

DOI: 10.2478/ausi-2023-0012

On connectivity of the semi-splitting block graph of a graph

Nivedha BASKAR

CHRIST(Deemed to be University)
Bengaluru, India
email: nivedha.b@res.christuniversity.in

Tabitha Agnes MANGAM

CHRIST(Deemed to be University)
Bengaluru, India
email:

tabitha.rajashekar@christuniversity.in

Mukti ACHARYA

CHRIST(Deemed to be University)
Bengaluru, India
email: mukti1948@gmail.com

Abstract. A graph G is said to be a semi-splitting block graph if there exists a graph H such that $S_B(H) \cong G$. This paper establishes a characterisation of semi-splitting block graphs based on the partition of the vertex set of G. The vertex (edge) connectivity and p-connectedness (p-edge connectedness) of $S_B(G)$ are examined. For all integers $\mathfrak{a},\mathfrak{b}$ with $1<\mathfrak{a}<\mathfrak{b}$, the existence of the graph G for which $\kappa(G)=\mathfrak{a},\kappa(S_B(G))=\mathfrak{b}$ and $\lambda(G)=\mathfrak{a},\lambda(S_B(G))=\mathfrak{b}$ are proved independently. The characterization of graphs with $\kappa(S_B(G))=\kappa(G)$ and a necessary condition for graphs with $\kappa(S_B(G))=\lambda(S_B(G))$ are achieved.

1 Introduction

Graph theory has a wide range of applications in communication networks. An interconnection network can be represented as a simple connected graph

Key words and phrases: semi-splitting block graph of a graph, vertex connectivity, edge connectivity

G = (V, E), where V represents the set of memory modules and E represents the communication links. The vertex cut of a graph G is the set of vertices whose removal gives a disconnected or trivial graph. The minimum cardinality of the vertex cut of the graph is called the vertex connectivity of the graph G, denoted by $\kappa(G)$. If $G - \nu$ has more than one component then ν is a cut vertex of G. A maximal connected subgraph of the graph G which has no cut vertex is called a block of G. The edge cut of a graph G is the set of edges whose removal gives a disconnected graph. The minimum cardinality of the edge cut of the graph is called the edge connectivity of the graph G, denoted by $\lambda(G)$. A graph G is p-connected (p-edge connected) if $\kappa(G) \geq p$ ($\lambda(G) \geq p$).

Many results have been established regarding the connectivity of simple graphs, derived graphs and digraphs over many decades. This paper focuses on analyzing a derived graph's vertex(edge) connectedness, defined in [4], which is stated as follows.

Definition 1 The semi-splitting block graph $S_B(G)$ of a graph of order n is a graph with $V(S_B(G)) = V(G) \cup V_1(G) \cup B(G)$, where $V(G) = \{v_i \mid 1 \le i \le n\}$,

$$V_{1}(G) = \{u_{i} \mid 1 \leq i \leq n, v_{i} \in V(G)\},\$$

 $B(G) = \{b_l \mid 1 \le l \le k, B_l \text{ is a block in } G\}.$

$$E\left(S_{B}\left(G\right)\right) = \begin{cases} \nu_{i}\nu_{j} \mid 1 \leq i, j \leq n, \nu_{i}\nu_{j} \in E\left(G\right) \\ u_{i}\nu_{j} \mid 1 \leq i, j \leq n, \nu_{i}\nu_{j} \in E\left(G\right) \\ \nu_{i}b_{l} \mid 1 \leq i \leq n, 1 \leq l \leq k, \nu_{i} \in B_{l} \text{ in } G \end{cases}$$

 $\mathit{where}\ \nu_{i},\nu_{j}\in V\left(\mathsf{G}\right),\ u_{i}\in V_{1}\left(\mathsf{G}\right)\ \mathit{and}\ b_{l}\in B\left(\mathsf{G}\right).$

Since every edge is a block in a tree, the graph P_3 has 2 blocks say, $B_1 = \{v_1, v_2\}$ and $B_2 = \{v_2, v_3\}$. Figure 1, shows the semi-splitting block graph of P_3 .

The study on the planarity of $S_B(G)$ has been carried out extensively in [4]. The scope of this paper is limited to simple, finite and undirected graphs. For terminology in graph theory, refer to [1, 2, 3].

