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Abstract. The graph realization problem seeks an answer to how and
under what conditions a graph can be constructed if we know the degrees
of its vertices. The problem was widely studied by many authors and in
many ways, but there are still new ideas and solutions. In this sense, the
paper presents the known necessary and sufficient conditions for realiza-
tion with the description in pseudocode of the corresponding algorithms.
Two cases to solve the realization problem are treated: finding one so-
lution, and finding all solutions. In this latter case a parallel approach
is presented too, and how to exclude isomorphic graphs from solutions.
We are also discussing algorithms using binary integer programming and
flow networks.

In the case of a bigraphical list with equal out- and in-degree se-
quences a modified Edmonds–Karp algorithm is presented such that the
resulting graph will be always symmetric without containing loops. This
algorithm solves the problem of graph realization in the case of undirected
graphs using flow networks.

Key words and phrases: degree sequences, graph realization algorithms, flow networks,
graphical lists, bigraphical lists, modified Edmonds–Karp algorithm
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1 Introduction

A graph realization or graph construction problem asks if for a given finite
sequence (d1, d2, . . . , dn) of natural numbers there exists a finite simple graph
such that d1, d2, . . . , dn represent the degrees of vertices of this graph. The
problem has been widely studied mostly from a theoretical point of view, giving
necessary and sufficient conditions for the existence of the solution [8, 7, 5, 9].
The problem can of course also be formulated for directed graphs, if we give
two sets of natural numbers for the in-degrees and out-degrees [13, 11, 12].

Two cases to solve the realization problem can arise:
• finding a graph which satisfies the conditions,
• finding all graphs which satisfy the conditions.
A sequence of non-negative integers is called graphical if it is the degree

sequence of some graph. A list (a1, b1), (a2, b2), . . . , (an, bn) of pair of non-
negative integers is bigraphical, if ai are the out-degrees, bi the in-degrees of
the vertices of some directed graph.

For example: 4, 3, 3, 2, 2, 2 is a graphical sequence. For the corresponding
graph and adjacency matrix see Fig. 1.

v1

v2

v3

v4

v5

v6


0 1 1 0 1 1

1 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 0

1 0 0 1 0 1

1 0 0 0 1 0


Figure 1: Example of a graph with the degrees 4, 3, 3, 2, 2, 2 and its adjacency
matrix

In this article, we will use the following algorithms:
• Finding a solution
− algorithm based on the Havel–Hakimi theorem for undirected graphs,
− algorithm based on the Kleitman–Wang theorem for directed graphs,
− algorithm using flow network for directed graph,
− using binary integer programming algorithm.
• Finding all solutions
− by parallel testing the solutions.
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v5

v6


0 1 1 0 1 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0


Figure 2: Example of a digraph with the out-degrees 3, 1, 2, 1, 1, 1

and in-degrees 1, 1, 2, 1, 2, 2, so with the bigraphical list
(3, 1), (1, 1), (2, 2), (1, 1), (1, 2), (1, 2), and its adjacency matrix

2 Necessary and sufficient conditions

The first characterization of graphic sequences, an algorithmic one, was pub-
lished by Havel [8] in 1955, completed by Hakami in 1962 [7]. Erdős and Gallai
gave a completely different type of characterization in 1960 [5]. In 2008 Tri-
pathi and Tyagi presented two new characterizations [19].

The running time of these algorithms is Ω(n2) in worst case. Iványi et al. [9]
have proposed a faster algorithm called EGL (Erdős-Gallai Linear algorithm),
whose worst running time is Θ(n). Other characterizations can be found in
[18] (1994), [1] (1997), [14] (2004), [3], and [20] (2010). In [2] and [6] related
problems are discussed.

We will present here the first three characterizations which provide a neces-
sary and sufficient condition for a sequence of natural numbers to be graphical.

Theorem 1 (Havel–Hakimi) [8, 7] A sequence d1, d2, . . . , dn of non-negative
integers, with d1 ≥ d2 ≥ · · · ≥ dn, where n ≥ 2, d1 ≥ 1, is graphical if and
only if the sequence

d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, dd1+3, . . . , dn

is graphical too.

Example:
4 3 3 2 2 2
4 3 3 2 2 2
2 2 1 1 2
2 2 2 1 1
1 1 1 1 which is graphical representing the graph:
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Because the last sequence is graphical, as is illustrated in the attached figure,
the first one is graphical too.

For the next theorem let us consider a sequence of non-negative integers
d1 ≥ · · · ≥ dn, and let us denote:

Hi =

i∑
k=1

dk, Ki =

n∑
k=i+1

min(dk, i).

