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Abstract. A graph G is said to be a semi-splitting block graph if there
exists a graphH such that SB(H) ∼= G. This paper establishes a character-
isation of semi-splitting block graphs based on the partition of the vertex
set ofG. The vertex (edge) connectivity and p-connectedness (p-edge con-
nectedness) of SB(G) are examined. For all integers a, b with 1 < a < b,
the existence of the graph G for which κ(G) = a, κ(SB(G)) = b and
λ(G) = a, λ(SB(G)) = b are proved independently. The characterization
of graphs with κ(SB(G)) = κ(G) and a necessary condition for graphs
with κ(SB(G)) = λ(SB(G)) are achieved.

1 Introduction

Graph theory has a wide range of applications in communication networks.
An interconnection network can be represented as a simple connected graph
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G = (V, E), where V represents the set of memory modules and E represents
the communication links. The vertex cut of a graph G is the set of vertices
whose removal gives a disconnected or trivial graph. The minimum cardinality
of the vertex cut of the graph is called the vertex connectivity of the graph G,
denoted by κ(G). If G−v has more than one component then v is a cut vertex
of G. A maximal connected subgraph of the graph G which has no cut vertex
is called a block of G. The edge cut of a graph G is the set of edges whose
removal gives a disconnected graph. The minimum cardinality of the edge cut
of the graph is called the edge connectivity of the graph G, denoted by λ(G).
A graph G is p-connected (p-edge connected) if κ(G) ≥ p (λ(G) ≥ p).

Many results have been established regarding the connectivity of simple
graphs, derived graphs and digraphs over many decades. This paper focuses on
analyzing a derived graph’s vertex(edge) connectedness, defined in [4], which
is stated as follows.

Definition 1 The semi-splitting block graph SB(G) of a graph of order n is a
graph with V (SB (G)) = V (G) ∪ V1 (G) ∪ B (G), where
V (G) = {vi | 1 ≤ i ≤ n},
V1 (G) = {ui | 1 ≤ i ≤ n, vi ∈ V (G)},
B(G) = {bl | 1 ≤ l ≤ k, Bl is a block in G}.

E (SB (G)) =


vivj | 1 ≤ i, j ≤ n, vivj ∈ E (G)
uivj | 1 ≤ i, j ≤ n, vivj ∈ E (G)
vibl | 1 ≤ i ≤ n, 1 ≤ l ≤ k, vi ∈ Bl in G

where vi, vj ∈ V (G), ui ∈ V1 (G) and bl ∈ B (G).

Since every edge is a block in a tree, the graph P3 has 2 blocks say, B1 = {v1, v2}

and B2 = {v2, v3}. Figure 1, shows the semi-splitting block graph of P3.
The study on the planarity of SB(G) has been carried out extensively in [4].

The scope of this paper is limited to simple, finite and undirected graphs. For
terminology in graph theory, refer to [1, 2, 3].

2 Structural properties of SB (G)

In this section, the structural properties of semi-splitting block graph of a
graph are examined. If G is a disconnected graph with non trivial compo-
nents G1, G2, . . . , Gm, then SB(G) has SB(G1), SB(G2), . . . , SB(Gm) as its com-
ponents.
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Figure 1: P3 and SB(P3)

Theorem 2 Let SB (G) be the semi-splitting block graph of G of order n,
n ≥ 2, and k blocks. Then,

(i) For each ui ∈ V1 (G), degSB(G) (ui) = degG (vi) , vi ∈ V (G), 1 ≤ i ≤ n,

(ii) For each bl ∈ B (G), degSB(G) (bl) = |V (Bl)|, where 1 ≤ l ≤ k and
V(Bl) ⊂ V(G),

(iii) For each vi ∈ V (G), degSB(G) (vi) = 2 degG (vi) + s, where s is the
number of blocks containing vi in G and 1 ≤ i ≤ n.