2 Structural properties of $S_B(G)$

In this section, the structural properties of semi-splitting block graph of a graph are examined. If G is a disconnected graph with non trivial components G_1, G_2, \ldots, G_m , then $S_B(G)$ has $S_B(G_1), S_B(G_2), \ldots, S_B(G_m)$ as its components.

Figure 1: P_3 and $S_B(P_3)$

Theorem 2 Let $S_B(G)$ be the semi-splitting block graph of G of order n, $n \geq 2$, and k blocks. Then,

- $\mathit{(i)}\ \mathit{For\ each}\ u_{i}\in V_{1}\left(\mathsf{G}\right),\ deg_{S_{B}\left(\mathsf{G}\right)}\ \left(u_{i}\right)=deg_{G}\ \left(\nu_{i}\right),\ \nu_{i}\in V\left(\mathsf{G}\right),\ 1\leq i\leq n,$
- (ii) For each $b_l \in B(G)$, $deg_{S_B(G)}(b_l) = |V(B_l)|$, where $1 \le l \le k$ and $V(B_l) \subset V(G)$,
- (iii) For each $\nu_i \in V(G)$, $deg_{S_B(G)}(\nu_i) = 2 deg_G(\nu_i) + s$, where s is the number of blocks containing ν_i in G and $1 \le i \le n$.

Proof. Clearly, $N_{S_B(G)}(\nu_i) = N_G(\nu_i) \cup \{u_j : \nu_j \in N_G(\nu_i)\} \cup \{b_l : \nu_i \in B_l \text{ in } G\}$. $N_{S_B(G)}(u_i) = \{\nu_j : \nu_j \in N_G(\nu_i)\}$ and $N_{S_B(G)}(b_l) = V(B_l)$, where $V(B_l) \subset V(G)$. Hence the theorem follows.

Corollary 3 For a non-cut vertex ν_m of the graph G, $deg_{S_B(G)}(\nu_m) = 2 deg_G(\nu_m) + 1$.

Corollary 4 If G is a block of order $n, n \ge 2$, then

- (i) For each $v_i \in V\left(G\right)$, $deg_{S_B\left(G\right)}\left(v_i\right) = 2 \ deg_G\left(v_i\right) + 1, \ 1 \leq i \leq n,$
- (ii) For $b_1 \in B(G)$, $deg_{S_B(G)}(b_1) = n$.

Remark 5 $S_B(G)$ is always non-regular, for any graph G, for all $v_i \in V(G)$, $deg_{S_B(G)}(v_i) > deg_{S_B(G)}(u_i)$, $1 \le i \le n$.

The characterization of semi-splitting block graph based on the partition of the vertex set of the graph is given in the following theorem. **Theorem 6** The following statements are equivalent.

- 1. A graph G of order n is a semi-splitting block graph.
- 2. The vertex set of a graph G can be partitioned into three subsets namely V_1, V_2, V_3 such that
 - (a) i. There is a bijective mapping $f: V_1 \to V_2$ such that $f(v_1) = v_2$, where $v_1 \in V_1, v_2 \in V_2$.
 - *ii.* $N(v_2) = N(v_1) \cap V_1$
 - (b) For each $v_3 \in V_3$, $< N(v_3) >$ is a block of $< V_1 >$.

Proof. (1) \Longrightarrow (2). Let G be a semi-splitting block graph of order n. Then for some H, G \cong S_B(H). By definition, adjacency between two vertices in S_B(H) is as follows:

- I. adjacent vertices in H are adjacent in $S_B(H)$.
- II. for each vertex v_i of V(H), a new vertex u_i being adjacent to $N_H(v)$ is added.
- III. for each block in H, a new vertex b_1 adjacent to all the vertices of the respective block is added.

Let $V_1 = V\left(H\right),\ V_2 = \{u_i\}_{i=1}^{|V(H)|}\ \mathrm{and}\ V_3 = \{b_l\}_{l=1}^k.$ For each $\nu_i \in V_1$, let $u_i \in V_2$ be the corresponding new vertex added in $S_B\left(H\right)$. Then, $f:V_1 \to V_2$ is a bijective mapping such that $f(\nu_i) = u_i$ and $N\left(u_i\right) = N\left(\nu_i\right) \cap V_1$. Since, each $b_l \in V_3$ is adjacent only to vertices of the corresponding block, $N\left(b_l\right) = B_l$, where $1 \le l \le k$ and B_l is a unique block of $< V_1 >$.