Theorem 2 (Erdős–Gallai) [5] A sequence of non-negative integers d1 ≥
· · · ≥ dn is graphical if and only if
• Hn is even and
• Hi ≤ i(i− 1) + Ki holds for every i, 1 ≤ i ≤ n− 1.

Example. The sequence 3, 3, 3, 1 is not graphical, because for i = 2 we
have 3+ 3 > 2(2− 1) + 2+ 1.

Theorem 4 (to be discussed later) is a better applicable variant of the pre-
sented Erdős–Gallai theorem.

The following theorem applies to directed graphs.

Theorem 3 (Kleitman–Wang) [13] Let

(a1, b1), (a2, b2), . . . , (an, bn)

be a list of pairs of non-negative integers in non-increasing lexicographic order
and a pair (ai, bi) with bi > 0. The above list is bigraphical if and only if the
list obtained by the following rules is bigraphical too.

1. Change (ai, bi) to (ai, 0).

2. Let’s note by (ak, bk) each of the first bi pairs from the beginning of the
sorted list such that i 6= k. Change all to (ak − 1, bk).

3. Leave the remaining pairs as they were.

Example. (3, 1), (2, 2), (2, 2), (1, 3) is bigraphical because:

(3, 1), (2, 2), (2, 2), (1, 3)

(2, 1), (1, 2), (1, 2), (1, 0)

(2, 1), (1, 2), (1, 2) , (1, 0)

(1, 1), (0, 2), (1, 0), (1, 0)
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(1, 1), (1, 0), (1, 0), (0, 2)

(0, 1), (0, 0), (1, 0), (0, 0)

(1, 0) , (0, 1), (0, 0), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), which is obviously bigraphical.

Number of degree sequences Antal Iványi et al. [9] have counted the
n-element graphical sequences for n ≤ 32 with a parallel approach (server and
client programs) using 350 university laboratory computers operated continu-
ously for two summer months.

3 Algorithms

To see how the question of the graph realization problem arises, let

d = (4, 3, 3, 2, 2, 2)

be a graphical sequence whose length is n = 6, the number of vertices of the
graph. A solution graph and the corresponding adjacency matrix appear in
Fig. 1.

3.1 Testing possible solutions

To solve the problem of obtaining a graph with the given degree sequence we
start from the symmetric adjacency matrix

A =



0 x12 x13 x14 x15 x16
x12 0 x23 x24 x25 x26
x13 x23 0 x34 x35 x36
x14 x24 x34 0 x45 x46
x15 x25 x35 x45 0 x56
x16 x26 x36 x46 x56 0

 ,

where xij, i = 1, . . . , n − 1, i < j denotes the edge between the nodes i and j,
i.e. xij = 1 if there exists an edge, and xij = 0 otherwise. The xij ∈ {0, 1} meet
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the following conditions:



x12 + x13 + x14 + x15 + x16 = 4

x12 + x23 + x24 + x25 + x26 = 3

x13 + x23 + x34 + x35 + x36 = 3

x14 + x24 + x34 + x45 + x46 = 2

x15 + x25 + x35 + x45 + x56 = 2

x16 + x26 + x36 + x46 + x56 = 2

(1)

Each solution of this system of equations is a solution of the graph realization
problem.
Reordering the equations in (1) we obtain the following system of linear equa-
tions:



x12+x13+x14+x15+ x16 = 4

x12+ x23+x24+x25+ x26 = 3

= 3
. . . = 2

= 2

x16+ x26+ x36+x46+x56= 2

(2)

with xij ∈ {0, 1}, i < j,

or

Bx = d, (3)

where x = (xij) ∈ {0, 1}N, i < j, and B ∈ {0, 1}n×N , N = n(n−1)
2 , n > 2,

B =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 .
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As we see in each column there are two 1’s, and in each row there are (n− 1)
1’s. The matrix B can be decomposed as

B =



E5 0 0 0

E4 0
. . . 0

I5 E3 0

I4 E2 0

I3 I2 E1
I1


, (4)

or in the general case

B =



En−1 0 0 0

En−2
. . . 0

In−1 0

In−2
. . . E2 0

I2 E1
I1


, (5)

where Ek =
(
1 1 . . . 1

)︸ ︷︷ ︸,
k

and Ik is the identity matrix of order k.

Because 4, the minor formed with the first (n− 1) and the last column,
differs from zero:

det4 = det


En−1 0

In−1
...
E1
I1

 = 2 · (−1)n−1 ,

it follows that the matrix B is of full rank: rank (B) = n. For n > 3 the system
is underdetermined, so the existence of a solution in {0, 1}N depends on the
fulfillment of the Havel-Hakimi theorem.

