
Acta Univ. Sapientiae Informatica 15, 2 (2023) 205–220

DOI: 10.2478/ausi-2023-0014

Average distance colouring of graphs

Priyanka PANDEY
CHRIST (Deemed to be University)

Bengaluru, India
email:

priyanka.pandey@res.christuniversity.in

Mayamma JOSEPH
CHRIST (Deemed to be University)

Bengaluru, India
email:

mayamma.joseph@christuniversity.in

Abstract. For a graph G with n vertices, average distance µ(G) is the
ratio of sum of the lengths of the shortest paths between all pairs of
vertices to the number of edges in a complete graph on n vertices. In
this paper, we introduce average distance colouring and find the average
distance colouring number of certain classes of graphs.

1 Introduction

For the present study, we consider a graph G = (V, E) with the set of ver-
tices denoted by V and the set of edges E. For terminology and notation not
defined here we refer to [1]. The distance between two vertices u and v de-
noted by d(u, v), is the length of the shortest u − v path, also called a u − v
geodesic. The distance between two vertices is considered as the base of the
definition of various graph parameters [3]. In this paper, we introduce average
distance colouring and obtain average distance colouring number for certain
classes of graphs. Note that the distance between two vertices becomes infi-
nite in disconnected graphs therefore, we consider only connected graphs for
our study. Although the value of the average distance [6] µ(G) of any graph
G depends on the sum of the distance between every pair of vertices, which
generally would keep changing with the change in n, interestingly, we can find
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a constant bound for the value of µ(G) for various graph classes. We use such
classes and study average distance colouring for the same. Before defining av-
erage distance colouring, we present the definition of average distance of graph
G as defined in [2]. For a graph G with n vertices, average distance µ(G) is the
ratio of sum of the lengths of the shortest paths between all pairs of vertices
to the number of edges in a complete graph on n vertices. This can also be
represented by the following equation.

µ(G) =
1(
n
2

) ∑
u,v∈V

d(u, v).

In our study, we focus on finding the exact value of µ(G) for certain classes
not studied before and use them to colour the related graphs. Note that all
graphs considered are connected and are of order at least two.

For a graph G with average distance µ(G), an average distance colouring of
G = (V, E) is defined as a function c from V to the set of non-negative integers,
such that for any v ∈ V, |c(v)−c(u)| ≥ 1 for all u such that d(u, v) ≤ dµ(G)e.
The minimum number of distinct colours required to colour any graph G such
that G admits average distance colouring is called average distance colouring
number, χµ, of G.

Example 1 Figure 1 shows the average distance colouring of graph G whose
µ(G) = 1.714.
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Figure 1: Average distance colouring of graph G with µ(G) = 1.714

From the definition, it follows that all graphs admit average distance colour-
ing. Also, average distance colouring is equivalent to chromatic colouring only
for graphs with diameter 1, i.e., complete graphs. Further, when k = dµ(G)e,
average distance colouring is equivalent to distance-k colouring [4, 5]. Before
we obtain the bounds and values for average distance colouring number for
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some specific classes of graphs, we obtain the relation between the value of χµ
of a graph G and its spanning subgraph H.

Observation 2 For a graph G and its spanning subgraph H, such that the
average distance of G is µ(G) and the average distance of its spanning subgraph
H is µ(H), µ(G) ≤ µ(H).

The reason is that the spanning subgraph of graph G on n vertices has a larger
value of average distance as the number of edges in the spanning subgraph of
the graph will be less as compared to the original graph, thus increasing the
distance between the pair of vertices joined by the deleted edge thus leading in
the increase of the value of numerator which eventually leads to the increase in
the value of average distance. From the above argument, we get the following
observation.

Observation 3 For two graphs G1 and G2 such that µ(G1) ≥ µ(G2),
χµ(G1) ≥ χµ(G2).

Theorem 4 For a graph G on n vertices with average distance µ(G), χµ = n
if and only if d = dµ(G)e where d denotes the diameter of G.