Proof. Clearly, NSB(G)(vi) = NG(vi) ∪ {uj : vj ∈ NG(vi)} ∪ {bl : vi ∈ Bl in G}.
NSB(G)(ui) = {vj : vj ∈ NG(vi)} and NSB(G)(bl) = V(Bl), where V(Bl) ⊂ V(G).
Hence the theorem follows. �

Corollary 3 For a non-cut vertex vm of the graph G,
degSB(G) (vm) = 2 degG (vm) + 1.

Corollary 4 If G is a block of order n, n ≥ 2, then

(i) For each vi ∈ V (G), degSB(G) (vi) = 2 degG (vi) + 1, 1 ≤ i ≤ n,

(ii) For b1 ∈ B (G), degSB(G) (b1) = n.

Remark 5 SB (G) is always non-regular, for any graph G, for all vi ∈ V(G),
degSB(G) (vi) > degSB(G) (ui), 1 ≤ i ≤ n.

The characterization of semi-splitting block graph based on the partition of
the vertex set of the graph is given in the following theorem.
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Theorem 6 The following statements are equivalent.

1. A graph G of order n is a semi-splitting block graph.

2. The vertex set of a graph G can be partitioned into three subsets namely
V1, V2, V3 such that

(a) i. There is a bijective mapping f : V1 → V2 such that f(v1) = v2,
where v1 ∈ V1, v2 ∈ V2.

ii. N (v2) = N (v1) ∩ V1
(b) For each v3 ∈ V3, < N (v3) > is a block of < V1 >.

Proof. (1) =⇒ (2) . Let G be a semi-splitting block graph of order n. Then
for some H, G ∼= SB (H). By definition, adjacency between two vertices in
SB (H) is as follows:

I. adjacent vertices in H are adjacent in SB (H).

II. for each vertex vi of V (H), a new vertex ui being adjacent to NH (v) is
added.

III. for each block in H, a new vertex bl adjacent to all the vertices of the
respective block is added.

Let V1 = V (H), V2 = {ui}
|V(H)|
i=1 and V3 = {bl}

k
l=1. For each vi ∈ V1, let ui ∈ V2

be the corresponding new vertex added in SB (H). Then, f : V1 → V2 is a
bijective mapping such that f(vi) = ui and N (ui) = N (vi) ∩ V1. Since, each
bl ∈ V3 is adjacent only to vertices of the corresponding block, N (bl) = Bl,
where 1 ≤ l ≤ k and Bl is a unique block of < V1 >.
(2) =⇒ (1) . Suppose (2) is true. Let H =< V1 >. Then, G ∼= SB (H).
Therefore, G is a semi-splitting block graph.
Hence the theorem. �

Theorem 7 For any graph G of order n, n ≥ 2, with k blocks, δ (SB (G)) =
min{|V(Bl)| , δ (G)}, where Bl, 1 ≤ l ≤ k is a block of G.

Proof. It is evident from Theorem 2 that in SB(G), for any vi ∈ V(G),
deg(ui) = degG(vi) and deg(vi) > 2 degG(vi). The following cases are con-
sidered.

Case 1 Suppose G is a block. By Corollary 4, deg(b1) = n > δ(G) in SB(G).
Therefore, δ(SB(G)) = δ(G).
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Case 2 Suppose G is not a block. Then there exist at least two blocks in G.
This implies that |V(Bl)| ≥ 2, for 1 ≤ l ≤ k and k ≥ 2.
Thus, δ(SB(G)) = min{δ(G), |V(Bl)|}.

Therefore, it inferred that, δ(SB(G)) = min{δ(G), |V(Bl)|}.
Hence the theorem. �

Corollary 8 For any graph G, δ(SB(G)) = δ(G) if and only if G is a block or
G is not a block with |V(Bl)| ≥ δ(G) for all 1 ≤ l ≤ k .

Corollary 9 For integers a, b with a > b > 1, there exists a graph G with
δ(G) = a and δ(SB(G)) = b if and only if there exists at least one block Bl in
G whose |V(Bl)| < δ(G), where 1 ≤ l ≤ k.

