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Abstract. The analysis of networks involves several crucial parameters.
In this paper, we consider the closeness parameter, which is based on the
total distance between every pair of vertices. Initially, we delve into a
discussion about the applicability of the closeness parameter to Myciel-
ski graphs. Our findings are categorized based on the underlying graph’s
diameter. The formula for calculating the closeness of a Mycielski graph
is derived for graphs with a diameter of less than or equal to 4. Further-
more, we establish a sharp lower bound for the closeness of a Mycielski
graph when the diameter of the underlying graph is greater than 4. To
achieve this, the closeness of the Mycielski transformation of a path graph
plays an important role. Additionally, leveraging the obtained results, we
examine the closeness of a special planar construction composed of path
and cycle graphs, as well as its Mycielski transformation.

1 Introduction

Network science has evolved greatly over the past decade and is now the
leading scientific field in the description of complex networks. Therefore, the
complex network is a significant research area of complexity science.
Recently, due to the construction of smart cities, complex network applica-
tions have been gaining popularity. Complex networks such as traffic networks,
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power grids, social networks, and others can now be observed ubiquitously.
These networks bring significant simplicity to our lives. As a result, complex
networks, as a novel and dynamic field of scientific research, are increasingly
capturing people’s attention. They draw substantial inspiration from experi-
mental studies conducted on real-world networks.

Graph theory emerges as an invaluable instrument for deciphering complex
networks. By translating network structures into graphs, this theory offers an
intuitive and streamlined representation. This renders graph theory a widely
adopted tool across contemporary sciences, facilitating the modeling and res-
olution of real-life quandaries. [13, 20,24–26,28].

In a complex network that composed of processing nodes and communi-
cation links, it is very important for a network designer to determine which
vertices or edges are important. Hereby, centrality is a critical metric because
it indicates which vertex is in a sensitive location in an entire network. It has
also been widely used in complex network analysis. If we think of a graph as
modeling a network, there are many centrality parameters such as closeness
centrality, degree centrality, vertex and edge betweenness centrality, residual
closeness and etc. which are used to determine the importance of a vertex or
an edge in the network including.

The purpose of centrality measures, as closeness or betweenness, determines
how centrally a vertex is in a network. There are many studies in the literature
on the rapid calculation about centrality index especially on issues related to
the solution and calculation of application problems such as social networks,
network analysis and determining the best location [14,16,18,19].

Closeness centrality, one of the most studied parameter of complex network
through centrality indexes, is applied much from many researchers. The close-
ness of a vertex is the sum the distances from all other vertices, where the
distance from a vertex to another is defined as the length of the shortest path
between them. The closeness centrality based on the shortest paths among ver-
tices in the network and it relates how quickly information can spread across
the network. If spread of information from one vertex to other vertices can
occur rapidly, that node is based on the intuition that it is in an important
position.
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The closeness centrality takes value between 0 and 1. If closeness value of
a vertex approaches to 0 this means indicated vertex far from others. While
closeness value of a vertex approaches to 1 this means addressed node is in
close proximity to all other vertices.

Closeness centrality concept was first defined in 1948 by Bavelas [5]. Then,
a notable definition for closeness defined by Freeman yet it can be utilized
solely for connected graphs [12]. After that, Latora and Marchiori [15] pro-
vided new definition for point closeness even it can be applied to disconnected
graphs. Later, Danglachev introduced a modified closeness definition due to
ease of calculation and formulation [8]. Furthermore, Danglachev defined an-
other measure of vulnerability parameter, called as residual closeness. We refer
the readers to references about closeness and its varieties in order to get de-
tailed knowledge [1–3,9, 27].

In this work, we will use Danglachev’s closeness parameter. In this defini-
tion, the closeness of a graph is defined as: Dangalchev introduced closeness of
a vertex definition as C(ui) =

∑
j 6=i

1

2
d(ui,uj)

and closeness of the graph is defined

as C =
∑
i

C(ui) where d(ui, uj) denotes the distance between two vertices ui

and uj is shortest path between them.