Proof. Consider a graph G with diameter d = µ(G). This implies that the
vertices are either distance 1 or 2 apart. In this case, the definition for average
distance colouring implies that the pair of vertices u and v at a distance at most
dµ(G)e should receive distinct colours. Since d = µ(G), the above statement
implies that the vertices at most distance d apart should get distinct colours
and each pair of vertices are at a distance at most d, Thus we require distinct
colours for each vertex.
Let G be a graph on n vertices with χµ = n and diameter d. We know
that c(u) 6= c(v) for all u, v ∈ V(G). This implies d(u, v) ≤ dµ(G)e for all
u, v ∈ V(G). Since d = max d(u, v) over all pairs of u, v ∈ V(G), d ≤ dµ(G)e.
Since every pair of vertex gets distinct colour, this implies that every pair of
vertices is at most dµ(G)e distance apart. We know d(u, v) ≤ d for all pairs
of u, v ∈ V(G), thus d ≥ dµ(G)e. Thus d = dµ(G)e. �

2 Average distance colouring of some classes of
graphs

In this section, we obtain the average distance colouring number of certain
classes of graphs and show the procedure to colour the same using average
distance colouring.
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Note that the average distance of any graph can only be one if and only if it
is a complete graph. For any graph G where G is not complete, µ(G) > 1. For a
complete graph Kn, all vertices are pairwise adjacent and for each v ∈ V(Kn),
|c(u) − c(v)| ≥ 1 for all u such that d(u, v) ≤ 1, it is easy to observe that
we require n distinct colours to colour the graph which can easily be attained
by colouring each vertex with different colours. This implies χµ(Kn) ≥ n. We
define function c such that c(vi) = i−1, for i = 1, 2, 3, ..., n giving χµ(Kn) ≤ n.
Using the function c defined above, we require colours 0, 1, 2, ..., n−1 to colour
any complete graph on n vertices, which leads to the following observation.

Observation 5 For a complete graph Kn, for n ≥ 2, χµ(Kn) = n.

Next, we consider paths and cycles and obtain the value for average dis-
tance colouring number χµ(G). Before obtaining the result on average distance
colouring, we require the following results.

Theorem 6 [2]The average distance of paths on n vertices

µ(Pn) =
n+ 1

3
.

Theorem 7 [2]The average distance of cycles on n vertices

µ(Cn) =


(n+ 1)

4
if n is odd, and

n2

4(n− 1)
if n is even.

Theorem 8 For path Pn on n vertices, n ≥ 3, χµ(Pn) =
⌈
n+ 1

3

⌉
+ 1.

Proof. Consider a path Pn with vertices labelled v1, v2, ..., vn. Using Theorem
6, the definition of average distance colouring reduces to the function c from
V to a set of non-negative integers such that for any v ∈ V, |c(u) − c(v)| ≥ 1

for all u such that d(u, v) ≤
⌈
n+ 1

3

⌉
. We define a colouring c such that
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c(vi) =



0 if i ≡ 1 (mod

⌈
n+ 1

3

⌉
+ 1)

1 if i ≡ 2 (mod

⌈
n+ 1

3

⌉
+ 1)

2 if i ≡ 3 (mod

⌈
n+ 1

3

⌉
+ 1)

...⌈
n+ 1

3

⌉
− 1 if i ≡

⌈
n+ 1

3

⌉
(mod

⌈
n+ 1

3

⌉
+ 1)⌈

n+ 1

3

⌉
if i ≡ 0 (mod

⌈
n+ 1

3

⌉
+ 1)

This function gives an average distance colouring with χµ(Pn) ≤
⌈
n+ 1

3

⌉
+ 1.

Due to average distance colouring constraint the vertices which are at distance⌈
n+ 1

3

⌉
from v1 cannot have same colour thus we require

⌈
n+ 1

3

⌉
+1 distinct

colour to colour any path of length n giving χµ(Pn) ≥
⌈
n+ 1

3

⌉
+ 1. Hence,

the result. �

Theorem 9 For cycles on n vertices,

χµ(Cn) ≤


⌈
(n+ 1)

4

⌉
+ 1+ r if n is odd, and⌈

n2

4(n− 1)

⌉
+ 1+ r if n is even.

where r is the remainder obtained after dividing n by dµ(Cn)e.

Proof. Consider a cycle Cn with n vertices ordered v1, v2, ..., vn such that vi
is adjacent to vi+1 for 1 ≤ i ≤ n− 1 and v1 adjacent to v1.
Using Theorem 7, the definition for average distance colouring reduces to a
colouring c such that |c(u) − c(v)| ≥ 1 for all u such that

d(u, v) ≤ dµ(Cn)e for every v ∈ V, where µ(Cn) =
(n+ 1)

4
if n is odd, and

µ(Cn) =
n2

4(n− 1)
if n is even.
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To colour the cycle, we will use the following function till a certain value of i
which is given in the following cases.

c(vi) =



0 if i ≡ 1 (mod dµ(Cn)e+ 1)

1 if i ≡ 2 (mod dµ(Cn)e+ 1)

2 if i ≡ 3 (mod dµ(Cn)e+ 1)

...