3 Connectedness of SB(G)

In this section, the vertex (edge) connectedness of semi-splitting block graph
of a connected graph is examined. Let va ∈ V(G) such that deg(va) = δ(G).
Since, κ(G) ≤ λ(G) ≤ δ(G), N(va) = {vs|1 ≤ s ≤ δ(G)} is a vertex cut of G
and Y = {(va, vs)|vs ∈ N(va)} is an edge cut in G.

Theorem 10 If G is a block with deg(va) = δ(G), then the following state-
ments are true in SB(G).

1. N(ua) is a vertex cut.

2. Y ′ = {(ua, vs)|vs ∈ NG(va)} is an edge cut.

Proof. Consider G to be a block such that deg(va) = δ(G). By Theorem 2
and Corollary 8, deg(ua) = δ(SB(G)). As κ(SB(G)) ≤ λ(SB(G) ≤ δ(SB(G))
and N(ua) = NG(va), N(ua) is a vertex cut and Y ′ = {(ua, vs)|vs ∈ N(ua)} is
an edge cut in SB(G).
Hence the theorem. �

Let S = {vj|1 ≤ j ≤ t} be a minimum vertex cut of G. As G is an induced
subgraph of SB(G), S is the subset of a vertex cut of SB(G). The following
theorem gives the vertex connectivity of SB(G).

Theorem 11 For a connected graph G with order n, n ≥ 2,

κ(SB(G)) =

{
min{δ(G), 2κ(G) + 1} when G is a block

min{2, δ(G)} otherwise
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Proof. Let G be a connected graph of order n ≥ 2. The following cases are
considered:

Case 1 Suppose G is not a block.
Let vc be a cut vertex in G. In SB(G), the vertices of NG(vc) are adjacent to
vc and uc. Thus, uc is the cut vertex in SB(G) if and only if vc is a pendant
vertex in G. In all other cases, removing the vertices {vc, uc} disconnects the
graph SB(G). Thus, κ(SB(G)) = 1, if δ(G) = 1 and κ(SB(G)) = 2, otherwise.
Hence, κ(SB(G)) = min{2, δ(G)}.

Case 2 Suppose G is a block.
In SB(G), there exists exactly one block vertex b1 adjacent to all the vertices
of G. Thus, S ′ = S ∪ {uj, b1|1 ≤ j ≤ t} and by Theorem 10, N(ua) are vertex
cuts in SB(G). Here, |S ′| = 2κ(G) + 1 and |N(ua)| = δ(SB(G)) = δ(G).
Hence, κ(SB(G)) = min{δ(G), 2κ(G) + 1}.

Hence the theorem. �

Corollary 12 For a connected graph G, κ(SB(G)) = κ(G) if and only if
κ(G) = δ(G).

Proof. Suppose κ(G) = δ(G).
Suppose G is a block. As δ(G) < 2δ(G) + 1, by Theorem 11, κ(SB(G)) =
δ(G) = κ(G). If G is not a block, then κ(G) = 1. By Theorem 11, κ(SB(G)) =
δ(G) = κ(G). The converse can also be proved in the same manner.
Hence the theorem. �

The following theorem gives the necessary and sufficient condition for the
existence of a graph whose vertex connectivity is a and the vertex connectivity
of its SB(G) is b, for all a, b such that 1 < a < b.

Theorem 13 For integers a, b with 1 < a < b, there exists a graph G with
κ(G) = a and κ(SB(G)) = b if and only if b ≤ 2a+ 1.

Proof. Assume that b ≤ 2a + 1. Consider G1 and G2 as any two connected
block graphs each of minimum degree b. The following assumptions are made.

