

DOI: 10.2478/ausi-2023-0018

The eccentricity-based topological indices

Gul OZKAN KIZILIRMAK

Gazi University Ankara, Turkey email: gulozkan@gazi.edu.tr

Abstract. The aim of this paper is to obtain some relationships between eccentricity-based topological indices as the eccentric connectivity, connective eccentricity, total eccentricity, second Zagreb eccentricity, first Zagreb eccentricity connectivity, first eccentricity connectivity and first Zagreb eccentricity connectivity of a simple connected graph.

1 Introduction

Let \mathcal{G} denote a graph with k vertices and s edges, which has the vertex and edge sets as $V(\mathcal{G})$ and $E(\mathcal{G})$, respectively. The number of edges connected to vertex i is denoted as the degree of i and shown as d(i). The minimum and maximum vertex degrees are represented by δ and Δ , respectively. In this study, we are interested in simple undirected graph \mathcal{G} which consists of no loops and multiple edges.

In the literature, there are many interesting studies in graph theory related to the distance of any two vertices. The eccentricity $\varepsilon(t)$ of a vertex $t \in V(\mathcal{G})$ is defined as the maximum distance between t and any other vertex y in \mathcal{G} and shown as $\varepsilon(t) = \max\{d(t,y) : y \in V(\mathcal{G})\}$. The maximum and minimum eccentricities over all vertices of \mathcal{G} are called the diameter $d = diam(\mathcal{G})$ and the radius $r = rad(\mathcal{G})$ of \mathcal{G} , respectively [3, 7].

Key words and phrases: Eccentricity, topological indices

It is known that topological indices can be used to characterize of a graph. One of the most studied indices is the first Zagreb index $\mathcal{M}_1(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} d(r)^2$.

There exist some studies on eccentricity based topological indices in the literature [1, 2, 13, 14]. One of them is the eccentric connectivity index and was introduced by Sharma et al. [12], which was defined as

$$\xi^{c}(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} d(r) \varepsilon(r).$$

Similarly, the connective eccentricity index of a graph \mathcal{G} was defined in [6] and denoted as

$$\xi^{ce}(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} \frac{d(r)}{\varepsilon(r)}.$$

Also, the total eccentricity index was introduced by Farooq et al. [4] as:

$$\zeta(\mathcal{G}) = \sum_{\mathbf{r} \in V(\mathcal{G})} \varepsilon(\mathbf{r}),$$

and moreover the first and second Zagreb eccentricity indices were defined in [5] as:

$$E_1(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} \varepsilon^2(r).$$

and

$$E_2(\mathcal{G}) = \sum_{rs \in E(\mathcal{G})} \varepsilon(r) \varepsilon(s).$$

Motivated by the eccentric-connectivity index, the first Zagreb eccentricity connectivity index $\mathcal{M}^1_{\mathcal{ECI}}$, the first eccentricity connectivity index \mathcal{ECI}^1 and the first Zagreb eccentricity connectivity index $\mathcal{M}^1_{\mathcal{ECI}^1}$ were introduced in [8] as:

$$\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} d^2(r) \varepsilon(r).$$

$$\mathcal{ECI}^1(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} d(r) \varepsilon^2(r).$$

$$\mathcal{M}^1_{\mathcal{ECI}^1}(\mathcal{G}) = \sum_{r \in V(\mathcal{G})} d^2(r) \varepsilon^2(r).$$

In this paper, some relationships between eccentricity-based topological indices are obtained in simple connected graphs.

Now, we give some lemmas. Both of these lemmas are crucial in proving the main results of this paper.

Lemma 1 [10] If t_i and y_i ($1 \le j \le k$) are non-negative real numbers, then

$$\sum_{j=1}^k (t_j)^2 \sum_{j=1}^k (y_j)^2 - \left(\sum_{j=1}^k t_j y_j\right)^2 \le \frac{k^2}{4} (M_1 M_2 - m_1 m_2)^2,$$

where $M_1 = \max_{1 \le j \le k} \{t_j\}$, $M_2 = \max_{1 \le j \le k} \{y_j\}$; $m_1 = \min_{1 \le j \le k} \{t_j\}$, $m_2 = \min_{1 \le j \le k} \{y_j\}$.

