presents with:

e A slender aceto-white epithelium complemented by an irregular, 'geo-
graphical’ boundary.

e Presence of delicate structures like fine mosaic and fine punctation pat-
terns, indicating lesser severity.

Major (Grade 2): More severe changes in this category are characterized
by:

e A pronounced, dense aceto-white epithelial layer that showcases aceto-
whitening rapidly upon acid application.
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e Noticeable cuffed crypt or gland openings, indicative of potential con-
cerns.

e The epithelium may exhibit coarse mosaic and punctation patterns. In
addition, distinct features like a sharp border, the inner border sign, and
ridge sign further solidify its classification as major changes.

2.2 Dataset and automatic processing

During our research phase, we sourced 527 colposcopy images from 100 medical
records. Expert specialists segmented and annotated each image to differenti-
ate between healthy and pathological cervical tissues.

The segmented and annotated image set, Swede scores and the accompany-
ing code are available at the following address: https://github.com/iclx/
AnnoCerv. This work is licensed under a Creative Commons Attribution 4.0

International License *.

2.2.1 Dataset structure and format description

The organization of the dataset is hierarchical, ensuring ease of navigation and
clarity. Here is a detailed breakdown of its structure:

Directory Structure: Each individual case is encapsulated within its own
unique folder, named “Case ID”.

Image Files: Within each case folder, there are one or more cervix images
saved in the JPG format. The images within a single case can encompass
various types, namely acetic acid images, iodine images, and green-filtered
images.

Filename convention: The naming convention for the images is standard-
ized for clarity. It consists of a case identifier, followed by the image type, and
an index enclosed within parentheses to distinguish multiple images of the
same type.

Annotation files: Each acetic acid image (denoted by ‘Aceto’ in the file-
name) has a corresponding PNG annotation file. This file carries the same
primary filename but with a .png extension. For instance, an image named
ClAceto (1).jpg has its annotations in C1Aceto (1).png.

Annotation encoding: The PNG annotation files utilize a specific color
encoding to represent various observed features:

e blue for the squamous-cylindrical junction,

http://creativecommons.org/licenses/by/4.0/
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purple for aceto-white areas,

red for atypical vessels and punctations,
brown for mosaics,

yellow for Naboth cysts, and

black for cuffed gland openings.

The background of these PNG files is transparent. In scenarios where the
medical professional did not detect any notable features, the PNG remains
entirely transparent without any colored pixels.

Swede scores are cataloged in the CSV file “swede_scores.csv”, where each
row corresponds to the score of its respective case.

2.2.2 Automated processing

Given the clearly delineated Dataset Structure and Format Description, the
systematic processing of the image set becomes inherently straightforward
from a computational perspective. The procedure entails the following me-
thodical steps:

Directory iteration: We commence by traversing each folder, wherein every
individual folder signifies a distinct case, warranting content exploration
and analysis.

Image type verification: In each case folder, we check for the presence of
image types that are of interest for our analysis.

Annotation examination: For every Aceto image, we open its associated
PNG file. This step helps us identify different pixel colors, which corre-
spond to specific medical notes.

Statistical aggregation: After collecting all the required data, we can pro-
ceed to calculate statistics of interest.

In code listing 1, we exemplify this process to determine several pertinent
statistics:

1. The number of cases containing iodine images.
2. The number of cases containing green-filtered images.

3. The number of cases where the squamous-cylindrical junction is not
visible (evidenced by the absence of blue pixels).
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4. The total count of cases exhibiting atypical regions (atypical vessels,
Naboth cysts or cuffed gland openings).

Source code 1: Case processing and statistics extraction — Python code snippet

# Iterate through each folder (case)
for folder in os.listdir(base_path):
folder_path = os.path.join(base_path, folder)

print (f'Processing folder {folder}')

if os.path.isdir(folder_path):
iodine_present = False
green_present = False
blue_absent = True
atypical_regions = 0O

# Check for image types and corresponding annotations
for file in os.listdir(folder_path):
print(f'\tProcessing {filel}')
if "Iod" in file and file.endswith(".jpg"):
iodine_present = True
elif "Green" in file and file.endswith(".jpg"):
green_present = True
elif "Aceto" in file and file.endswith(".jpg"):
annotation_file = os.path.join(folder_path,
— file.replace(".jpg", ".png"))

if os.path.exists(annotation_file):
img = Image.open(annotation_file)
pixels = list(img.getdata())

for pixel in pixels:
# Check for transparency (Alpha channel)
if len(pixel) == 4 and pixel[3] > 0:
if pixel[:3] == colors['blue']:
blue_absent = False
elif pixel[:3] != colors['purple']:
atypical_regions += 1

In our effort to promote accessibility, the code is readily available in the
GitHub repository as a Google Colab Notebook named “data_summary.ipynb”.
The notebook can be easily extended or modified to compute different statis-
tics of interest.
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2.2.3 Feature extraction and classification

The GitHub repository additionally contains a Google Colab Notebook named
“data_modelling.ipynb” that exemplifies foundational operations, serving as a
primer for individuals unfamiliar with image processing and machine learning
tasks in the domain of medical imaging.