(2) \Longrightarrow (1). Suppose (2) is true. Let $H = < V_1 >$. Then, $G \cong S_B(H)$. Therefore, G is a semi-splitting block graph.

Hence the theorem. \Box

Theorem 7 For any graph G of order n, $n \ge 2$, with k blocks, $\delta(S_B(G)) = \min\{|V(B_1)|, \delta(G)\}$, where B_1 , $1 \le l \le k$ is a block of G.

Proof. It is evident from Theorem 2 that in $S_B(G)$, for any $\nu_i \in V(G)$, $deg(u_i) = deg_G(\nu_i)$ and $deg(\nu_i) > 2 deg_G(\nu_i)$. The following cases are considered.

Case 1 Suppose G is a block. By Corollary 4, $deg(b_1) = n > \delta(G)$ in $S_B(G)$. Therefore, $\delta(S_B(G)) = \delta(G)$.

Case 2 Suppose G is not a block. Then there exist at least two blocks in G. This implies that $|V(B_l)| \ge 2$, for $1 \le l \le k$ and $k \ge 2$. Thus, $\delta(S_B(G)) = \min\{\delta(G), |V(B_l)|\}$.

Therefore, it inferred that, $\delta(S_B(G)) = \min\{\delta(G), |V(B_l)|\}$. Hence the theorem.

Corollary 8 For any graph G, $\delta(S_B(G)) = \delta(G)$ if and only if G is a block or G is not a block with $|V(B_l)| \ge \delta(G)$ for all $1 \le l \le k$.

Corollary 9 For integers a, b with a > b > 1, there exists a graph G with $\delta(G) = a$ and $\delta(S_B(G)) = b$ if and only if there exists at least one block B_1 in G whose $|V(B_1)| < \delta(G)$, where $1 \le l \le k$.

3 Connectedness of $S_B(G)$

In this section, the vertex (edge) connectedness of semi-splitting block graph of a connected graph is examined. Let $\nu_{\alpha} \in V(G)$ such that $deg(\nu_{\alpha}) = \delta(G)$. Since, $\kappa(G) \leq \lambda(G) \leq \delta(G)$, $N(\nu_{\alpha}) = \{\nu_s | 1 \leq s \leq \delta(G)\}$ is a vertex cut of G and $Y = \{(\nu_{\alpha}, \nu_s) | \nu_s \in N(\nu_{\alpha})\}$ is an edge cut in G.

Theorem 10 If G is a block with $deg(\nu_a) = \delta(G)$, then the following statements are true in $S_B(G)$.

- 1. $N(u_0)$ is a vertex cut.
- 2. $Y' = \{(u_{\alpha}, v_s) | v_s \in N_G(v_{\alpha})\}$ is an edge cut.

Proof. Consider G to be a block such that $deg(v_{\alpha}) = \delta(G)$. By Theorem 2 and Corollary 8, $deg(u_{\alpha}) = \delta(S_B(G))$. As $\kappa(S_B(G)) \leq \lambda(S_B(G)) \leq \delta(S_B(G))$ and $N(u_{\alpha}) = N_G(v_{\alpha})$, $N(u_{\alpha})$ is a vertex cut and $Y' = \{(u_{\alpha}, v_s) | v_s \in N(u_{\alpha})\}$ is an edge cut in $S_B(G)$.

Hence the theorem. \Box

Let $S = \{v_j | 1 \le j \le t\}$ be a minimum vertex cut of G. As G is an induced subgraph of $S_B(G)$, S is the subset of a vertex cut of $S_B(G)$. The following theorem gives the vertex connectivity of $S_B(G)$.

Theorem 11 For a connected graph G with order n, $n \geq 2$,

$$\kappa(S_B(G)) = \begin{cases} \min\{\delta(G), 2\kappa(G) + 1\} & \text{when } G \text{ is a block} \\ \min\{2, \delta(G)\} & \text{otherwise} \end{cases}$$

Proof. Let G be a connected graph of order $n \geq 2$. The following cases are considered:

Case 1 Suppose G is not a block.