Lemma 2 [11] If $c_j>0$, $d_j>0$, p>0, j=1,2,...,k, then the following inequality holds:

$$\sum_{j=1}^k \frac{c_j^{p+1}}{d_j^p} \ge \frac{\left(\sum\limits_{j=1}^k c_j\right)^{p+1}}{\left(\sum\limits_{j=1}^k d_j\right)^p}$$

with equality if and only if $\frac{c_1}{d_1} = \frac{c_2}{d_2} = \dots = \frac{c_k}{d_k}$.

Lemma 3 [9] Let $c_1, c_2, ..., c_k$ and $d_1, d_2, ..., d_k$ be real numbers such that $c \le c_i \le C$ and $d \le d_i \le D$ for i = 1, 2, ..., k. Then there holds

$$\left|\frac{1}{k}\sum_{j=1}^k c_j d_j - \left(\frac{1}{k}\sum_{j=1}^k c_j\right) \left(\frac{1}{k}\sum_{j=1}^k d_j\right)\right| \leq \frac{1}{k}\left\lfloor\frac{k}{2}\right\rfloor \left(1 - \frac{1}{k}\left\lfloor\frac{k}{2}\right\rfloor\right) (C - c)(D - d).$$

2 Main results

Theorem 4 Let \mathcal{G} be a simple connected graph with k vertices. Then we obtain

$$\mathcal{M}_1(\mathcal{G})\mathsf{E}_1(\mathcal{G}) \leq (\xi^{\mathsf{c}}(\mathsf{G}))^2 + \frac{k^2}{4}(\Delta d - \delta r)^2.$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. In Lemma 1, if we take $t_j = d(j)$ and $y_j = \varepsilon(j)$, we get

$$\begin{split} \sum_{j=1}^k (d(j))^2 \sum_{j=1}^k (\varepsilon(j))^2 - \left(\sum_{j=1}^k d(j)\varepsilon(j)\right)^2 \\ \leq \frac{k^2}{4} (\max(d(j)) \max(\varepsilon(j)) - \min(d(j)) \min(\varepsilon(j)))^2. \end{split}$$

By using the definitions of $\mathcal{M}_1(\mathcal{G}), E_1(\mathcal{G})$ and $\xi^{ce}(\mathcal{G})$, we have

$$\mathcal{M}_1(\mathcal{G})\mathsf{E}_1(\mathcal{G}) - (\xi^c(\mathcal{G})^2 \leq \frac{k^2}{4}(\max(d(\mathfrak{j}))\max(\varepsilon(\mathfrak{j})) - \min(d(\mathfrak{j}))\min(\varepsilon(\mathfrak{j})))^2.$$

Since $\max(d(j)) = \Delta$, $\max(\varepsilon(j)) = d$, $\min(d(j)) = \delta$ and $\min(\varepsilon(j)) = r$, we obtain

$$\mathcal{M}_1(\mathcal{G})\mathsf{E}_1(\mathcal{G}) \leq (\xi^c(\mathsf{G}))^2 + \frac{k^2}{4}(\Delta d - \delta r)^2.$$

Example 5 Let \mathcal{G} be a simple connected graph with 6 vertices as follows.

Then, we get $\mathcal{M}_1(\mathcal{G})=50$, $E_1(\mathcal{G})=34$ and $\xi^c(G)=35$. Since $\Delta=4$, d=3, $\delta=1$ and r=2, we obtain $\mathcal{M}_1(\mathcal{G})E_1(\mathcal{G})=1700$ and $(\xi^c(G))^2+\frac{k^2}{4}(\Delta d-\delta r)^2=1989$. Thus the inequality in Theorem 4 is satisfied.

Theorem 6 If G is a simple connected graph with k vertices and s edges, then we get

$$\xi^{c}(\mathcal{G})\xi^{ce}(\mathcal{G}) \leq 4s^{2} + \frac{k^{2}}{4} \left(\Delta \sqrt{\frac{d}{r}} - \delta \sqrt{\frac{r}{d}} \right)^{2}.$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. In Lemma 1, we let $t_j = \sqrt{d(j)\varepsilon(j)}$ and $y_j = \sqrt{\frac{d(j)}{\varepsilon(j)}}$ to get

$$\sum_{j=1}^k d(j)\varepsilon(j)\sum_{j=1}^k \frac{d(j)}{\varepsilon(j)} - \left(\sum_{j=1}^k d(j)\right)^2 \le \frac{k^2}{4} \left(\Delta\sqrt{\frac{d}{r}} - \delta\sqrt{\frac{r}{d}}\right)^2.$$