From (2) it follows that

∑
i<j

xij =
1

2

n∑
k=1

dk = m,

where m is the number of the edges. So, the number of 1’s in each solution is
m.
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A solution of the system (3) can be obtained by testing binary sequences.
From all 2N, N length binary vectors, we need to test “only”

(
N
m

)
vectors. In

our example there are
(
15
8

)
= 6435 possibilities from which 27 are solutions (see

Table 1). But from these solutions only 4 are not isomorphic. The isomorphic
classes each containing respectively 12, 6, 6, and 3 isomorphic graphs.

One way to test a sequences is to calculate the scalar product of the binary
sequence and each row of the matrix B. If all this equals the components of
the d =

(
d1 d2 . . . dn

)
vector, then the binary sequence is a solution.

But we can avoid the numerous zero operations in the dot product if we use
the special shape of the sparse matrix B. We need only to add the components
of the binary sequence corresponding to the 1’s from the rows of the matrix
B.

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

1 1 1 1 0 1 1 0 0 0 0 1 0 0 1
1 1 1 1 0 1 0 1 0 0 0 1 0 1 0
1 1 1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 1 0 0 1 0 1 0 0 1 0
1 1 1 1 0 1 0 0 1 0 0 1 1 0 0
1 1 1 1 0 0 1 0 1 0 1 1 0 0 0
1 1 1 1 0 0 0 1 1 1 0 1 0 0 0
1 1 1 0 1 1 1 0 0 0 1 0 0 0 1
1 1 1 0 1 1 0 1 0 1 0 0 0 0 1
1 1 1 0 1 1 0 1 0 0 1 0 0 1 0
1 1 1 0 1 1 0 1 0 0 0 1 1 0 0
1 1 1 0 1 1 0 0 1 0 1 0 1 0 0
1 1 1 0 1 0 1 1 0 0 1 1 0 0 0
1 1 1 0 1 0 0 1 1 1 1 0 0 0 0
1 1 0 1 1 1 1 0 0 1 0 0 0 0 1
1 1 0 1 1 1 1 0 0 0 1 0 0 1 0
1 1 0 1 1 1 1 0 0 0 0 1 1 0 0
1 1 0 1 1 1 0 1 0 1 0 0 0 1 0
1 1 0 1 1 1 0 0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 0 1 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0
1 0 1 1 1 1 1 0 0 0 1 1 0 0 0
1 0 1 1 1 1 0 1 0 1 0 1 0 0 0
1 0 1 1 1 1 0 0 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 0 0 0 1 0 0 0
0 1 1 1 1 1 1 0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 1 1 1 0 0 0 0 0

Table 1: 27 solutions from 6435 possible sequences

Parallel approach. When we generate the
(
N
m

)
possibilities in fact the posi-

tions of the elements equal to 1 are generated. Grouping into a set the possible
solutions with the same starting position, these sets can be tested in parallel,
which greatly reduces the testing time.

Isomorphism. If A and B are adjacency matrices of two isomorphic graphs,
then there is a permutation matrix P (each row and each column contains
exactly one 1, the other elements are 0) such that B = PAP−1.
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Verifying isomorphism. We generate all permutations of 12 · · ·n. Each
permutation yields a permutation matrix P = (pij) as follows: if s1s2 · · · sn is
a permutation of 12 · · ·n, then pisi = 1 for i = 1, 2, . . . , n. For example, the
following matrix corresponds to permutation 13425:

P =


1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1


Matrix PAP−1 can be obtained without multiplying the matrices, only by

simply swapping the corresponding rows and columns as follows:

for i =1,2,. . . ,n
for j =1,2,. . . ,n

if pij = 1 then
swap row i and row j in A
swap column i and column j in A

and the obtained matrix will be B, if the graphs represented by the adjacency
matrices A and B are isomorphic.

For example the following graphs are isomorphic:

1

5

4 3

2

a

e

d c

b

A =


0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

 B =


0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

 P =


1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0


Based on matrix P the correspondence of the vertices are: 1 → a, 2 → d,

3→ b, 4→ e, 5→ c.
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Parallel approach. As the permutations can be generated in parallel based
on the first position, there will be n groups each of (n−1)! permutations. This
allows n computers to work in parallel. Thereby the execution time can be
reduced from cn! to c(n−1)! This can be continued depending on the number
of computers.

3.2 Determining a solution with binary integer programming
algorithm

Integer linear programming ([17], [21]) techniques can be also used to solve
the graph realization problem.

Problem (3) can be regarded as an integer linear programming problem of
the form:

maxx c
tx{

Bx ≤ d
xij ∈ {0, 1} i = 1, . . . , n− 1, i < j

.