Source code 2: Feature computation — Python code snippet

from skimage import feature, color

def extract_features(img_path):
img = cv2.imread(img_path)
intensity = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Texture feature using Local Binary Pattern
texture_r5 = feature.local_binary_pattern(intensity, P=8*5, R=5,
< method='uniform')

# Gradient features using Sobel operator
grad_x = cv2.Sobel(intensity, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(intensity, cv2.CV_64F, 0, 1, ksize=3)

# Spatial features: simply the = and y coordinates
x = np.arange(img.shape[1])

y = np.arange (img.shape[0])

X, y = np.meshgrid(x, y)

# Color-based features
hsv_img = color.rgb2hsv(img)

hue = hsv_img[:, :, 0]
saturation = hsv_img[:, :, 1]
value = hsv_img[:, :, 2]

# Stack all features together
features = np.dstack((intensity, texture_r5, grad_x, grad_y, x, y, hue,
— saturation, value))

return features
The operations demonstrated include:

Dataset download: Copy of the images to the local machine.

Image resizing: A programmatic approach to altering image and annotation
dimensions.



AnnoCerv 317

Feature extraction : Focused on the classification of pixels representing the
squamous-cylindrical junction (depicted as blue pixels in the annotated
PNG files). The features extracted encompass: i) Intensity Features: the
direct utilization of pixel intensity; ii) Texture Features: just one Local
Binary Patterns (LBP) of radius 5 is used; iii) Gradient Features: the
magnitude and direction of image gradients are computed; iv) Spatial
Features: the pixel’s x and y coordinates is stored; v) Color-based Fea-
tures: the extraction of Hue, Saturation, and Value (HSV) from pixels.
The operations are also depicted in the Code Listings 2 and 3.

Feature scaling: a common operation before fitting the models to the data.
By normalizing the features to a consistent scale, we ensure that each
one contributes appropriately to the model’s outcomes, facilitating faster
convergence for gradient-based methods and potentially boosting the
model’s overall performance.

Data preparation: Given the imbalanced nature of the classification task,
the notebook exemplifies a basic balancing method via undersampling.
Also, the dataset is divided into training and testing subsets.

Feature correlation analysis and pair plot technique: These methods
help assesing the relationships between different features and the target
classification variable. Feature correlation analysis quantifies the inter-
dependencies, offering insights into the intrinsic structure of the data.
The pair plot technique visualizes pairwise relationships in a dataset. To-
gether, these tools facilitate a comprehensive understanding of the data,
and can guide the selection and prioritization of the most pertinent fea-
tures for model training.

Model training: A Random Forest classifier, utilizing its default parameters,
is trained on the extracted, balanced small dataset.

Evaluation: The computation of relevant metrics such as the F1 score and
the ROC curve is exemplified.

It is important to emphasize that the methods and techniques highlighted in
the notebook are foundational, designed primarily to serve as a rapid, cloud-
based experimentation tool for newcomers and enthusiasts. While they offer
a convenient starting point for those new to the field, they do not embody
the cutting-edge of current research or advanced methodologies. The primary
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aim is to demonstrate a workflow that is accessible and can be tried out and
executed in the cloud in a matter of minutes.

Source code 3: Feature extraction for each case — Python code snippet

# Collect data and labels
X_data = []
y_labels = []

for img_file in os.listdir(output_folder):
if img_file.endswith('.jpg'):
print (f'\tComputing features for {img_file}')
features = extract_features(os.path.join(output_folder, img_file))
X_data.append(features)

annotation_path = os.path.join(output_folder, img_file.replace('.jpg',

— '.png'))

img = cv2.imread(annotation_path)

annotation = np.array(img[:, :, 0] == 255) & np.array(img[:, :, 2] ==
- 0)

# Convert blue pizels to label 1, others to 0
is_junction = annotation.astype(np.int)
y_labels.append(is_junction)

X_data = np.array(X_data).reshape(-1, 9)
y_labels = np.array(y_labels) .reshape(-1)

3 Results and discussion

3.1 Segmented and annotated images

To provide insight into our database, we display representative examples of
segmented images in Figures 1, 2, 3, and 4, with the annotations superimposed
on the cervix images. These images underscore the variety and depth of the
content within the dataset.