Since $\left(\sum_{j=1}^k d(j)\right)^2 = 4s^2$ and from the definitions of $\xi^c(\mathcal{G})$ and $\xi^{ce}(\mathcal{G})$, we get

$$\xi^c(\mathcal{G})\xi^{ce}(\mathcal{G}) \leq 4s^2 + \frac{k^2}{4} \left(\Delta\sqrt{\frac{d}{r}} - \delta\sqrt{\frac{r}{d}}\right)^2.$$

Theorem 7 Let G be a simple connected graph with k vertices and s edges. Then we have

$$\left|\frac{1}{k}\xi^c(\mathcal{G}) - \frac{2s}{k^2}\zeta(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d-r)(\Delta - \delta).$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof.

By using $r \le \varepsilon(j) \le d$ and $\delta \le d(j) \le \Delta$ and choosing $c_j = \varepsilon(j)$ and $d_j = d(j)$ in Lemma 3, we get

$$\begin{split} \left| \frac{1}{k} \sum_{j=1}^k \varepsilon(j) d(j) - \left(\frac{1}{k} \sum_{j=1}^k \varepsilon(j) \right) \left(\frac{1}{k} \sum_{j=1}^k d(j) \right) \right| \\ & \leq \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \left(1 - \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \right) (d-r) (\Delta - \delta). \end{split}$$

Using the definitions of $\xi^{c}(\mathcal{G})$ and $\zeta(\mathcal{G})$, we get

$$\left|\frac{1}{k}\xi^c(\mathcal{G}) - \frac{2s}{k^2}\zeta(\mathcal{G})\right| \leq \frac{1}{k}\left|\frac{k}{2}\right|\left(1 - \frac{1}{k}\left|\frac{k}{2}\right|\right)(d - r)(\Delta - \delta).$$

Since $\left\lfloor\frac{k}{2}\right\rfloor\left(1-\frac{1}{k}\left\lfloor\frac{k}{2}\right\rfloor\right)=\frac{k}{4}\left(1-\frac{1+(-1)^{k+1}}{2k^2}\right),$ we obtain

$$\left|\frac{1}{k}\xi^c(\mathcal{G}) - \frac{2s}{k^2}\zeta(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d - r)(\Delta - \delta).$$

Example 8 Let's consider $\mathcal{G}=K_4$ complete graph as follows.

We can calculate as $\xi^c(\mathcal{G})=12$ and $\zeta(\mathcal{G})=4.$ Since $\Delta=3, d=1, \delta=3$ and r=1, we obtain

$$\left| \frac{1}{k} \xi^{c}(\mathcal{G}) - \frac{2s}{k^{2}} \zeta(\mathcal{G}) \right| = 0$$

and

$$\frac{1}{4} \left(1 - \frac{1 + (-1)^{k+1}}{2k^2} \right) (d - r)(\Delta - \delta) = 0.$$

Hence, the equality holds.

Theorem 9 If G is a simple connected graph, then we obtain

$$\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G})\zeta(\mathcal{G}) \geq (\xi^c(\mathcal{G}))^2.$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. In Lemma 2, letting $c_j = \varepsilon(j)d(j), d_j = \varepsilon(j)$ and p = 1 gives

$$\sum_{j=1}^k \frac{(\varepsilon(j)d(j))^2}{\varepsilon(j)} \ge \frac{\left(\sum\limits_{j=1}^k \varepsilon(j)d(j)\right)^2}{\sum\limits_{j=1}^k \varepsilon(j)}.$$

So, we have

$$\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}) \geq \frac{(\xi^{c}(\mathcal{G}))^2}{\zeta(\mathcal{G})}.$$

Hence, it follows that

$$\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G})\zeta(\mathcal{G}) \geq (\xi^c(\mathcal{G}))^2$$
.

Theorem 10 Let \mathcal{G} be a simple connected graph with k vertices. Then we have

$$\mathsf{E}_1(\mathcal{G}) \leq \frac{1}{k\delta^4} (\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}))^2 + \frac{k}{4\delta^4} (d\Delta^2 - r\delta^2)^2.$$

The equality holds for $\mathcal{G}\cong K_n$.