In this paper, let G be simple, finite and undirected graph with vertex set
V(G) and edge set E(G). The open neighborhoodof any vertex in V(G), de-
noted by NG(v) = {u ∈ V(G) : (uv) ∈ E(G)}. Also, deg(ui) denotes the degree
of a vertex ui that is cardinality of its neighborhood. The diameter of G is
largest distance between two vertices in V(G) and represented by diam(G).
The complement Ḡ of a graph G has V(G) as its vertex sets, but two vertex
are adjacent in Ḡ if only if they are not adjacent in G [6,7].

The goal of this paper is provide exact formula and sharp lower bound for a
Mycielski graph depending on diameter of underlying graph. Mycielski intro-
duced a graph structure that does not contain triangles with large chromatic
number. The Mycielski structure, denoted by µ(G) notation, is defined for a
graph G = (V, E) with the vertex set V(µ(G)) = V(G) ∪ V(G′) ∪ {v} where
V(G) = {vi : 1 ≤ i ≤ n} is vertex set of G and V(G′) = {ui : 1 ≤ i ≤ n} is copy
of the vertex set V(G) and E(µ(G)) = E(G)∪ {viuj : vivj ∈ E(G)}∪ {ujv : ∀uj ∈
V(G′)} [17] (see in Fig. 1). Recently, there has been an increasing interest in
studies related to the Mycielski graph and there are many the research papers
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in the literature about mycielski structures.
For our study, in order to obtain the lower bound of closeness of Mycielski
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Figure 1: An illustration of a Mycielski graph.

graph, we establish a relationship with the path structure has been the ba-
sis. Therefore, first closeness of path mycielskian is provided. Furthermore,
we consider Tadpole graph, a construction containing a path. We investigate
some results about Tadpole graph and its Mycielski form. In literature, there
are some findings about splitting graphs and analogous structure of Mycielski
graph [4, 10, 22, 23]. As well as verifying some known basic results with our
formula, we also present new general conclusions about closeness of Mycielski
graph. Now we state some known lemmas which we use in the proofs of our
results.

Theorem 1 [1, 8] The closeness of

(a) the complete graph Kn with n vertices is C(Kn) =
n(n− 1)

2
;

(b) the star graph Sn with n vertices is C(Sn) =
(n− 1)(n+ 2)

4
;

(c) the path Pn with n vertices is C(Pn) = 2n− 4+
1

2n−2
;

(d) the cycle Cn with n vertices is C(Cn)=

{
2n(1− 1

2[n/2] ) if n is odd

n(2− 3
2n/2 ) if n is even

.

Theorem 2 [22] The closeness of µ(G)
(a)For n ≥ 4; the star graph G = Sn is C(µ(G)) = (2(n)2 + 5n− 3)/2.
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(b)For n ≥ 3; the complete graph G = Kn is C(µ(G)) = (7n2 + n)/4.
(c)For n ≥ 8; the cycle graph G = Cn is C(µ(G)) = (9n2 + 77n)/16.

2 Results about Closeness of Mycielski Graph

In [10] Dangalchev has expressed closeness of splitting graph of G in terms of
closeness of G. Analogously, we can apply this process to obtain results about
closeness of Mycielski graph depending on diameter of G.

Theorem 3 Let G be n order graph and diam(G) ≤ 4. Then,

C(µ(G)) = 3C(G) +
n2 + 7n

4
.

Proof.To derive the closeness formula of a Mycielski graph with a diameter
less than 4, the vertices of the graph can be partitioned into five distinct parts:

C(µ(G)) =

n∑
i=1

∑
j6=i
2−d(vi,vj) + 2

n∑
i=1

n∑
j=1

2−d(ui,vj)

+

n∑
i=1

∑
j6=i
2−d(ui,uj) + 2

n∑
i=1

2−d(v,ui) + 2

n∑
i=1

2−d(v,vi)

= C(G) + 2

n∑
i=1

2−d(ui,vi) + 2

n∑
i=1

∑
j 6=i
2−d(ui,vj) +

n(n− 1)

4
+ 2 · n

2
+ 2 · n

4

Since, d(ui, uj) = 2, d(v, ui) = 1 and d(v, vj) = 2. Also, d(ui, uj) = 2.

d(ui, vj) = d(vi, vj) then
n∑
i=1

∑
j 6=i
2−d(ui,vj) =

n∑
i=1

∑
j 6=i
2−d(vi,vj) = C(G)

= 3C(G) + 2
n

4
+
n(n− 1)

4
+ n+

n

2

= 3C(G) +
n2 + 7n

4
.