Let ν_c be a cut vertex in G. In $S_B(G)$, the vertices of $N_G(\nu_c)$ are adjacent to ν_c and u_c . Thus, u_c is the cut vertex in $S_B(G)$ if and only if ν_c is a pendant vertex in G. In all other cases, removing the vertices $\{\nu_c, u_c\}$ disconnects the graph $S_B(G)$. Thus, $\kappa(S_B(G)) = 1$, if $\delta(G) = 1$ and $\kappa(S_B(G)) = 2$, otherwise. Hence, $\kappa(S_B(G)) = \min\{2, \delta(G)\}$.

Case 2 Suppose G is a block.

In $S_B(G)$, there exists exactly one block vertex b_1 adjacent to all the vertices of G. Thus, $S' = S \cup \{u_j, b_1 | 1 \le j \le t\}$ and by Theorem 10, $N(u_\alpha)$ are vertex cuts in $S_B(G)$. Here, $|S'| = 2\kappa(G) + 1$ and $|N(u_\alpha)| = \delta(S_B(G)) = \delta(G)$. Hence, $\kappa(S_B(G)) = \min\{\delta(G), 2\kappa(G) + 1\}$.

Hence the theorem. \Box

Corollary 12 For a connected graph G, $\kappa(S_B(G)) = \kappa(G)$ if and only if $\kappa(G) = \delta(G)$.

Proof. Suppose $\kappa(G) = \delta(G)$.

Suppose G is a block. As $\delta(G) < 2\delta(G) + 1$, by Theorem 11, $\kappa(S_B(G)) = \delta(G) = \kappa(G)$. If G is not a block, then $\kappa(G) = 1$. By Theorem 11, $\kappa(S_B(G)) = \delta(G) = \kappa(G)$. The converse can also be proved in the same manner. Hence the theorem.

The following theorem gives the necessary and sufficient condition for the existence of a graph whose vertex connectivity is $\mathfrak a$ and the vertex connectivity of its $S_B(G)$ is $\mathfrak b$, for all $\mathfrak a$, $\mathfrak b$ such that $1<\mathfrak a<\mathfrak b$.

Theorem 13 For integers a, b with 1 < a < b, there exists a graph G with $\kappa(G) = a$ and $\kappa(S_B(G)) = b$ if and only if $b \le 2a + 1$.

Proof. Assume that $b \le 2a + 1$. Consider G_1 and G_2 as any two connected block graphs each of minimum degree b. The following assumptions are made.

- 1. $V(G_1) = \{v_{1_r} | 1 \le r \le s, s > b\}$ and $V(G_2) = \{v_{2_w} | 1 \le w \le t, t > b\}.$
- 2. Let $deg(v_{x_u}) = b$, where $v_{x_u} \in V(G_1 \cup G_2)$.

The graph G is formed from G_1 and G_2 by adding (ν_{1_q},ν_{2_q}) new edges such that $\nu_{1_q},\nu_{2_q}\neq\nu_{x_y}$ and $1\leq q\leq \alpha$. Here, G is a block with $deg(\nu_{x_y})=b$. The removal of vertices $\nu_{1_q},\ 1\leq q\leq \alpha$, disconnects the graph G. Thus, $X=\{\nu_{1_q}|1\leq q\leq \alpha\}$ and $N_G(\nu_{x_y})$ are the vertex cuts of G which implies, $\kappa(G)=\min\{|X|,|N_G(\nu_{x_y})|\}$. As $|X|=\alpha$ and $|N_G(\nu_{x_y})|=b>\alpha$, we get $\kappa(G)=|X|=\alpha$. Hence, $X'=X\cup\{u_{1_q},b_1|1\leq q\leq \alpha\}$ and by Theorem 10, $N(u_{x_y})$ are the vertex cuts in $S_B(G)$, where $deg(u_{x_y})=\delta(S_B(G))$. Therefore, $\kappa(S_B(G))=\min\{|X'|,|N(u_{x_y})|\}$. Since, $|X'|=2\alpha+1$ and $|N(u_{x_y})|=b\leq 2\alpha+1$, we conclude that $\kappa(S_B(G))=b$.