...

dµ(Cn)e− 1 if i ≡ µ(Cn) (mod dµ(Cn)e+ 1)

dµ(Cn)e if i ≡ 0 (mod dµ(Cn)e+ 1)

(1)

Further, we will consider the following cases.

Case 1: When n divided by dµ(Cn)e+ 1 leaves no remainder.
In this case, the function c defined as in Equation (1) is used for all 1 ≤ i ≤ n
thus, giving the average distance colouring of cycle with χµ ≤ dµ(Cn)e+ 1.

Case 2: When n divided by dµ(Cn)e+ 1 leaves a remainder.
In this case, we obtain the remainder (say r) after dividing n by dµ(Cn)e+ 1.
For 1 ≤ i ≤ n − r, we use function c defined as in Equation (1) to colour the
vertices. For the remaining r vertices, we define c given as in Equation (2)

c(vi) =



dµ(Cn)e+ 1 if i = n− r+ 1

dµ(Cn)e+ 2 if i = n− r+ 2

dµ(Cn)e+ 3 if i = n− r+ 3

...

...

dµ(Cn)e+ (r− 1) if i = n− r+ (r− 1)

dµ(Cn)e+ (r) if i = n− r+ (r)

(2)

which gives χµ ≤ µ(Cn) + r+ 1.
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On substituting the value of µ(Cn) for odd and even number of vertices we
get,

χµ(Cn) ≤


⌈
(n+ 1)

4

⌉
+ 1+ r if n is odd, and⌈

n2

4(n− 1)

⌉
+ 1+ r if n is even.

�

For the next result, we consider complete bipartite graphs. The following
result gives the χµ of complete bipartite graph Kr,s.

Theorem 10 For a complete bipartite graph Kr,s, χµ(Kr,s) = r+ s.

Proof. Consider a complete bipartite graph Kr,s with two partite sets A and
B consisting of r and s vertices respectively. The vertices in A and B can be
ordered as v1, v2, v3, ..., vr and u1, u2, u3, ..., us respectively. Vertices in the dif-

ferent partite sets are distance one apart, therefore
r∑
i=1

d(v1, ui) = s. Similarly,

for r vertices in A we get ∑
1≤i≤r
1≤j≤s

d(vi, uj) = rs. (3)

Also, vertices in the same partite set are distance two apart, therefore, on
considering partite set A we obtain

r∑
i=2

d(v1, vi) = 2(r− 1)

r∑
i=3

d(v2, vi) = 2(r− 2)

...
r∑

i=r−1

d(vr−2, vi) = 2(2)

r∑
i=r

d(vr−1, vi) = 2(1)



(4)

Adding all the equations in Expression (4),∑
u,v∈V(A)

d(u, v) = 2{1+ 2+ ...+ (r− 1)} = r(r− 1). (5)
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Similarly, for partite set B∑
u,v∈V(B)

d(u, v) = 2{1+ 2+ ...+ (s− 1)} = s(s− 1). (6)

Adding Equations (3), (5), and (6), we obtain∑
u,v∈V(G)

d(u, v) = rs+ r(r− 1) + s(s− 1). (7)

Given that the total number of vertices in Kr,s = r + s, and by the definition
of average distance of graph, we get

µ(Kr,s) =
2(rs+ r(r− 1) + s(s− 1))

(r+ s)(r+ s− 1)
. (8)

Next, we claim that for r, s ≥ 1, µ(Kr,s) ≤ 2.
If possible, let µ(Kr,s) > 2.

2(rs+ r(r− 1) + s(s− 1))

(r+ s)(r+ s− 1)
> 2

=⇒ 2(r+ s)(r+ s− 1) − 2(rs+ r(r− 1) + s(s− 1))

(r+ s)(r+ s− 1)
< 0.

On simplification, we get rs < 0 which is a contradiction since r and s are
greater than 0. Therefore, µ(Kr,s) ≤ 2.