�

Utilizing previous result we can express the closeness for some special graphs.
Also, the results can be compared by formulae in [22] and it can be validated.
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Corollary 4 The Mycielski graph µ(Sn) of star graph Sn has closeness C(µ(Sn)) =
2n2+5n−3

2 which is proven in [22].
Proof. It is known that closeness of star graph

C(Sn) =
(n− 1)(n+ 2)

4

from [8], we have

C(µ(Sn)) = 3C(Sn) +
n2 + 7n

4

= 3 · (n− 1)(n+ 2)

4
+
n2 + 7n

4

=
2n2 + 5n− 3

2
.

�

Corollary 5 The closeness of Mycielski complete graph which is proved in
[22] is

C(µ(Kn)) =
7n2 + n

4
.

Proof. The closeness of complete graph Kn is known from [8]

C(Kn) =
n(n− 1)

2

Then, we get

C(µ(Kn)) = 3C(Kn) +
n2 + 7n

4

= 3 · n(n− 1)

2
+
n2 + 7n

4

=
7n2 + n

4
.

�

Corollary 6 The closeness of double star Sm,n is

C(Sm,n) =
n2 + 5n+m2 + 5m+mn+ 4

4
.
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Proof. A double star, Sm,n, can be obtained by joining two star graphs K1,m
and K1,n with an edge. Let, v and w be two non pendant vertices whose degrees
are deg(v) = m + 1 and deg(w) = n + 1, respectively. Then, v adjacent to
m pendant vertices and w adjacent to n pendant vertices also w and v are
adjacent. In addition, pendant vertices in K1,m and K1,n are three distances
away also those are 2 distances in themselves. Therefore,

C(Sm,n) = 2

m∑
i=1

1

2
+ 2

n∑
i=1

1

2
+ 2

n∑
i=1

1

22
+ 2

m∑
i=1

1

22
+

n∑
i=1

n−1∑
j=1

1

22
+

m∑
i=1

m−1∑
j=1

1

22

+ 2 · 1
2
+ 2

n∑
i=1

m∑
j=1

1

23

= m+ n+
m

2
+
n

2
+
n(n− 1)

4
+
m(m− 1)

4
+ 1+

mn

4

=
n2 + 5n+m2 + 5m+mn+ 4

4
.

�

Since, diameter of double graph is 3, closeness of Mycielski graph of double
star can be constructed using Theorem 1.

Corollary 7 Let Wn be wheel graph with n vertices. The closeness value of

Wn is C(Wn) =
(n− 1)(n+ 4)

4
.

Proof. Let V(Wn) = {1, ..., n} be vertex set and 1 be center vertex with
deg(1) = n− 1 :

C(Wn) = 2

n−1∑
i=1

1

2−d(1,i)
+

n−1∑
i=2

∑
i∼j,
j 6=1

1

2−d(i,j)
+ 2
∑
i�j
i,j 6=1

1

2−d(i,j)

= 2(1(n− 1)
1

2
) + 2 · 1

2
(n− 1) + 1 · (n− 4)

1

4
(n− 1)

=
(n− 1)(n+ 4)

4

where d(1, i) = 1, the notation i ∼ j refers that i is adjacent to j. �

Corollary 8 Let Km,n be complete bipartite graph. The closeness value of Kn
is C(Km,n) =

1
4((m+ n)2 − (m+ n) + 2mn).
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Proof. Let V(Km,n) = {1, 2, ...,m, ...m + n} be vertex labeling and |V1| = m

and |V2| = n be two subset of vertices such that no edge has both endpoints in
the same subset:

C(Km,n) = 2

m∑
i=1

m+n∑
j=m+1

1

2d(i,j)
+

m∑
i=1

m∑
j=1
i 6=j

1

2d(i,j)
+

m+n∑
i=m+1

m+n∑
j=m+1
i6=j

1

2d(i,j)

= mn+
m(m− 1)

4
+
n(n− 1)

4

=
1

4
((m+ n)2 − (m+ n) + 2mn).