Proof. In Lemma 1, we choose $t_j = \epsilon(j)$ and $y_j = (d(j))^2$ to get

$$\begin{split} \sum_{i=1}^k (\varepsilon(j))^2 \sum_{j=1}^k ((d(j))^2)^2 - \left(\sum_{j=1}^k \varepsilon(j) d(j))^2\right)^2 \\ \leq \frac{k^2}{4} (\max(\varepsilon(j)) \max((d(j))^2) - \min(\varepsilon(j)) \min((d(j))^2)^2. \end{split}$$

Since $\sum\limits_{j=1}^k ((d(j))^2)^2 \geq k \delta^4,$ we have

$$k\delta^4 E_1(\mathcal{G}) - (\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}))^2 \leq \frac{k^2}{4} (d\Delta^2 - r\delta^2)^2.$$

Hence, we obtain

$$\mathsf{E}_1(\mathcal{G}) \leq \frac{1}{k\delta^4} (\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}))^2 + \frac{k}{4\delta^4} (d\Delta^2 - r\delta^2)^2.$$

Theorem 11 If G is a simple connected graph with k vertices, then we get

$$\left|\frac{1}{k}\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}) - \frac{1}{k^2}\zeta(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| \leq \frac{1}{4}(1 - \frac{1 + (-1)^{k+1}}{2k^2})(d-r)(\Delta^2 - \delta^2).$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. It is known that $r \leq \varepsilon(j) \leq d$ and $\delta^2 \leq (d(j))^2 \leq \Delta^2$. So, we let $c_j = \varepsilon(j)$ and $d_j = (d(j))^2$ in Lemma 3, then

$$\begin{split} \left| \frac{1}{k} \sum_{j=1}^k \varepsilon(j) (d(j))^2 - \left(\frac{1}{k} \sum_{j=1}^k \varepsilon(j) \right) \left(\frac{1}{k} \sum_{j=1}^k (d(j))^2 \right) \right| \\ & \leq \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \left(1 - \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \right) (d-r) (\Delta^2 - \delta^2). \end{split}$$

Using the definitions of $\mathcal{M}^1_{\mathcal{ECT}}(\mathcal{G})$, $\zeta(\mathcal{G})$ and $\mathcal{M}_1(\mathcal{G})$, we get

$$\left|\frac{1}{k}\mathcal{M}_{\mathcal{ECI}}^1(\mathcal{G}) - \frac{1}{k^2}\zeta(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| \leq \frac{1}{k}\left(\frac{k}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)\right)(d-r)(\Delta^2 - \delta^2).$$

Thus, we obtain

$$\left|\frac{1}{k}\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G}) - \frac{1}{k^2}\zeta(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d-r)(\Delta^2 - \delta^2).$$

Example 12 Let's consider $\mathcal{G}=K_4$ complete graph in Example 8. Since $\Delta=3, d=1, \delta=3$ and r=1, the right side of the inequality in Theorem 11 is 0. Since $\mathcal{M}^1_{\mathcal{ECI}}(\mathcal{G})=36, \zeta(\mathcal{G})=4$ and $\mathcal{M}_1(\mathcal{G})=36$, we have

$$\left|\frac{1}{k}\mathcal{M}_{\mathcal{ECI}}^{1}(\mathcal{G}) - \frac{1}{k^{2}}\zeta(\mathcal{G})\mathcal{M}_{1}(\mathcal{G})\right| = 0$$

Hence, the equality holds.

Theorem 13 If \mathcal{G} is a simple connected graph with k vertices, then we obtain

$$\mathcal{M}_1(\mathcal{G}) \leq \frac{1}{kr^4} (\mathcal{ECI}^1(\mathcal{G}))^2 + \frac{k}{4r^4} (d^2\Delta - r^2\delta)^2.$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. In Lemma 1, we choose $t_j = (\epsilon(j))^2$ and $y_j = d(j)$ and get

$$\begin{split} \sum_{j=1}^k (\varepsilon(j))^4 \sum_{j=1}^k (d(j))^2 - \left(\sum_{j=1}^k (\varepsilon(j))^2 d(j)\right)^2 \\ \leq \frac{k^2}{4} (\max(\varepsilon(j))^2 \max(d(j)) - \min(\varepsilon(j))^2 \min(d(j))^2. \end{split}$$