1. V(G1) = {v1r |1 ≤ r ≤ s, s > b} and
V(G2) = {v2w |1 ≤ w ≤ t, t > b}.

2. Let deg(vxy) = b, where vxy ∈ V(G1 ∪G2).
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The graph G is formed from G1 and G2 by adding (v1q , v2q) new edges such
that v1q , v2q 6= vxy and 1 ≤ q ≤ a. Here, G is a block with deg(vxy) = b.
The removal of vertices v1q , 1 ≤ q ≤ a, disconnects the graph G. Thus,
X = {v1q |1 ≤ q ≤ a} and NG(vxy) are the vertex cuts of G which implies,
κ(G) = min{|X|, |NG(vxy)|}. As |X| = a and |NG(vxy)| = b > a, we get κ(G) =
|X| = a. Hence, X ′ = X ∪ {u1q , b1|1 ≤ q ≤ a} and by Theorem 10, N(uxy) are
the vertex cuts in SB(G), where deg(uxy) = δ(SB(G)). Therefore, κ(SB(G)) =
min{|X ′|, |N(uxy)|}. Since, |X ′| = 2a+1 and |N(uxy)| = b ≤ 2a+1, we conclude
that κ(SB(G)) = b.
On the contrary, consider b > 2a + 1. Let G be a graph as defined above,
then κ(G) = a and κ(SB(G)) = min{|X ′|, |N(uxy)|}. Here, |X ′| = 2a + 1 and
|N(uxy)| = b > 2a+ 1, which implies that κ(SB(G)) = 2a+ 1.
Therefore, κ(SB(G)) 6= b.
Hence the theorem. �

Let λ(G) = t, i.e., T = {(ve, vf)|(ve, vf) ∈ E(G), e 6= f} be a minimum edge cut
of G. Since G is an induced subgraph of SB(G), T is the subset of an edge cut
of SB(G). The edge connectivity of SB(G) is discussed in the next theorem.

Theorem 14 For a connected graph of order n, n ≥ 2,

1. If G has a bridge, then λ(SB(G)) = min{2, δ(G)}.
2. If G is a block, then λ(SB(G)) = δ(G).

Proof. Let G be a connected graph with n ≥ 2. The following cases are
considered:

Case 1 Suppose G has a bridge.
Let em = {vg, vh} be a bridge. As every bridge is a block, let Bm be a block
with V(Bm) = {vg, vh}. Thus, U = {(bm, vg), (bm, vh)} is an edge cut in SB(G),
where bm ∈ V(SB(G))) and |U| = 2. By Theorem 7, em is a bridge in SB(G)
if and only if δ(G) = 1, which implies that λ(SB(G)) = 1, when δ(G) = 1.
Suppose δ(G) ≥ 2, then δ(SB(G)) ≥ 2. Hence, U is the minimum edge cut in
SB(G), for δ(G) ≥ 2. Therefore, it is concluded that λ(SB(G)) = min{2, δ(G)}.

Case 2 Suppose G is a block.
Then, λ(G) ≥ 2. In SB(G), b1 is the only block vertex such that |N(b1)| = n.
Thus, T ′ = T ∪ {(ue, vf), (ve, uf), (b1, vi)|1 ≤ i ≤ n} and by Theorem 10, Y ′ =
{(ua, vk)|vk ∈ NG(va)} are edge cuts in SB(G). Hence, λ(SB(G)) = {|T ′|, |Y ′|}.
Here, |T ′| = 3λ(G) + n and |Y ′| = δ(G) < n. Therefore, λ(SB(G)) = δ(G).

Hence the theorem. �
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Note that from Theorem 14 (2), λ(G) = a ≥ 2 and λ(SB(G)) = δ(G) ≥ a.
This leads to the following corollary.

Corollary 15 For integers a, b with 1 < a ≤ b, there exists a graph G with
λ(G) = a and λ(SB(G)) = b.

Theorem 16 Let G be a connected graph which is bridgeless and not a block.
If G has T = {(vc, vf)|1 ≤ f ≤ t, vc is a cut vertex} as a minimum edge cut,
then λ(SB(G)) = min{δ(SB(G)), 3λ(G) + 1}.