Although, the original problem does not contain an objective function, this
can be used to obtain different solutions. The components of the sequence c
will be set to 0 − 1, so they work as weights. It is worth noting that the 1’s
in the solutions are concentrated at the beginning (see Table (1)). This is due
to the fact that the sequence d is non-increasing. In this light, let us set all
components of c to zero. In this case we obtain the first solution from the
Table 1:

sol1 = (1 1 1 1 0 1 1 0 0 0 0 1 0 0 1) .

If we set the last m components of the vector c to 1:

c = (0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) ,

we obtain a solution with the most possible 1’s in the last m positions (in our
example there are only two such solutions):

sol7 = (1 1 1 1 0 0 0 1 1 1 0 1 0 0 0) .

Naturally, different sequences c does not necessarily mean different solutions.
The algorithm uses a branch-and-bound method to divide the problem into

a few smaller ones, and a relaxation technique to obtain an optimal integer (bi-
nary) solution of the problem. The complexity of the algorithm is polynomial.
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Algorithm 1: Linear Erdős–Gallai algorithm

Input: Sequence d1 ≥ d2 ≥ · · · ≥ dn > 0, n ≥ 2
Output: True if the input sequence is graphical, and False otherwise.
H0 = 0
for i = 1 to n do Hi = Hi−1 + di
if Hn is odd then return False
d0 = n− 1
for i = 1 to n do

if di < di−1 then
for j = di−1 downto di + 1 do wj = i− 1
wdi = i

end

end
for j = dn downto 1 do wj = n
for i = 1 to n do

if i ≤ wi then
if Hi > i(i− 1) + i(wi − i) +Hn −Hwi

then
return False

end

end
if i > wi then

if Hi > i(i− 1) +Hn −Hi then return False
end

end
return True

3.3 Testing the graphical sequence property based on Erdős–
Gallai theorem

Based on the Erdős–Gallai theorem in [9] a linear time algorithm is presented
to check if a sequence is graphical or not. This algorithm follows directly from
the next theorem proved in [9].

We need the following: for given sequence d1 ≥ d2 ≥ · · · ≥ dn > 0 let
w = (w1, . . . , wn−1), where wi gives the index of dk having the maximal index
among such elements of the sequence which are greater or equal to i.

Recall that Hi =

i∑
k=1

dk.
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Theorem 4 [9] If n ≥ 1, then the sequence d1 ≥ d2 ≥ · · · ≥ dn > 0, is
graphical if and only if

Hn is even

and if i > wi, then
Hi ≤ i(i− 1) +Hn −Hi,

further if i ≤ wi, then

Hi ≤ i(i− 1) + i(wi − i) +Hn −Hwi
.

Algorithm 1 is based on the one described in [9], which will be prerequisite
for the Havel–Hakimi graph realization algorithms. It is easy to see that it has
a linear time complexity.

3.4 Graph realization problem using the Havel–Hakimi theo-
rem

It is possible to check whether Theorem 1 is satisfied using an O(n2 logn) time
complexity algorithm by sorting the list after every step. To avoid this we can
observe that after decreasing some d1 values from the list at each step, the
values can be sorted by swapping two contiguous subsequences of the list. This
can be done in linear time, thus our algorithm has O(n2) time complexity. A
less efficient variant with the same time complexity would be to merge the
subsequence containing the decreased elements with the remainder of the list.

The sequence z1, z2, . . . , zn keeps the original positions of vertices during the
algorithm.

Algorithm 2 solves the problem using the Havel–Hakimi theorem.

Example. Using Algorithm 2 for the graphical sequence 4, 3, 3, 2, 2 the
solution is given in Fig. 3.

The input of this algorithm must be a graphical degree sequence. A degree
sequence can be checked out for this by Algorithm 1. But Algorithm 2 easily
can be modified to check also that the input is graphical or not.

3.5 Graph realization problem using the Kleitman–Wang the-
orem

Let us denote for a vertex vi in a digraph by ai its out-degree, and by bi
its in-degree. The list (a1, b1), (a2, b2), . . . , (an, bn) of pairs of non-negative
integers is a degree sequence of some digraph. In an unusual way, here the
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Algorithm 2: Graph realization using the Havel–Hakimi theorem