Hence, it reduces the definition of average distance colouring as the function
c from V to a set of non-negative integers such that for any v ∈ V, |c(u) −
c(v)| ≥ 1 for all u such that d(u, v) ≤ 2. For a complete bipartite graph, every
pair of vertices is either distance one or two apart which implies that the
colour given to each vertex must be unique, giving χµ(Kr,s) ≥ r + s. Further,
this can be attained by using the following colouring c defined by c(vi) = i−1
for 1 ≤ i ≤ r and c(ui) = c(vr) + i for 1 ≤ i ≤ s given for graph Kr,s with
vertices of first and second partite set labelled as v1, v2, ..., vr and u1, u2, ..., us
respectively. The above function c gives χµ(Kr,s) ≤ r + s,thus proving that
χµ(Kr,s) = r+ s.

�

For the next result, we consider a unicyclic graph Sk+ e obtained by adding a
single edge between two pendant vertices of the star graph Sk shown in Figure
2.



Average distance colouring of graphs 213
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Figure 2: Graph Sk + e

Theorem 11 For a graph obtained by joining the two pendant vertices of the
star by an edge, Sk + e, χµ(Sk + e) = k+ 1.

Proof. Consider a graph Sk+e with its vertices labelled as follows. Let the cen-
tral vertex be labelled as v and the pendant vertices be labelled as v1, v2, ..., vk
and the edge e is drawn between the vertices labelled vk−1 and vk. The sum
of the distance from vertex v1 to other vertices given by t1 is given by the
following equation.

t1 = 2(k− 1) + 1. (9)

Similarly, the sum of the distance from vertex v2 to other vertices given by t2
is

t2 = 2(k− 2) + 1. (10)

On generalising Equations (9) and (10), we get the sum of distance from
vertices v1, v2, ..., vk−2 to other vertices denoted by tm for 1 ≤ m ≤ k − 2

respectively. Therefore
k−2∑
i=1

tm = 2 [(k− 1) + (k− 2) + ....+ 2] + k − 2 which

can be further simplified to
(
k2 − 4

)
.

Further, the sum of distance between the vertices of the triangle formed by
vertices v, vk−1 and vk will be 3. Therefore, the sum of distance between any
two pair of vertices is ∑

u,v∈V
d(u, v) = k2 − 1
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Given that the total number of vertices in Sk+e = k+1, and by the definition
of average distance of graph, we get

µ(Sk + e) =
2(k2 − 1)

k(k+ 1)
.

Next, we claim µ(Sk + e) ≤ 2. If possible, let µ(Sk + e) > 2.

=⇒ 2(k2 − 1)

k(k+ 1)
> 2

=⇒ k < k− 1.

which is impossible. Therefore, µ(Sk+e) ≤ 2. Using the above inequation, the
definition of average distance colouring reduces to the function c from V to
set of non-negative integers such that for any v ∈ V, |c(u)− c(v)| ≥ 1 for all u
such that d(u, v) ≤ 2. Since the diameter of the graph is 2, we know that each
vertex should get a distinct colour to satisfy the given constraint for colouring
giving χµ(Sk+ e) ≥ k+ 1. This can be obtained by using the function c which
assigns integers to the vertices of the graph defined by c(vi) = i − 1 for the
vertices of the graph labelled v1 and v2, v3, ..., vk+1 representing the central
vertex and pendant vertices respectively with an edge drawn between each vi
for 2 ≤ i ≤ k + 1 and v1. Also, there exists an edge between v2 and v3. Since
the total number of vertices of the graph is k + 1, χµ(Sk + e) ≤ k + 1. Hence
the result.

�

On further increasing the number of partitions of vertices from two to r such
that no two vertices in the same partition have an edge, we get a complete
multipartite graph. In the next result, we obtain the value for χµ for a complete
multipartite graph.

Theorem 12 For a complete multipartite graph Km1,m2,...,mr,

χµ(Km1,m2,...,mr) = m1 +m2 + ...+mr.

Proof. Consider a complete multipartite graph G with r partite sets namely
A1, A2, ..., Ar such that |Ai| = mi for 1 ≤ i ≤ r. Vertex in Ai partite set is
given by {vi1, vi2, ..., vimi

} for 1 ≤ i ≤ r.
Using the fact that the vertices in the same partite set are distance 2 apart,
for the partite set A1, we get∑

u,v∈V(A1)

d(u, v) = 2(1+ 2+ ...+ (m1 − 1)).
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In general, the sum of distances between vertices belonging to the same partite
set is given as∑

u,v∈V(Ai)

d(u, v) = 2(1+ 2+ ...+ (mi − 1)), for 1 ≤ i ≤ r.