�

Corollary 9 Closeness of Mycielski Double Star, complete bipartite and wheel
graphs are

C(µ(Sm,n)) = 3C(Sm,n) +
(m+ n+ 2)2 + 7(m+ n+ 2)

4

C(µ(Km,n)) = 3C(Km,n) +
n2 + 7n

4

C(µ(Wn)) =
3(n2 + 5n− 2)

2
.

Proof. The results can be obtained from Theorem 3 and previous corollaries
about C(Sm,n), C(Km,n) and C(Wn). �

Theorem 10 Let G be n order graph and diam(G) = k > 4. Then,

C(µ(Pk+1)) ≤ C(µ(G)).

Proof. Let diam(G) = k, then the lower bound can be found from Pk+1. Since,
a k-diameter graph includes at least one Pk+1.Therefore, total closeness value
of Mycielski form of a k-diameter graph will be more than closeness value of
Mycielski of path graph denoted by C(µ(Pk+1)). Thus, we have C(µ(Pk+1)) ≤
C(µ(G)). �

So, it is necessary to formulate C(µ(Pk+1)) value in order to supply sharp
lower bound for closeness of Mycielski graph of Pn.
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Corollary 11 The closeness of Mycielski graph path graph µ(Pn) for diam(Pn) =
k > 4 is

C(µ(Pn)) =
7n2 + 91n− 96

16
.

Proof. In order to calculate closeness of Mycielski graph path graph µ(Pn) for
diam(Pn) = k > 4, relationship between vertices can be divided into five parts:

C(µ(Pn)) =

n∑
i=1

∑
j6=i
2−d(vi,vj) + 2

n∑
i=1

n∑
j=1

2−d(ui,vj) +

n∑
i=1

∑
j 6=i
2−d(ui,uj)

+ 2

n∑
i=1

2−d(v,ui) + 2

n∑
i=1

2−d(v,vi)

= 3

n∑
i=1

∑
j6=i
2−d(vi,vj) +

n2 + 7n

4

In the Mycielski Graph for G whose diameter is greater than 4, the value of

3
n∑
i=1

∑
j6=i
2−d(vi,vj) is greater than 3C(G). Since, diam(µ(G)) = 4, and the value

of 2−d(vi,vj) in C(G) is less than 2−4 for some pair of vertices. In order to form

3
n∑
i=1

∑
j6=i
2−d(vi,vj), let define a set for Pn that contains pair of vertices whose

distance greater than 4 and the set denoted by E5+ .

E5+ = {(vi, vj) : |vi − vj| ≥ 5, vi, vj ∈ V(Pn)}

Then |E5+ | = (n − 5)(n − 4). The value of
n∑
i=1

∑
j6=i
2−d(vi,vj) increases in the

summation of C(µ(Pn)), due to the diameter of Mycielski graph. In C(Pn),

the value 2
n−5∑
i=1

i

2n−i
that comes from vertices of E5+ will be turn into

|E5+ |

16
.

Therefore, we get

C(µ(Pn)) = 3(C(Pn) − 2

n−5∑
i=1

i

2n−i
+

(n− 5)(n− 4)

16
) +

n2 + 7n

4
.

To calculate the summation, we are going to use geometric summation formula
as below:

n∑
i=1

Xi−1 = 1+ X+ X2 + ...+ Xn−1 =
Xn − 1

X− 1
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and also differentiating both side of geometric sum, we have

n∑
i=1

(i− 1)Xi−2 = 1+ 2X+ ...+ (n− 1)Xn−2 =
nXn−1

X− 1
−
Xn − 1

(X− 1)2
.