On the contrary, consider $b>2\alpha+1$. Let G be a graph as defined above, then $\kappa(G)=\alpha$ and $\kappa(S_B(G))=\min\{|X'|,|N(u_{x_y})|\}$. Here, $|X'|=2\alpha+1$ and $|N(u_{x_y})|=b>2\alpha+1$, which implies that $\kappa(S_B(G))=2\alpha+1$. Therefore, $\kappa(S_B(G))\neq b$.

Hence the theorem.

Let $\lambda(G) = t$, i.e., $T = \{(\nu_e, \nu_f) | (\nu_e, \nu_f) \in E(G), e \neq f\}$ be a minimum edge cut of G. Since G is an induced subgraph of $S_B(G)$, T is the subset of an edge cut of $S_B(G)$. The edge connectivity of $S_B(G)$ is discussed in the next theorem.

Theorem 14 For a connected graph of order $n, n \geq 2$,

- 1. If G has a bridge, then $\lambda(S_B(G)) = \min\{2, \delta(G)\}.$
- 2. If G is a block, then $\lambda(S_B(G)) = \delta(G)$.

Proof. Let G be a connected graph with $n \geq 2$. The following cases are considered:

Case 1 Suppose G has a bridge.

Let $e_m = \{\nu_g, \nu_h\}$ be a bridge. As every bridge is a block, let B_m be a block with $V(B_m) = \{\nu_g, \nu_h\}$. Thus, $U = \{(b_m, \nu_g), (b_m, \nu_h)\}$ is an edge cut in $S_B(G)$, where $b_m \in V(S_B(G))$ and |U| = 2. By Theorem 7, e_m is a bridge in $S_B(G)$ if and only if $\delta(G) = 1$, which implies that $\lambda(S_B(G)) = 1$, when $\delta(G) = 1$. Suppose $\delta(G) \geq 2$, then $\delta(S_B(G)) \geq 2$. Hence, U is the minimum edge cut in $S_B(G)$, for $\delta(G) \geq 2$. Therefore, it is concluded that $\lambda(S_B(G)) = \min\{2, \delta(G)\}$.

Case 2 Suppose G is a block.

Then, $\lambda(G) \geq 2$. In $S_B(G)$, b_1 is the only block vertex such that $|N(b_1)| = n$. Thus, $T' = T \cup \{(u_e, v_f), (v_e, u_f), (b_1, v_i) | 1 \leq i \leq n \}$ and by Theorem 10, $Y' = \{(u_a, v_k) | v_k \in N_G(v_a) \}$ are edge cuts in $S_B(G)$. Hence, $\lambda(S_B(G)) = \{|T'|, |Y'|\}$. Here, $|T'| = 3\lambda(G) + n$ and $|Y'| = \delta(G) < n$. Therefore, $\lambda(S_B(G)) = \delta(G)$.

Hence the theorem.

Note that from Theorem 14 (2), $\lambda(G) = \alpha \ge 2$ and $\lambda(S_B(G)) = \delta(G) \ge \alpha$. This leads to the following corollary.

Corollary 15 For integers a, b with $1 < a \le b$, there exists a graph G with $\lambda(G) = a$ and $\lambda(S_B(G)) = b$.

Theorem 16 Let G be a connected graph which is bridgeless and not a block. If G has $T = \{(\nu_c, \nu_f) | 1 \le f \le t, \nu_c \text{ is a cut vertex} \}$ as a minimum edge cut, then $\lambda(S_B(G)) = \min\{\delta(S_B(G)), 3\lambda(G) + 1\}$.

Proof. Consider G to be a connected graph which is bridgeless and not a block. Let T be a minimum edge cut. Thus in $S_B(G)$, $T' = T \cup \{(\nu_c, \mathfrak{u}_f), (\mathfrak{u}_c, \nu_f), (\nu_c, \mathfrak{b}_x)\}$, where $\nu_c, \nu_f \in B_x$ and by Theorem 10, $Y' = \{(\nu_\alpha, \nu_s) | \nu_s \in N(\nu_\alpha), deg(\nu_\alpha) = \delta(G)\}$ are edge cuts. Here, $|T'| = 3\lambda(G) + 1$.