Figure 1 showcases squamous-cylindrical junctions, aceto white areas, Naboth
cyst, punctuation, mosaic, and fine vessels.

In Figure 2, the emphasis is on highlighting the squamous-cylindrical junc-
tions, aceto white areas, polyps, Naboth cysts, and glandular openings.

The rationale for the iodine test is rooted in cellular chemistry: mature
squamous epithelium, both original and newly formed, contains glycogen. In
contrast, neoplastic and invasive cancer cells typically have minimal or no
glycogen. As a result, they do not absorb iodine, appearing as distinct mus-
tard yellow or saffron-colored regions. Following this principle, neoplastic aceto
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Figure 1: Annotations: blue — squamous-cylindrical junction, purple — aceto
white area, red — atypical vessels, punctations, brown — mosaic, yellow —
Naboth cyst

Figure 2: Annotations: blue — squamous-cylindrical junction, purple — aceto
white area, yellow — Naboth cysts, black — cuffed gland opening, green — polyp.

white areas remain unaffected by iodine. This characteristic can be observed
in Figure 3, where iodine images act as confirmatory markers for suspected
lesions.

Colposcopy with a green filter allows visualization of vascular changes. Fig-
ure 4 offers insight into this, depicting key vascular alterations like punctua-
tion, mosaic, atypical fine vessels, and larger vessels.

3.2 Exploratory data analysis

Derived from the previously mentioned Google Colab Notebook for data pro-
cessing, this section delves into patterns and insights within the dataset related
to cervical health diagnostics.

The case based image type distribution is presented in Figure 5. A predom-
inant 94% of the cases contain iodine images, highlighting their important
role in confirmation and diagnostics. Conversely, green-filtered images, which
primarily aid in the evaluation of vascular changes, are present in only 11%
of cases. This differential suggests that such vascular evaluations might be
less frequently necessitated in the overall diagnostic spectrum. In 13 cases,
the squamous-cylindrical junction is not visible, marked by an absence of blue
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Figure 4: Colposcopy images taken with green filter to highlight vascular
changes.

Distribution of Cervical Image Features in the 100 Cases

Junction Not Visible Green Filter Images

13% 11%

87% 89% Atypical Regions

lodine Images

Figure 5: Extracted properties from the 100 colposcopy imaging cases.
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Distribution of Swede Scores
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Figure 6: Swede scores distribution and central tendency.

pixels in the annotations. A significant 66% of cases manifest atypical regions,
encompassing atypical vessels, Naboth cysts, or cuffed gland openings, under-
scoring the critical nature of in-depth cervical health assessments.

Figure 6 provides a visual representation of the distribution of Swede scores.
Scores, which range from 0 to 10, reveal a spectrum of health conditions. Al-
though 12 cases boast an optimal score of 0, a considerable portion, specifically
23 cases, cluster around a score of 4. However, a handful of cases with high
scores of 9 and 10 highlight the existence of severe abnormalities. Statistically,
with a mean of 3.92, a median at 4.00, and a standard deviation of 2.40, it is
evident that the majority of the cases hover around a moderate risk range.

The dataset offers a detailed snapshot of cervical health through its vari-
ous image types and score distributions. With atypical regions evident in 66%
of cases, the need for meticulous diagnostics becomes even more evident. Al-
though a considerable portion of cases fall within the low-to-moderate risk
categories, the presence of high-risk outliers emphasizes the dataset’s poten-
tial as a valuable resource for training advanced machine learning models. The
mix of iodine and green-filtered images within the dataset lays a foundation
for exploring a variety of diagnostic methodologies.
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Feature Correlation with Class Label
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Figure 7: Correlations between the features and the class label.

3.3 Feature correlation

Understanding the relationships between features and the target classification
variable is pivotal for effective model building. The two key techniques ex-
emplified in this endeavor are Feature Correlation Analysis and the Pair Plot
Technique. The former provides a quantitative measure of interdependencies
between features, shedding light on their internal structure and importance.
Meanwhile, the Pair Plot Technique offers a visual representation of pairwise
relationships across the dataset, enabling a holistic grasp of data intricacies.
A visual representation of the correlations of features with the class label is
illustrated in Figure 7. Positional features (mainly ‘x’) and color-based features
stand out with relatively higher positive correlations to the target, suggesting
they might play an essential role in classification. In contrast, the feature
‘grad_y’ shows no correlation, and ‘grad x’ seems to be inversely correlated.
Moving onto the Pair Plot in Figure 8, certain observations emerge:

Intensity vs. value: A direct correlation is evident between Intensity (as
derived from the gray-scale image) and Value (the brightness of the
color). This relationship, expected given that changing the Value in HSV,
we are generally increasing or decreasing the brightness of the RGB
channels, which in turn will affect the grayscale intensity.
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y vs. saturation: A distinctive pattern emerges. Most of the ‘Junction’ class
instances cluster towards the right, indicating a potential joint link be-
tween these features and the target variable.

x & y distribution: The scatter plot between x and y showcases a stark
disparity in the distribution of our two classes. A potential interpretation
is the prevalence of the ‘Junction’ predominantly towards the center of
the image.