Proof. Consider G to be a connected graph which is bridgeless and not a block.
Let T be a minimum edge cut. Thus in SB(G), T

′ = T∪{(vc, uf), (uc, vf), (vc, bx)},
where vc, vf ∈ Bx and by Theorem 10, Y ′ = {(va, vs)|vs ∈ N(va), deg(va) =
δ(G)} are edge cuts. Here, |T ′| = 3λ(G) + 1.
Therefore, λ(SB(G)) = min{δ(SB(G)), 3λ(G) + 1}. �

For any block Bl, 1 ≤ l ≤ k, in G, |V(Bl)| ≥ 2 if G has a bridge and |V(Bl)| ≥ 3,
otherwise. The following theorem gives a necessary condition for SB(G) for
which its vertex and edge connectivity are equal.

Theorem 17 If ∆(G) ≤ 3, then κ(SB(G)) = λ(SB(G)).

Proof. Let G be a connected graph of order n ≥ 2 and ∆(G) ≤ 3. The
following cases are considered:

Case 1 Suppose δ(G) ≤ 2.
By Theorem 11, κ(SB(G))) = δ(G). When G is bridgeless and is not a block,
by Theorem 14, λ(SB(G)) = δ(G). Consider a graph G which is bridgeless and
has a cut vertex then, λ(G) ≥ 2. Since λ(G) ≤ δ(G), λ(G) = δ(G) = 2. As
|V(Bl)| ≥ 3, for all 1 ≤ l ≤ k, by Theorem 7, δ(SB(G)) = δ(G) in SB(G). Since
λ(SB(G)) ≤ δ(SB(G)), it implies that λ(SB(G)) ≤ 2. The graph G being an
induced subgraph of SB(G), λ(G) ≤ λ(SB(G)) and λ(SB(G)) = 2 = δ(G).
Therefore, κ(SB(G)) = λ(SB(G)).

Case 2 Since ∆(G) = 3, G is 3-regular. If G is a block, then by Theorems 11
and 14, κ(SB(G)) = λ(SB(G)) = δ(G). When G is 3-regular, G has a bridge if
and only if G has a cut vertex. So, if G is not a block, then G has a bridge.
Thus, by Theorems 11 and 14, κ(SB(G)) = λ(SB(G)) = 2.

Therefore, κ(SB(G)) = λ(SB(G)).
Hence the theorem. �
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A graph G is p-connected (p-edge connected) if and only if every pair of
vertices is joined by at least p vertex (edge) disjoint paths. Also, every p-
connected graph is p-edge connected. Further, G is p-edge connected if and
only if each of its blocks is p-edge connected. It follows that G is p-connected if
and only if each of its blocks is p-edge connected. So, λ(Bl) ≥ k, which implies
δ(Bl) ≥ k, where 1 ≤ l ≤ k. Now, the p-connectedness (p-edge connected) of
SB(G) is discussed.

Theorem 18 If G is p-connected (p-edge connected) with p ≥ 1, then SB(G)
is also p-connected (p-edge connected).

Proof. Let G be a p-connected (p-edge connected) graph with p ≥ 1. To prove
SB(G) is p-connected (p-edge connected) it is enough to show that between any
two vertices of SB(G), there exist p-vertex (edge) disjoint paths. The following
cases are considered:

Case 1 Let va, vb ∈ V(G)
Then, va and vb have at least p vertex (edge) disjoint paths between them.
Since G is an induced subgraph of SB(G), in SB(G) there exist at least p
disjoint paths between the vertices va and vb.

Case 2 Let va ∈ V(G) and ub ∈ V1(G)
Since p ≤ κ(G) ≤ δ(G), there exist at least p vertices adjacent to va. Assume
that va1 , va2 , . . . , vap are the vertices adjacent to va in G. Then in SB(G), by
Case 1 that there exist p vertex (edge) disjoint paths between va and vai
(1 ≤ i ≤ p). In addition, the vertices uai ∈ V1(G), 1 ≤ i ≤ p, are adjacent to
the vertex va. As ub ∈ V1(G), by Theorem 6, N(ub) = N(vb)∩V(G) for some
vb ∈ V(G). Since |N(vb)| ≥ p, let vb1 , . . . , vbp ∈ V(G) such that vbi ∈ N(vb)
for 1 ≤ i ≤ p, which implies in SB(G), vbi ∈ N(ub). As va, vbi ∈ V(G), by
Case 1 in SB(G) there exist p vertex (edge) disjoint paths between them. In
conclusion, the vertices va, ub are joined by p vertex (edge) disjoint paths
between them in SB(G).