Therefore,
$$\lambda(S_B(G)) = \min\{\delta(S_B(G)), 3\lambda(G) + 1\}.$$

For any block B_l , $1 \le l \le k$, in G, $|V(B_l)| \ge 2$ if G has a bridge and $|V(B_l)| \ge 3$, otherwise. The following theorem gives a necessary condition for $S_B(G)$ for which its vertex and edge connectivity are equal.

Theorem 17 If $\Delta(G) \leq 3$, then $\kappa(S_B(G)) = \lambda(S_B(G))$.

Proof. Let G be a connected graph of order $n \geq 2$ and $\Delta(G) \leq 3$. The following cases are considered:

Case 1 Suppose $\delta(G) \leq 2$.

By Theorem 11, $\kappa(S_B(G)) = \delta(G)$. When G is bridgeless and is not a block, by Theorem 14, $\lambda(S_B(G)) = \delta(G)$. Consider a graph G which is bridgeless and has a cut vertex then, $\lambda(G) \geq 2$. Since $\lambda(G) \leq \delta(G)$, $\lambda(G) = \delta(G) = 2$. As $|V(B_1)| \geq 3$, for all $1 \leq 1 \leq k$, by Theorem 7, $\delta(S_B(G)) = \delta(G)$ in $S_B(G)$. Since $\lambda(S_B(G)) \leq \delta(S_B(G))$, it implies that $\lambda(S_B(G)) \leq 2$. The graph G being an induced subgraph of $S_B(G)$, $\lambda(G) \leq \lambda(S_B(G))$ and $\lambda(S_B(G)) = 2 = \delta(G)$. Therefore, $\kappa(S_B(G)) = \lambda(S_B(G))$.

Case 2 Since $\Delta(G)=3$, G is 3-regular. If G is a block, then by Theorems 11 and 14, $\kappa(S_B(G))=\lambda(S_B(G))=\delta(G)$. When G is 3-regular, G has a bridge if and only if G has a cut vertex. So, if G is not a block, then G has a bridge. Thus, by Theorems 11 and 14, $\kappa(S_B(G))=\lambda(S_B(G))=2$.

Therefore, $\kappa(S_B(G)) = \lambda(S_B(G))$. Hence the theorem.

A graph G is p-connected (p-edge connected) if and only if every pair of vertices is joined by at least p vertex (edge) disjoint paths. Also, every p-connected graph is p-edge connected. Further, G is p-edge connected if and only if each of its blocks is p-edge connected. It follows that G is p-connected if and only if each of its blocks is p-edge connected. So, $\lambda(B_1) \geq k$, which implies $\delta(B_1) \geq k$, where $1 \leq l \leq k$. Now, the p-connectedness (p-edge connected) of $S_B(G)$ is discussed.

Theorem 18 If G is p-connected (p-edge connected) with $p \ge 1$, then $S_B(G)$ is also p-connected (p-edge connected).

Proof. Let G be a p-connected (p-edge connected) graph with $p \ge 1$. To prove $S_B(G)$ is p-connected (p-edge connected) it is enough to show that between any two vertices of $S_B(G)$, there exist p-vertex (edge) disjoint paths. The following cases are considered:

Case 1 Let $v_a, v_b \in V(G)$

Then, ν_a and ν_b have at least p vertex (edge) disjoint paths between them. Since G is an induced subgraph of $S_B(G)$, in $S_B(G)$ there exist at least p disjoint paths between the vertices ν_a and ν_b .