Also, vertices belonging to different partite sets are distance 1 apart, there-
fore the sum of the distance from any vertex of A1 to vertices of partite set
A2, A3, ...Ar is given by m1(m2+m3+m4+ ...+mr). Similarly, the sum of the
distance from any vertex of Ai to vertices of other partite sets Ai+1, Ai+2, ...Ar
is given by mi(mi+1 +mi+2 + ...+mr).
Therefore, the sum of distances between vertices belonging to the same partite
set for Km1,m2,...,mr is given by (say s1)

s1 = m1(m1 − 1) +m2(m2 − 1) + ...mr(mr − 1) (11)

and the sum of the distance between vertices taken from a different partite set
is given by (say s2)

s2 = m1(m2 +m3 + ...+mr) +m2(m3 +m4 + ...+mr) + ...+mr−1mr.

(12)

Adding Equations (11) and (12), we get∑
u,v∈V(G))

d(u, v) = m1(m1 − 1) +m2(m2 − 1) + ...+mr(mr − 1)

+m1(m2 +m3 + ...+mr)

+m2(m3 +m4 + ...+mr) + ...+mr−1mr (13)

which can be simplified to∑
u,v∈V(G))

d(u, v) = (m2
1 +m

2
2 + ...+m

2
r) − (m1 +m2 + ...+mr)

+
∑

1≤i≤r−1
mimi+1 +mimi+2 + ...+mimi+(r−i).

(14)

Since the number of vertices in a complete multipartite graph is m1 +m2 +
...+mr, we get

µ(Km1,m2,...,mr) = 2
(m2

1 +m
2
2 + ...+m

2
r) − (m1 +m2 + ...+mr)

(m1 +m2 + ...+mr)(m1 +m2 + ....+mr − 1)

+2

∑r−1
i=1(mimi+1 +mimi+2 + ...+mimi+(r−i))

(m1 +m2 + ...+mr)(m1 +m2 + ....+mr − 1)
.
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We claim that for r ≥ 2 and n ≥ 2, value of µ(Km1,m2,...,mr) ≤ 2.
If possible, let µ(Km1,m2,...,mr) > 2.
=⇒ 2− µ(Km1,m2,...,mr) < 0

2− 2
(m2

1 +m
2
2 + ...+m

2
r) − (m1 +m2 + ...+mr)

(m1 +m2 + ...+mr)(m1 +m2 + ....+mr − 1)

+ 2

∑r−1
i=1(mimi+1 +mimi+2 + ...+mimi+(r−i))

(m1 +m2 + ...+mr)(m1 +m2 + ....+mr − 1)
< 0.

Since for all 1 ≤ i ≤ r, mi ≥ 1 therefore, the denominator is always greater
than 0. Therefore, multiplying both side by (m1 +m2 + ...+mr)(m1 +m2 +
....+mr − 1), and expanding the summation we get
2(m1+m2+...+mr)(m1+m2+...+mr−1)−2(m

2
1+m

2
2+...+m

2
r)+2(m1+m2+

...+mr)−2m1(m2+m3+...+mr)−2m2(m3+m4+...mr)−...−2mr−1(mr) < 0.
On solving the above inequation, we get
2(m1+m2+...+mr)+m2m1+m3m1+m3m2+...+mrm1+mrm2+..+mrmr−2 <

0. Since each of mi for 1 ≤ i ≤ r is greater than zero, the above in equation is
not possible. Therefore, µ(Km1,m2,...,mr) ≤ 2.

The above arguments reduce the definition of average distance colouring
as the function c from V to a set of non-negative integers such that for any
v ∈ V, |c(u) − c(v)| ≥ 1 for all u such that d(u, v) ≤ 2. For a complete
multipartite graph, every pair of vertices is either distance one or two apart,
which implies that the colour given to each vertex must be unique giving
χµ(Km1,m2,...,mr) ≥ m1+m2+...+mr. This bound can be achieved by colouring
the vertices of the graph using the function c defined as follows c(vi) = i − 1
for 1 ≤ i ≤ m1 + m2 + ... + mr where the vertices of mth

j partite set are
labelled vm1+m2+..+mj−1+1, vm1+m2+..+mj−1+2, ..., vm1+m2+..+mj−1+mj

for 2 ≤ j ≤
r and vertices of the first partite set are labelled v1, v2, ..., vm1

which gives
χµ(Km1,m2,...,mr) ≤ m1 +m2 + ...+mr. Hence the result. �

For the next result, we consider double star Bs,t such that s ≤ t with s and
t number of pendant vertices as shown in Figure 3. In this case, the diameter
of the graph considered for study has a diameter of three.
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vt+1

v1

v2

vt

us+1

u1

u2

us

Figure 3: Double star Bs,t

Theorem 13 For a double star Bs,t, with s and t number of pendant number
of vertices,

χµ(Bs,t) =

(t+ 2) for

{
s = 1 and t ≥ 1 or t = 1 and s ≥ 1
s = 2 and t = 3

s+ t+ 2 otherwise.