Then substitute 2 into the X, we get

n−5∑
i=1

i

2n−i
=
2

2n

n−5∑
i=1

i · 2i−1 = 1

2n−1
((n− 4)2n−5 − 2n−4 + 1) (1)

Using C(Pn) = 2n− 4+
1

2n−2
[8] and the equation 1

C(µ(Pn)) =
7n2 + 91n− 96

16

is obtained. �

Theorem 12 Let G be n order graph and diam(G) = k > 4. Then,

7(k+ 1)2 + 91(k+ 1) − 96

16
≤ C(µ(G)).

Proof. It can be referred from Theorem 10 and Corollary 11. �

2.1 Results about Tadpole graph

In previous section, we have obtained result for Mycielski graph of G ,whose
diameter greater than 4, based on the Mycielski of path graph. In this section,
we will investigate results about Tadpole graph and its Mycielski form. Tad-
pole graph is special planar graph which contains path and cycle graphs as a
subgraph. Therefore, results will be benefited from closeness of path and cycle
graphs.

Definition 13 Tadpole graph, denoted by Tn,m, is a graph obtained by iden-
tifying a vertex of the cycle graph Cn with a pendant vertex of the path graph
Pm. An example of the illustration of the Tadpole graph can be seen in Figure
2. Truszczynski called these graphs as Dragon [21] and Koh et. al called these
forms as Tadpole graphs [11].

Theorem 14 Let Tn,m be a Tadpole graph contains Cn and Pm. Closeness of
Tadpole graph in terms of n is:
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Figure 2: An illustration of a Tadpole graph.

� if n is odd:

C(Tn,m) = 2n(1−
1

2[n/2]
)+ (2m− 4+

1

2m−2
)+ 2(2− 22−

n+1
2 )(1−(

1

2
)m−1)

� if n is even:

C(Tn,m) = 2n(1−
1

2[n/2]
)+(2m−4+

1

2m−2
)+2(2−22−

n
2 +2−n/2)(1−(

1

2
)m−1).

Proof.Closeness of Tn,m can be think as three parts. Closeness of Cn and
closeness of Pm and closeness value which comes from relationship between
vertices in Cn and vertices in Pm, let it be denoted by C(Cn − Pm)

C(Tn,m) = C(Cn) + C(Pm) + 2C(Cn−Pm)

= 2n(1−
1

2[n/2]
) + (2m− 4+

1

2m−2
) + 2C(Cn− Pm).

Closeness of Pm and Cn are known [8]. It is need to find C(Cn−Pm). Assume
that, v1 is a vertex as intersection point of Cn and Pm. Let divide Cn into
exactly two pieces. However, form of division depends on whether n is odd or
even.

Case 1: Let n be even and labeling of Cn be {v1, v2, ..., vn}. Therefore, the
closeness of v1 in Cn can be calculated as

2

n/2∑
i=2

1

2i−1
+

1

2n/2
.
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Since, there are (n− 2)/2 symmetric vertices in Cn whose distance from v1 to
vi can be calculated as (i − 1) and there is one vertex whose distance from v1
is n/2.

Also, let vertices of Pm be labeled as {v1, v2, ..., vm}. Distance of vj, j = 2, ...m,
to v1 equal to

1

2j−1
(2

n/2∑
i=2

1

2i−1
+

1

2n/2
).

In general

m−1∑
j=1

1

2j
((2

n/2∑
i=2

1

2i−1
+

1

2n/2
)) = 2(2− 22−(n/2) + 2−n/2)(1−

1

2m−1
).

Case 2: Similarly it can be done for odd n values. Using same labeling as in
Case 1, the closeness of v1 in Cnis :

2

n+1/2∑
i=2

1

2i−1
.

Because of this, Cn can be divided into exact two equal part and distance from
v1 to vi ∈ V(Cn) can be calculated as (i− 1).