Input: Graphical sequence d1 ≥ d2 ≥ · · · ≥ dn > 0, n ≥ 2
Output: Adjacency matrix A = (aij) (i, j = 1, 2, . . . n) of the solution
graph

for i := 1 to n do
zi := i
for j := 1 to n do aij := 0

end
k := 1; m := n
while (m > k) do

c := dk
s := −1
for i := k+ 1 to k+ c do

di := di − 1
azk,zi := 1
azi,zk := 1
if s = −1 and k+ c < n and di < dk+c+1 then s := i

end
if s > 0 then

i := s
j := k+ c+ 1
while j ≤ n and di < dj do j := j+ 1
l := k+ c+ 1− s
r := j− k− c− 1
if l > r then j := k+ c+ 1
else j := j− l
while i ≤ k+ c and j ≤ n and di < dj do

Swap di and dj, respectively zi and zj
i := i+ 1
j := j+ 1

end

end
while (dm = 0) and (m > k) do m := m− 1
k := k+ 1

end
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v1 v2

v3

v4

v5

Figure 3: A solution to the graphical sequence 4, 3, 3, 2, 2

first number means the out-degree, the second the in-degree. We will see the
benefits of this later.

We recall that a list (a1, b1), (a2, b2), . . . , (an, bn) of pairs of nonnegative
integers is called bigraphical if it is the degree sequence of some digraph.

We denote by (a1, b1) � (a2, b2) �, . . . ,� (an, bn) a list (a1, b1), (a2, b2),
. . . , (an, bn) which is in non-increasing lexicographic order. Here, we use a
similar idea as in Algorithm 2, sequence z1, z2, . . . , zn keeps the original posi-
tions of vertices during the algorithm, and y1, y2, . . . , yn denotes the inverse
permutation of z, that is yi stores the current position where the pair originally
at position i can be found in the list. Because the sorting order now depends
on two parameters, both values of each pair, it is not possible anymore to
simply exchange two subsequences, we need the classical merging algorithm
this time. We also use a queue (first in first out) called q.

This algorithm works not only for bigraphical sequences, the opposite is
indicated by an error message.

Example. Using Algorithm 3 for the bigraphical sequence (2, 0), (1, 1), (1, 0),
(0, 3) the solution is given in Fig. 4. In the first step of the while cycle from
h = 2 (2, 0), (1, 1), (1, 0), (0, 3), we obtain (1, 0), (1, 0), (1, 0), (0, 3),

In the next step from
h = 4 (1, 0), (1, 0), (1, 0), (0, 3), we obtain (0, 0), (0, 0), (0, 0), (0, 0).

3.6 Graph realization problem using flow networks

This method can be applied for directed graphs (see [16]), and for undi-
rected graphs with some modifications. A bigraphical list (a1, b1), (a2, b2),
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Algorithm 3: Digraph realization by the Kleitman–Wang theorem

Input: Bigraphical sequence (a1, b1) � (a2, b2) �, . . . ,� (an, bn)
Output: Adjacency matrix X = (xij) (i, j = 1, 2, . . . n) of the solution
graph

for i := 1 to n do
zi := i
yi := i
for j := 1 to n do xij := 0
if bi > 0 then Push i to the end of q

end
while q is not empty do

Pop the first element of q into h
c := byh
if c > n− 1 then

return Error: The sequence is not bigraphical.
end
s := −1
i := 1
while i ≤ c do

if zi 6= h then
if ai ≤ 0 then

return Error: The sequence is not bigraphical.
else

ai := ai − 1
xzi,h := 1

end
if s = −1 and pair c+ 1 � pair i in the list then s := i

else c := c+ 1
i := i+ 1

end
if s > 0 then

Merge as...c with ac+1...n updating z and y accordingly
end
k := yh
bk := 0
Move pair k to the right in the list if necessary updating z and y
accordingly

end
if a1 > 0 then

return Error: The sequence is not bigraphical.
end
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v2 v4

v3v1

Figure 4: A solution to the bigraphical sequence (2, 0), (1, 1), (1, 0), (0, 3)

. . . , (an, bn) is given, where as we have already seen a1, a2, . . . , an represent
the out-degree, and b1, b2, . . . , bn the in-degree sequences. To find a graph
with these out- and in-degrees we will use a flow network of 2n + 2 nodes.
Denote the source node by v, the sink node by w, and the internal nodes by
v1, v2, . . . , vn, w1, w2, . . . , wn. The arcs are the following:

(v, vi) for i = 1, 2, . . . , n,

(vi, wj) for i = 1, 2, . . . , n, j = 1, 2, . . . , n,

and i 6= j, (6)

(vj, w) for j = 1, 2, . . . , n.

The capacities are:

c(v, vi) = ai for i = 1, 2, . . . , n,

c(vi, vj) = 1 for i = 1, 2, . . . , n, j = 1, 2, . . . , n,

and i 6= j, (7)

c(vj, w) = bj for j = 1, 2, . . . , n.