Case 2 Let $v_a \in V(G)$ and $u_b \in V_1(G)$

Since $p \leq \kappa(G) \leq \delta(G)$, there exist at least p vertices adjacent to ν_a . Assume that $\nu_{a_1}, \nu_{a_2}, \ldots, \nu_{a_p}$ are the vertices adjacent to ν_a in G. Then in $S_B(G)$, by Case 1 that there exist p vertex (edge) disjoint paths between ν_a and ν_{a_i} ($1 \leq i \leq p$). In addition, the vertices $u_{a_i} \in V_1(G)$, $1 \leq i \leq p$, are adjacent to the vertex ν_a . As $u_b \in V_1(G)$, by Theorem 6, $N(u_b) = N(\nu_b) \cap V(G)$ for some $\nu_b \in V(G)$. Since $|N(\nu_b)| \geq p$, let $\nu_{b_1}, \ldots, \nu_{b_p} \in V(G)$ such that $\nu_{b_i} \in N(\nu_b)$ for $1 \leq i \leq p$, which implies in $S_B(G)$, $\nu_{b_i} \in N(u_b)$. As $\nu_a, \nu_{b_i} \in V(G)$, by Case 1 in $S_B(G)$ there exist p vertex (edge) disjoint paths between them. In conclusion, the vertices ν_a, u_b are joined by p vertex (edge) disjoint paths between them in $S_B(G)$.

Case 3 Let $v_a \in V(G)$, $b_m \in B(G)$.

As defined in Case 2, let $\nu_{\alpha_i} \in N(\nu_{\alpha})$, $1 \le i \le p$. Since $\delta(B_m) \ge k$, we have $|V(B_m)| > k$. Let $\nu_{x_1}, \ldots, \nu_{x_p} \in V(G)$ such that $\nu_{x_i} \in N(b_m)$, $1 \le i \le p$. It follows from Case 1 that in $S_B(G)$, the vertices ν_{α} and ν_{x_i} have p vertex (edge) disjoint paths between them as $\nu_{\alpha}, \nu_{x_i} \in V(G)$. Therefore, in $S_B(G)$, the vertices ν_{α} , ν_{m} are joined by p vertex (edge) disjoint paths between them.

Case 4 Let $u_a, u_b \in V_1(G)$

As defined in Case 2, let $\nu_{a_i} \in N(u_a)$ and $\nu_{b_i} \in N(u_b)$, $1 \le i \le p$. Since $\nu_{a_i}, \nu_{b_i} \in V(G)$ and by Case 1, the theorem follows.

Case 5 Let $u_a \in V_1(G)$, $b_m \in B(G)$

It follows from Case 2 and 3, let $\nu_{\alpha_i} \in N(u_{\alpha})$ and $\nu_{x_i} \in N(b_m)$, $1 \le i \le p$, respectively. As $\nu_{\alpha_i}, \nu_{x_i} \in V(G)$ and by Case 1, the theorem follows.

Case 6 Let $b_m, b_s \in B(G)$

It follows from Case 3, let $\nu_{x_i} \in N(b_m)$ and $\nu_{y_i} \in N(b_s)$, $1 \le i \le p$. As $\nu_{x_i}, \nu_{y_i} \in V(G)$ and by Case 1, the theorem follows.

Hence the theorem. \Box

If G is p-connected, then $G+K_1$ is (p+1)-connected. This result leads to the following theorem.

Theorem 19 If G is p-connected, then the following statements are true:

- 1. $S_B(G + K_1)$ is (p + 1)-connected.
- 2. $S_B(G) + K_1$ is (p+1)-connected.

Proof. Consider the graph G to be a p-connected. Then, $G+K_1$ is (p+1)-connected. Also, by Theorem 18, $S_B(G)$ is p-connected. Hence the theorem follows.

Conclusion

The structural properties of $S_B(G)$ have been investigated which helped to determine the results on the vertex and edge connectivity of $S_B(G)$. The semi-splitting block graph has been characterized based on its vertex set. A necessary condition for p-connectedness (p-edge connectedness) of $S_B(G)$ has been established. The scope of future work is to characterize graphs whose $S_B(G)$ is (p+1)-connected ((p+1)-edge connected).

References

- [1] F. Buckley, F. Harary, Distance in graphs, Addison–Wesley, Redwood City, 1990.

 ⇒ 171
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1990. \Rightarrow 171
- [3] D. B. West, Introduction to Graph Theory (2nd ed.), Pearson Education, 2002. ⇒ 171
- [4] V. R. Kulli, K. M. Niranjan The semi-splitting block graph of a graph, *Journal of Scientific Research*, **2**, 3 (2010) 485–488. \Rightarrow 171

Received: May 30, 2023 • Revised: July 21, 2023