Intensity vs. value distribution: Their distribution peaks also differ no-
ticeably, reinforcing the idea of some inherent structural differences within
the dataset.

3.4 Classification performance

The Random Forest classifier, using default parameters, served as a baseline
to distinguish between ‘Non-Junction’ and ‘Junction’ classes in a balanced
dataset. Detailed performance metrics are presented in Table 3.

The model achieved an accuracy of around 80%, illustrating a consistent
prediction rate for both classes. Precision, which represents the fraction of
correct positive predictions, was similar for both classes. The slightly higher
recall for the ‘Junction’ class suggests the model’s marginally better ability
to detect these instances. With F1-Scores of 0.79 and 0.80 for ‘Non-Junction’
and ‘Junction’ respectively, the model demonstrated a balanced performance
for both classes, harmonizing precision and recall.

While the current results provide valuable insights, it’s worth noting that
the model’s performance might vary with different configurations or when
applied to other datasets. Exploring alternative machine learning algorithms
and fine-tuning parameters can potentially unearth more robust classification
strategies.

In tandem with the table, Figure 9 visualizes the Receiver Operating Char-
acteristic (ROC) Curve, offering an in-depth view of the performance of the
classifier. The curve’s area of 0.73 indicates its acceptable discriminative ca-
pability, with ample room for improvement. A prominent inflection point at
a True Positive Rate (TPR) of 0.8 and a False Positive Rate (FPR) of about
0.37 suggests an optimal threshold. While the TPR is commendable, an FPR
of 0.37 highlights the misclassification of a substantial number of negative
instances.

The Random Forest classifier, even in its default configuration, yields sat-
isfactory results. Understanding the feature importance provided by the Ran-
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Figure 8: Pairwise relationship of the features.

dom Forest classifier can also offer insights into which variables have a greater
influence on the classification decision. A thorough examination of these im-
portance metrics could guide feature engineering efforts, possibly leading to
enhanced performance by emphasizing on the most influential features. This
introspective approach not only strengthens the model’s predictive power but
also adds an interpretative dimension to the model, bridging the gap between
machine learning predictions and domain-specific knowledge. This study bal-
anced the dataset through subsampling to simplify the classification task for
demonstration purposes. For the genuine, heavily imbalanced dataset, har-
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Precision Recall F1-Score Support

Non-Junction 0.80 0.78 0.79 400
Junction 0.79 0.81 0.80 400
accuracy 0.80 800
macro avg 0.80 0.80 0.79 800
weighted avg 0.80 0.80 0.79 800

Table 3: Performance metrics

nessing advanced techniques such as Convolutional Neural Networks (CNNs)
and transfer learning could yield superior outcomes.

4 Conclusions

Cervical cancer remains a pressing health concern for women worldwide. While
computational methods offer promising avenues for improved diagnosis, their
effectiveness is intrinsically linked to the quality and comprehensiveness of
available training datasets. Recognizing a discernible gap in this area, we in-
troduce AnnoCerv, a dataset that provides a detailed perspective on cervi-
cal colposcopy images. These 527 samples, derived from 100 medical records,
present an array of expert-annotated, feature-rich images that aim to support
a range of analysis, from basic lesion recognition to Swede score predictions.

AnnoCerv represents our effort to enhance the resources available to re-
searchers and practitioners in the field. While the accompanying code provides
an introduction to image processing and machine learning tasks, it’s primarily
designed for those less familiar with the domain. We acknowledge its founda-
tional nature, emphasizing that there remains a significant opportunity and
need for the development of more sophisticated and nuanced methods.

Choosing to present examples via Google Colab Notebooks was a deliberate
strategy to enhance accessibility. This approach streamlines the initial setup,
allowing users to rapidly interact with the dataset.

We hope that the AnnoCerv image set and code can serve as valuable re-
sources for further research, innovation, and developments in the field of cer-
vical health and diagnostics.



326 D. A. Minciuna et al.

Receiver Operating Characteristic (ROC) Curve
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