Then,

$$kr^4\mathcal{M}_1(\mathcal{G}) - (ECI^1(G))^2 \le \frac{k^2}{4}(d^2\Delta - r^2\delta)^2.$$

So, we obtain

$$\mathcal{M}_1(\mathcal{G}) \leq \frac{1}{kr^4} (\mathcal{ECI}^1(\mathcal{G}))^2 + \frac{k}{4r^4} (d^2\Delta - r^2\delta)^2.$$

Theorem 14 Let G be a simple connected graph with k vertices and s edges. Then we have

$$\left|\frac{1}{k}\mathcal{ECI}^1(\mathcal{G}) - \frac{2s}{k^2}\mathsf{E}_1(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d^2 - r^2)(\Delta - \delta).$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. By using $r^2 \le (\varepsilon(j))^2 \le d^2$ and $\delta \le d(j) \le \Delta$. We let $c_j = (\varepsilon(j))^2$ and $d_j = d(j)$ in Lemma 3, then

$$\begin{split} \left| \frac{1}{k} \sum_{j=1}^k (\varepsilon(j))^2 d(j) - \left(\frac{1}{k} \sum_{j=1}^k (\varepsilon(j))^2 \right) \left(\frac{1}{k} \sum_{j=1}^k d(j) \right) \right| \\ & \leq \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \left(1 - \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \right) (d^2 - r^2) (\Delta - \delta). \end{split}$$

By using the definitions of $\mathcal{ECI}^1(\mathcal{G})$ and $E_1(\mathcal{G})$, we obtain

$$\begin{split} \left|\frac{1}{k}\mathcal{ECI}^1(\mathcal{G}) - \frac{1}{k}\mathsf{E}_1(\mathcal{G})\frac{2s}{k}\right| &= \left|\frac{1}{k}\mathcal{ECI}^1(\mathcal{G}) - \frac{2s}{k^2}\mathsf{E}_1(\mathcal{G})\right| \\ &\leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d^2 - r^2)(\Delta - \delta). \end{split}$$

Theorem 15 If G is a simple connected graph with k vertices, then we obtain

$$\frac{k^2}{4}(3r^4\delta^4 - d^2\Delta^2(d^2\Delta^2 - 2r^2\delta^2)) \le (\mathcal{M}^1_{\mathcal{ECI}^1}(\mathcal{G}))^2.$$

The equality holds for $\mathcal{G} \cong K_n$.

Proof. If we choose $t_j = (\varepsilon(j))^2$ and $y_j = (d(j))^2$ in Lemma 1, we have

$$\begin{split} \sum_{i=j}^k (\varepsilon(j))^4 \sum_{j=1}^k (d(j))^4 - \left(\sum_{j=1}^k (\varepsilon(j))^2 (d(j))^2\right)^2 \\ \leq \frac{j^2}{4} (\max(\varepsilon(j))^2 \max(d(j))^2 - \min(\varepsilon(j))^2 \min(d(j))^2)^2. \end{split}$$

So, we get

$$kr^4\delta^4 - (\mathcal{M}^1_{\mathcal{ECI}^1}(\mathcal{G}))^2 \le \frac{k^2}{4}(d^2\Delta^2 - r^2\delta^2)^2.$$

After simplifying the above expression, we get the desired result as

$$\frac{k^2}{4}(3r^4\delta^4 - d^2\Delta^2(d^2\Delta^2 - 2r^2\delta^2)) \le (\mathcal{M}^1_{\mathcal{ECI}^1}(\mathcal{G}))^2.$$

Theorem 16 If G is a simple connected graph with k vertices, then we get

$$\left|\frac{1}{k}\mathcal{M}_{\mathcal{ECI}^1}^1(\mathcal{G}) - \frac{1}{k^2}\mathsf{E}_1(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d^2 - r^2)(\Delta^2 - \delta^2).$$

The equality holds for $\mathcal{G}\cong K_n$.