Also, distance of vj, j = 2, ...m, to v1 equal to

m−1∑
j=1

1

2j
.(2

n+1/2∑
i=2

1

2i−1
) = 2(2− 22−

n+1
2 )(1− (

1

2
)m−1)·

Therefore, we have

� if n is odd:

C(Tn,m) = 2n(1−
1

2[n/2]
)+ (2m− 4+

1

2m−2
)+ 2(2− 22−

n+1
2 )(1−(

1

2
)m−1)

� if n is even:

C(Tn,m) = 2n(1−
1

2[n/2]
)+(2m−4+

1

2m−2
)+2(2−22−

n
2 +2−n/2)(1−(

1

2
)m−1).

�
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In previous results, we had talked about closeness value of µ(Pn) and special
variant of Pn and Cn, named Tadpole graph. Similarly, we can ready to inves-
tigate Mycielski of Tadpole graph using the closeness result of µ(Pn) and Tn,m.
Mycielski of Tadpole graph Tn,m has 2(n +m) + 1 vertices and its diameter
always equal to 4 regardless from diam(Tn,m). However, C(µ(Tn,m)) should be
taken hand according to diameter of Tn,m.

Let V(µ(Tn,m)) be vertex set of Tn,m including V(Tn,m), V(T
′
n,m) and w.

Theorem 15 Let Tn,m be a Tadpole graph contains Cn and Pm and diam(Tn,m) <
4. Closeness of Mycielski of Tadpole graph is

C(µ(Tn,m)) = 3C(Tn,m) +
(n+m− 1)2 + 7(n+m− 1)

4
.

Proof. It can be acquired from Theorem 3. �

Before giving result about C(µ(Tn,m)) when diam(Tn,m) > 4, some use-
ful findings will be investigated in order to get rid of expressional burden of
C(µ(Tn,m)). In Mycielski graph, closeness value of some vertex pairs turns to 1

24

due to form of it. In order to calculate the value of C(µ(G)) when diam(G) > 4,
the closeness value of vertex pair with distance 5 or more should be removed
from C(G) and 1

24
should be added as the number of subtracted value instead.

Let total closeness value of the pair of vertices in Tn,m whose distance be-
tween them greater than 4 be excess closeness, denoted by Cex(Tn,m) and the
number of the vertex pair that has closeness value smaller than 1

24
, denoted

by |Vex(Tn,m)| .
Once it comes to calculating Cex(Tn,m) and |Vex(Tn,m)|, Tn,m can be thought

as being divided into two parts as upper and lower as illustrated in the Figure
3. Then, it can be examine in two cases.

Case 1: If n is odd then there is a path having m+ n−1
2 vertices on upper

side. Thus, (m+ n−1
2 −5)(m+ n−1

2 −4) pair of vertices with distance 5 or more
comes from the upper part. Because of repeated pair of vertices, the lower part
can be evaluated as

2.

(n−1)/2∑
i=1

(m+ i− 5) = (m− 5)(n− 1) + (
n2 − 1

2
).

Because of this, there are (n − 1)/2 vertices in lower part of cycle whose
distance can de greater or equal to 5 to vertices in Pm. Hence, if n is odd;

|Vex(Tn,m)| = (m+
n− 1

2
− 5)(m+

n− 1

2
− 4) + (m− 5)(n− 1) + (

n2 − 1

2
).
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U p p e r 
S i d e

L o w e r 
S i d e

Figure 3: A Tadpole graph divided into two parts

According to proof of Corollary 11, total closeness value of the pair of vertices
in Pk whose distance greater or equal than 5 had been calculated as

2

k−5∑
i=1

i

2k−i
=

2

2k−1
((k− 4)2k−5 − 2k−4 + 1).

Then, substitute m+ n−1
2 into k :

2

2m+n−1
2

−1
((m+

n− 1

2
− 4)2m+n−1

2
−5 − 2m+n−1

2
−4 + 1) (2)

obtained from upper side. In order to hinder repeated value coming from lower
part, it should be subtracted the value of Cex(Pm) from the value in equation
2

Cex(Pm) =
1

2m−2
((m− 4)2m−5 − 2m−4 + 1).