Case 3 Let va ∈ V(G), bm ∈ B(G).
As defined in Case 2, let vai ∈ N(va), 1 ≤ i ≤ p. Since δ(Bm) ≥ k , we have
|V(Bm)| > k. Let vx1 , . . . , vxp ∈ V(G) such that vxi ∈ N(bm), 1 ≤ i ≤ p.
It follows from Case 1 that in SB(G), the vertices va and vxi have p vertex
(edge) disjoint paths between them as va, vxi ∈ V(G). Therefore, in SB(G), the
vertices va, bm are joined by p vertex (edge) disjoint paths between them.
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Case 4 Let ua, ub ∈ V1(G)
As defined in Case 2, let vai ∈ N(ua) and vbi ∈ N(ub), 1 ≤ i ≤ p. Since
vai , vbi ∈ V(G) and by Case 1, the theorem follows.

Case 5 Let ua ∈ V1(G), bm ∈ B(G)
It follows from Case 2 and 3, let vai ∈ N(ua) and vxi ∈ N(bm), 1 ≤ i ≤ p,
respectively. As vai , vxi ∈ V(G) and by Case 1, the theorem follows.

Case 6 Let bm, bs ∈ B(G)
It follows from Case 3, let vxi ∈ N(bm) and vyi ∈ N(bs), 1 ≤ i ≤ p. As
vxi , vyi ∈ V(G) and by Case 1, the theorem follows.

Hence the theorem. �

If G is p-connected, then G+K1 is (p+ 1)-connected. This result leads to the
following theorem.

Theorem 19 If G is p-connected, then the following statements are true:

1. SB(G+ K1) is (p+ 1)-connected.

2. SB(G) + K1 is (p+ 1)-connected.

Proof. Consider the graph G to be a p-connected. Then, G + K1 is (p + 1)-
connected. Also, by Theorem 18, SB(G) is p-connected.
Hence the theorem follows. �

Conclusion

The structural properties of SB(G) have been investigated which helped to
determine the results on the vertex and edge connectivity of SB(G). The semi-
splitting block graph has been characterized based on its vertex set. A neces-
sary condition for p-connectedness (p-edge connectedness) of SB(G) has been
established. The scope of future work is to characterize graphs whose SB(G)
is (p+ 1)-connected ((p+ 1)-edge connected).



180 N. Baskar, T. A. Mangam, M. Acharya

References

[1] F. Buckley, F. Harary, Distance in graphs, Addison–Wesley, Redwood City, 1990.⇒171
[2] F. Harary, Graph Theory, Addison–Wesley, Reading, MA, 1990. ⇒171
[3] D. B. West, Introduction to Graph Theory (2nd ed.), Pearson Education, 2002.⇒171
[4] V. R. Kulli, K. M. Niranjan The semi-splitting block graph of a graph, Journal

of Scientific Research, 2, 3 (2010) 485–488. ⇒171

Received: May 30, 2023 • Revised: July 21, 2023

https://en.wikipedia.org/wiki/Frank_Harary
https://openlibrary.org/books/OL21179840M/Distance_in_graphs
https://en.wikipedia.org/wiki/Frank_Harary
https://en.wikipedia.org/wiki/Douglas_West_(mathematician)
https://www.pearson.com/en-us/subject-catalog/p/introduction-to-graph-theory/P200000010152/9780131437371
https://www.researchgate.net/publication/274001581_The_Semi-splitting_Block_Graph_of_a_Graph

	1 Introduction
	2 Structural properties of SB(G)
	3 Connectedness of SB(G)