For an example see Fig. 5.
A maximum flow in the above defined flow network can be obtained for ex-
ample by the Edmonds–Karp algorithm [4]. A maximal flow in this network
which saturates all arcs from v, and all arcs to w, will give us a solution to
the realization problem. The arcs between the interior vertices with flow equal
to 1 yield the edges of the resulting graph. A saturated arc (vi, wj) where
i = 1, 2, . . . , n, j = 1, 2, . . . , n, and i 6= j, gives an arc (vi, wj) of the solution.
Obviously, the solution is not unique, from any maximum flow with the above
conditions, a new graph results.

Algorithm 4 constructs a graph from a bigraphical list using flow networks.
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Algorithm 4: Graph realization using flow network

Input: Bigraphical list (a1, b1), (a2, b2), . . . , (an, bn)
Output: Adjacency matrix A = (aij) (i, j = 1, 2, . . . , n) of the solution
graph

Construct the graph: G = (V, E), where V = {v,w, v1, v2, . . . , vn,

w1, w2, . . . , wn, } and the arcs in E are given by (6) with capacities by
(7)

Apply to G the Edmonds–Karp algorithm obtaining a maximum flow f

for i := 1 to n do
for j := 1 to n do

if i = j then aii = 0
else ai,j = f(vi, wj)

end

end

The complexity of the Algorithm 4 is O(n5) because of the complexity of
the Edmonds-Karp algorithm, but it can be improved to O(n3) by using the
algorithm from [15].

v

v1

v2

v3

v4

w1

w2

w3

w4

w

[3]

[2]

[2]

[1]

[1]

[2]

[2]

[3]

[1]

...

...

[1]

Figure 5: An example of flow network attached to the bigraphical list (3, 1),
(2, 2) , (2, 2) (1, 3)
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[1]

...
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Figure 6: A solution of the example in Fig. 5, the saturated arcs are marked
thick. The other arcs have flow equal to 0.

Example. Starting from the bigraphical list (3, 1), (2, 2), (2, 2), (1, 3) we
obtain the flow network in Fig. 5. By the well-known Edmonds–Karp algorithm
we find the maximum flow (see Fig. 6, where the thick arrows are saturated)
which corresponds to the following solution, where f(i, j) is the flow on the arc
from vertex vi to vertex wj:

f(i, j) w1 w2 w3 w4
v1 0 1 1 1

v2 0 0 1 1

v3 0 1 0 1

v4 1 0 0 0

and which is the adjacency matrix of the resulting graph (Fig. 7.a).

In the case of a bigraphical list with the equal out- and in-degree sequences (i.e.
ai = bi, for i = 1, . . . , n) if the resulting graph is symmetric, then the solution
can be considered as a solution for the undirected case (where a1, a2, . . . , an
is a graphical sequence). Such a case can be viewed in Fig. 7b. But Algorithm
4 does not always give a symmetric graph as solution. As an example consider
the case of the degree sequence (2, 2, 2, 2, 2). See Fig. 8a for the resulting graph.
In Fig. 9 on the left we can see the maximum flow obtained. Using the following
alternating semipath (which is a closed one)
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1

2 3

4

a)

1

2 3

4

b)

Figure 7: Solution for the bigraphical list: a) (3, 1), (2, 2), (2, 2), (1, 3),
b) (2, 2), (2, 2), (1, 1), (3, 3) which corresponds to the graphical sequence
2, 2, 1, 3.

v1 w3 v4 w1 v2 w4 v3 w5 v1

and changing in the maximum flow all dashed arcs from here with a thick one
next to it, a new maximum flow will arise (on the right in Fig. 9). This solution
yields a symmetric graph (Fig. 8.b), and the corresponding undirected graph
is in Fig. 8.c. In the Appendix an algorithm for finding all closed alternating
semipaths is given.

A different approach to get from a solution to another one, is based on
the so called square change [5]. If we delete two arcs (a, b), (c, d), then add
the two arcs (a, d), (c, b) the degree sequence does not change. In the case of
Fig8a) the following square changes (2, 4), (3, 5)→ (2, 5), (3, 4); (1, 3), (4, 1)→
(1, 1), (4, 3); (2, 5), (1, 1)→ (2, 1), (1, 5) will give the solution in Fig.8b).

A modified Edmonds–Karp algorithm for undirected graphs. In the
case of a bigraphical list with equal out- and in-degree sequences (i.e. ai = bi,
for i = 1, . . . , n) it is possible to modify the Edmonds–Karp algorithm in such
a way that the resulting graph will be always symmetric without containing
loops. In order to achieve this, we need to modify the breadth-first search by
allowing only paths whose symmetric is also an augmenting path. Then each
time we increase the flow along both paths.