Therefore, we have

Cex(Tn,m) =
1

2m+n−1
2

−3
((m+

n− 1

2
− 4)2m+n−1

2
−5 − 2m+n−1

2
−4 + 1).

−
1

2m−2
((m− 4)2m−5 − 2m−4 + 1)

Case 2: If n is even then there is a path having m + n
2 vertices. Thus,

(m + n
2 − 5)(m + n

2 − 4) pair of vertices with distance 5 or more comes from
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the upper part. As in case 1, if we consider the repetitions as:

|Vex(Tn,m)| = (m+
n

2
− 5)(m+

n

2
− 4) + (m− 5)(n− 2) + (

n(n− 2)

2
).

Since n is even, we cannot divide Cn into two equal parts. Thus, we get

Cex(Tn,m) = Cex(Pm+n
2
) + Cex(Pm+n−2

2
) − Cex(Pm)

=
1

2m+n
2
−2

((m+
n

2
− 4)2m+n

2
−5 − 2m+n

2
−4 + 1)

+
1

2m+n−2
2

−2
((m+

n− 2

2
− 4)2m+n−2

2
−5 − 2m+n−2

2
−4 + 1)

−
1

2m−2
((m− 4)2m−5 − 2m−4 + 1).

Theorem 16 Let Tn,m be a Tadpole graph contains Cn and Pm and diam(Tn,m) >
4. Closeness of Mycielski of Tadpole graph is

C(µ(Tn,m)) = 3(C(Tn,m)−Cex(Tn,m)+
|Vex(Tn,m)|

24
)+

(n+m− 1)2 + 7(n+m− 1)

4
.

Proof. Let V(µ(Tn,m)) = {V(Tn,m), V(T
′
n,m), w} where copy of Tadpole graph

denoted by T ′n,m. According to form of Mycielski graph, it is known that diam(µ(Tn,m)) =
4. However, the diameter of Tn,m is greater than 4 in this case. Thus, we have

3C(Tn,m) +
(n+m− 1)2 + 7(n+m− 1)

4
< C(µ(Tn,m)).

Let vi, vj be vertices in Tn,m provided that distance between them greater than
4 in Tn,m. Therefore, the value of 2−d(vi,vj) turns into 2−4 in the µ(Tn,m). It is
also valid for copy vertices ui, uj in T ′n,m.

C(µ(Tn,m)) =

m+n−1∑
i=1

∑
j6=i
2−d(vi,vj) + 2

m+n−1∑
i=1

m+n−1∑
j=1

2−d(ui,vj)

+

m+n−1∑
i=1

∑
j6=i
2−d(ui,uj) + 2

m+n−1∑
i=1

2−d(w,ui) + 2

m+n−1∑
i=1

2−d(w,vi)

= 3

m+n−1∑
i=1

∑
j6=i
2−d(vi,vj) +

(n+m− 1)2 + 7(n+m− 1)

4
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Since, the distance d(vi, vj) = d(ui, vj) whenever i 6= j and d(ui, vi) = 2 =

d(ui, uj) and also d(w,ui) = 1 , d(w, vi) = 2. Whereas
m+n−1∑
i=1

∑
j6=i
2−d(vi,vj) is

equal to C(Tn,m), in Mycielski graph this value will be increased. Even so, the

value of
m+n−1∑
i=1

∑
j6=i
2−d(vi,vj) can be expressed in terms of C(Tn,m).

= 3(C(Tn,m) − Cex(Tn,m) +
|Vex(Tn,m)|

24
) +

(n+m− 1)2 + 7(n+m− 1)

4
.

�

3 Conclusion

In this article, closeness of Mycielski graph has taken into consideration de-
pending on diameter of original graph. For the case of diameter less than 4,
the outcome is expressed in terms of closeness of original graph. For special
graphs whose diameter less than 4, results calculated in [22] verified with our
expression. Furthermore, a sharp lower bound has provided case of diameter
greater than 4. This lower bound equal to closeness of Mycielskian of path,
calculated by us. In addition, closeness of Tadpole graph and its Mycielski
form is evaluated by utilizing closeness of path graph Pn, considering whether
n is even or odd.
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