Proof. We use the inequalities $r^2 \leq (\varepsilon(j))^2 \leq d^2$ and $\delta^2 \leq (d(j))^2 \leq \Delta^2$. In Lemma 3, we choose $c_j = (\varepsilon(j))^2$ and $d_j = (d(j))^2$, we get

$$\begin{split} \left| \frac{1}{k} \sum_{j=1}^k (\varepsilon(j))^2 (d(j))^2 - \left(\frac{1}{k} \sum_{j=1}^k (\varepsilon(j))^2 \right) \left(\frac{1}{k} \sum_{j=1}^k (d(j))^2 \right) \right| \\ & \leq \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \left(1 - \frac{1}{k} \left\lfloor \frac{k}{2} \right\rfloor \right) (d^2 - r^2) (\Delta^2 - \delta^2). \end{split}$$

Hence, we obtain

$$\left|\frac{1}{k}\mathcal{M}_{\mathcal{ECI}^1}^1(\mathcal{G}) - \frac{1}{k^2}\mathsf{E}_1(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| \leq \frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d^2 - r^2)(\Delta^2 - \delta^2).$$

Example 17 Let's consider the graph in Example 5. Then, we have
$$\label{eq:mass_equation} \begin{split} \mathcal{M}_1(\mathcal{G}) &= 50, E_1(\mathcal{G}) = 34 \ \text{and} \ \mathcal{M}^1_{\mathcal{ECI}^1}(\mathcal{G}) = 225. \\ \text{Since } \Delta &= 4, d = 3, \delta = 1 \ \text{and} \ r = 2, \ \text{we get} \end{split}$$

$$\left|\frac{1}{k}\mathcal{M}_{\mathcal{ECI}^1}^1(\mathcal{G}) - \frac{1}{k^2}\mathsf{E}_1(\mathcal{G})\mathcal{M}_1(\mathcal{G})\right| = 9.72$$

and

$$\frac{1}{4}\left(1 - \frac{1 + (-1)^{k+1}}{2k^2}\right)(d^2 - r^2)(\Delta^2 - \delta^2) = 18.75$$

Thus, the inequality in Theorem 16 is satisfied.

References

- [1] A. Algesmah, A. Saleh, R. Rangarajan, A. Yurttas, I. N. Cangul, Distance eccentric connectivity index of graphs, $Kyunqpook\ Math.\ J.\ 61\ (2021)\ 61-74.$
- [2] K.C. Das, Comparison between zagreb eccentricity indices and the eccentric connectivity index, the second geometric-arithmetic index and the graovac-ghorbani index. Croat. Chem. Acta 89 (2016) 505-510. \Rightarrow 295
- [3] R. C. Entringer, D. E. Jackson, D. A.Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283–296. \Rightarrow 294
- [4] R. Farooq, M. A. Malik, On some eccentricity based topological indices of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid. Commun. 9 (2015) 842–849. \Rightarrow 295
- [5] D. Vuki evi, A. Graovac, Note on the Comparison of the First and Second Normalized Zagreb Eccentricity Indices, Acta Chim. Slov 57 (2010) 524–528. \Rightarrow
- [6] S. Gupta, M. Singh, A.K. Madan, Connective eccentricity index: a novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) $18-25. \Rightarrow 295$
- [7] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. \Rightarrow 294
- [8] S. M. Hosamani, S. S. Shirakol[†], M. V. Kalyanshetti, I. N. Cangul, New eccentricity based topological indices of total transformation Graphs $\dagger arXiv:2008.10194v1 \text{ [math.CO] } 24 \text{ Aug } 2020 \implies 295$

- [9] X. Li, R. N. Mohapatra, R. S. Rodriguez, Grüss-type inequalities, *J. Math. Anal. Appl.* **267** (2002) 434–443. \Rightarrow 296
- [10] N. Ozeki, On the estimation of inequalities by maximum and minimum values, Journal of College Arts and Science, 5 (1968) 199–203. (in Japanese) $\Rightarrow 296$
- [11] J. Radon, Uber die absolut additiven mengenfunktionen, "Wiener-Sitzungsber, (1913) 1295–1438. \Rightarrow 296
- [12] V. Sharma, R. Goswami, A.K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure–property and structure–activity studies, J. Chem. Inf. Comput. Sci 37 (1997) 273–282. ⇒ 295
- [13] K. Xu, Y. Alizadeh, K.C. Das, On two eccentricity-based topological indices of graphs, *Discrete Appl. Math.* **233** (2017) 240–251. \Rightarrow 295
- [14] K. Xu, K.C. Das, H. Liu, Some extremal results on the connective eccentricity index of graphs, J. Math. Anal. Appl. 433 (2016) 803–817. ⇒295

Received: August 11, 2023 • Revised: November 28, 2023