As usual, given the edge capacities and flow values of the network, for every
arc (x, y) in the original network by definition the residual network has an arc
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Figure 8: a) Solution for the bigraphical list (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)
given by the Algorithm 4. b) Solution after applying the alternating semipath
method. c) In the solution of b) each pair of arcs (u, v) and (v, u) has been
substituted by the edge {u, v}

.
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Figure 9: Using the alternating semipath method to obtain a new maximum
flow which yields a symmetric graph as solution. Only the arcs which have
flow equal to 1 are drawn. Eliminating the dashed arcs and introducing the
thick ones, a new maximum flow is obtained.

(x, y) if c(x, y) − f(x, y) is positive and an arc (y, x) if f(x, y) is positive. In
the residual network we set the capacities to the respective values.
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Algorithm 5: Graph realization for the symmetric case

Input: Flow network (as described in (6) and (7))
Output: Adjacency matrix A = (aij) (i, j = 1, 2, . . . , n) of the solution
graph

while BFS(c, f, p) do
IncreaseFlow(c, f, p)

end
for i := 1 to n do

for j := 1 to n do
if i = j then aii = 0
else ai,j = f(vi, wj)

end

end

Algorithm 6: BFS(c, f)

Input: Flow network
Output: Parent sequence p describing one of the two paths
Push v to the end of q
while q is not empty do

Pop the first element of q into x
foreach y such that (x, y) is an arc of the residual network do

if y is not marked as visited and Valid(x, y, c, f, p, e) then
py := x
if x = v then ey := y
else ey := ex
Mark y as visited and push it to the end of q

end

end

end
return True if w is marked as visited

In order to check whether the flow can be increased on the symmetric pair
of a path, for each visited node x we store the value ex which keeps the node
that succeeds v on the path to x, thus the path will respect the following
pattern: v, ex, . . . , x. The values of sequence e can be determined using simple
recurrence relations, by applying dynamic programming.
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Algorithm 7: Valid(x, y, c, f, p, e)

Input: Arc (x, y), flow network, sequences p and e
Output: True if py should be set to x
if y = w then

Let vi = ex and wj = x
if vj 6= ex then

return True if arc (wi, w) is in the residual network
else

return True if arc (wi, w) has capacity greater than 1 in the
residual network

end

else if x = vi and y = wj for some i, j ∈ {1, 2, . . . , n} then
if (vj, wi) is not in the residual network then return False
Consider the path B = v, vk1 = ex, wk2 , vk3 , wk4 , . . . , x ending in x
according to p

if wi ∈ B then
return False if vj is the element before wi in B

end

else if x = wi and y = vj for some i, j ∈ {1, 2, . . . , n} then
Check similarly to the previous case

end
return True

We note that building path B introduces an additional linear factor to the
time complexity to our algorithm compared to Algorithm 5, yielding to O(n6).

It’s easy to see the correctness of the algorithm by the following argument. If
there exists a solution, then at each step there must exist a pair of symmetric
augmenting paths, and if such a pair of paths exist, the algorithm will always
find one. After finding a pair of augmenting paths, the flow of the network
will increase by 2, so by mathematical induction the algorithm will terminate
correctly by finding a solution if one exists, when the flow of the network will
be equal with twice the number of edges of the undirected graph we are looking
for.
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Algorithm 8: IncreaseFlow(c, f, p)

Input: Flow network, sequence p
Output: Flow network with increased flow
y := w
while y 6= v do

x := py
Increase flow on arc (x, y)
if x = vi and y = wj for some i, j ∈ {1, 2, . . . , n} then

Increase flow on arc (vj, wi)
else if x = wj and y = vi for some i, j ∈ {1, 2, . . . , n} then

Increase flow on arc (wi, vj)
else if px = v then

Let vi = x
Increase flow on arc (wi, w)

else if y = w then
Let wj = x
Increase flow on arc (v, vj)

end
y := x

end

4 Conclusions

Despite the fact that the graph realization problem has been intensively stud-
ied, there are still many new ideas.

The necessary and sufficient conditions for the realization problem have been
known for long, and from these it is easy to give algorithms, yet their exact
description in pseudocode is not in vain, because it helps to investigate the
complexity of these algorithms. We also examined the possibility of finding
all solutions, excluding isomorphic graphs, and the possibility of a parallel
approach for larger graph orders. The algorithm to solve the problem using
network flows for directed graphs has been modified so that it can be applied
to undirected graphs as well. In addition, we have presented an algorithm that
solves the problem by integer linear programming.