Proof. Consider a double star Bs,t with vertices labelled as shown in Figure 3.
Note that the structure of the graph is symmetric, we consider only one of the
cases to prove the result by assuming s ≤ t. Using the result of complete bipar-
tite graph, we get the sum of distances between vertices {u1, u2, ..., us, us+1}

(say sum1).
sum1 = (s+ s(s− 1)) (15)

Similarly, sum of distances between the vertices {v1, v2, ..., vt, vt+1} (say sum2)
is given by the following equation.

sum2 = (t+ t(t− 1)). (16)

Also, ∑
1≤i≤s

d(ui, vt+1) = 2s. (17)

Similarly, ∑
1≤i≤t

d(us+1, vi) = 2t. (18)
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Also, note that
d(us+1, ut+1) = 1 (19)

.
Now, the distance between any two vertices each taken from set {u1, u2, ..., us}
and {v1, v2, ..., vt} is 3. This gives the following set of equations.∑

1≤i≤t
d(u1, vi) = 3t∑

1≤i≤t
d(u2, vi) = 3t

...∑
1≤i≤t

d(us, vi) = 3t


(20)

Adding equations from (15) to (20) we get,∑
u,v∈V(Bs,t)

d(u, v) = s+ s(s− 1) + t+ t(t− 1) + 2(s+ t) + 3st+ 1.

Since the total number of vertices in double star Bs,t is s+ t+ 2, we obtain

µ(Bs,t) =
2(s2 + t2 + 3st+ 2s+ 2t+ 1)

(s+ t+ 2)(s+ t+ 1)
.

Next, We examine the value of s and t for which µ(Bs,t) ≤ 2.

2(s2 + t2 + 3st+ 2s+ 2t+ 1)

(s+ t+ 2)(s+ t+ 1)
≤ 2

On simplification we get,

s+ t+ 1 ≥ st

It is easy to verify that the above inequation holds true in the following two
cases.

Case 1: When either s or t is equal to 1 and the other variable assumes any
value greater than or equal to 1.

Case 2: When one of the variables is equal to two and the other is equal
to three. To colour the double star for the above cases, we consider a double
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star with vertices u1, u2, ...us+1, v1, v2, ...vt+1 as shown in Figure 3. We know
µ(Bs,t) ≤ 2 reducing the definition of average distance colouring as the function
c from V to set of non-negative integers such that for any v ∈ V, |c(u)−c(v)| ≥
1 for all u such that d(u, v) ≤ 2.

Subcase 1: When s < t.
We define a colouring c such that c(vt+1) = 0, c(vi) = i for 1 ≤ i ≤ t.

Further, c(us+1) = (t+ 1) given that d(us+1, vt) = 2 and c(ui) = i for 1 ≤ i ≤
s. This function gives the same set of colours to pendant vertices and since
we know s < t, we have t distinct colours assigned. Also, vt+1 and us+1 get
different colour by using the above-defined function. Thus, χµ ≤ t+ 2.
Since double star consists of two stars with two non-pendant vertices joined
by an edge, using Theorem 10, we require minimum t + 2 colours knowing
s < t giving χµ ≥ t+ 2. Thus, χµ = t+ 2.

Subcase 2: When s = t = 1.
In this case, we get a P4, which requires 3 distinct colours to colour

it with average distance colouring protocol. This is attained by colouring four
consecutive vertices with colours 1, 0, 2, 1.

For the remaining values of s and t, µ(Bs,t) > 2, which implies that we
require s+ t+ 2 colours using Theorem 4. �

Further, we consider a graph obtained by joining k-copies of Ks with one
common vertex termed windmill graph.

3 Conclusion

In this paper, we have considered the average distance of the graph which gives
the approximate distance between any two vertices in the graph and introduce
the concept of average distance colouring of graphs. We study average distance
colouring number χµ(G) for certain networks. We have already worked on
the condition where a graph would require n distinct colours for it to admit
average distance colouring. It would be interesting to identify the bound for k
characterise graphs with χµ(G) = k where k is any positive integer.
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