In the Appendix a method to determine the closed alternating semipaths is
presented, which can be used in the flow algorithm.
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Appendix

Determining the closed alternating semipaths

Let G = (V ∪W,E1 ∪ E2) a bipartite digraph, where V = {v1, v2, . . . , vn} and
W = {w1, w2, . . . , wn} are the set of vertices, E1 the set of red arcs, E2 the set
of blue arcs, (an example is in Fig. 10). The arcs are (vi, wj) with i 6= j.

The problem is to find closed alternating semipaths in which the direction
of the arcs and the colors also alternate. In Fig. 10 such a semipaths is:

v1 w2 v4 w1 v3 w5 v2 w4 v1

Before presenting the algorithm, let us recall some notations ([10]) that will
be used.

Let us consider a matrix A with the elements Aij which are sets of strings.
Initially elements of this matrix for i, j = 1, 2, . . . , n are defined as:

Aij =

{
{viwj}, if there exists an arc from vi to wj,
∅, otherwise,

(8)

If A and B are sets of strings, AB will be formed by the set of concatenation
of each string from A with each string from B, if they have no common letters:

AB =
{
ab
∣∣a ∈ A, b ∈ B, if a and b have no common letters

}
.
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w1

w2

w3

w4

w5

v1

v2

v3

v4

v5

Figure 10:

If s = s1s2 · · · sp is a string, let us denote by ′s the string obtained from s by
eliminating the first character: ′s = s2s3 · · · sp. Let us denote by ′Aij the set
Aij in which we eliminate from each element the first character. In this case
′A is a matrix with elements ′Aij.

Let us define for red and blue spanning subgraph of G respectively the
matrices R and B as in the equation (8). ′R and ′B are defined as above. BT
represents the transposed matrix of B in which each element viwj is changed
in wjvi.

The elements of the matrix

R
(
′(BT) ′R

)k
, for k = 1, 2, . . . , n− 1

are sets of strings of the form s1s2 · · · s2k+1 (an alternating semipath). If there
exists a blue arc (s1, a2k+1) then s1s2 · · · s2k+1s1 is a closed alternating semi-
paths. Algorithm 9 can be easily generalized to matrices of type m× n.
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Algorithm 9: Finding closed alternating semipaths

Input: Matrices R and B of type n× n
Output: The closed alternating semipaths
Y := R
X := ′(BT) ′R
for k := 1 to n− 1 do
Y := YX
for each string s1s2 · · · s2k+1 in each element of Y do

if there exists a blue arc (s1, s2k+1) then
print s1s2 · · · s2k+1s1

end

end

end

For the example in Fig. 10 the initial matrices are

R =


∅ {v1, w2} ∅ ∅ ∅
∅ ∅ {v2, w3} {v2, w4} ∅
∅ ∅ ∅ ∅ {v3, w5}

{v4, w1} ∅ ∅ ∅ {v4, w5}

∅ ∅ ∅ {v5, w4} ∅



B =


∅ ∅ ∅ {v1, w4} {v1, w5}

{v2, w1} ∅ ∅ ∅ {v2, w5}

{v3, w1} ∅ ∅ ∅ ∅
∅ {v4, w2} ∅ ∅ ∅
∅ {v5, w2} ∅ ∅ ∅


and the algorithm gives us the following closed alternating semipaths of length
4, 6 and 8 respectively (closed alternating semipath of length 10 can not exist):

• v1w2v5w4v1, v5w4v1w2v5,
• v1w2v4w1v2w4v1, v1w2v4w5v2w4v1, v2w4v1w2v4w1v2, v2w4v1w2v4w5v2,
v4w1v2w4v1w2v4, v4w5v2w4v1w2v4,
• v1w2v4w1v3w5v2w4v1, v2w4v1w2v4w1v3w5v2, v3w5v2w4v1w2v4w1v3,
v4w1v3w5v2w4v1w2v4.

From these only the following are different:
v1w2v5w4v1, v1w2v4w1v2w4v1, v1w2v4w5v2w4v1, v1w2v4w1v3w5v2w4v1.

Received: June 25, 2023 • Revised: September 25, 2023


	1 Introduction
	2 Necessary and sufficient conditions
	3 Algorithms
	3.1 Testing possible solutions
	3.2 Determining a solution with binary integer programming algorithm 
	3.3 Testing the graphical sequence property based on Erdos–Gallai theorem
	3.4 Graph realization problem using the Havel–Hakimi theorem
	3.5 Graph realization problem using the Kleitman–Wang theorem
	3.6 Graph realization problem using flow networks

	4 Conclusions

