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Abstract. Interstitial Lung Diseases (ILDs) represent a heterogeneous
group of several rare diseases that are difficult to predict, diagnose and
monitor. There are no predictive biomarkers for ILDs, clinical signs are
similar to the ones for other lung diseases, the radiological features are
not easy to recognize, and require manual radiologist review. Data-driven
support for ILD prediction, diagnosis and disease-course monitoring are
great unmet need. Numerous image processing techniques and computer-
aided diagnostic and decision-making support methods have been devel-
oped over the recent years. The current review focuses on such solutions,
discussing advancements on the fields of Quantitative CT, Complex Net-
works, and Convolutional Neural Networks.

1 Introduction

Interstitial lung diseases (ILDs) refer to a group of over 200 diverse disorders
that involve inflammation and progressive fibrosis of lung interstitium, rep-
resenting an important morbidity and mortality cause. The incidence of ILD
ranges from 1 to 31.5 per 100,000 person-years and prevalence ranged from
6.3 to 71 per 100,000 people [20]. It is more common in the elderly population,
median age at diagnosis is over 60 years [26].

ILD causes inflammation and scarring (fibrosis) of the interstitium, making
the oxygen difficult to pass into the bloodstream. This can result in symptoms
such as shortness of breath, cough, fatigue, and chest pain. ILD can also cause
a decreased tolerance for physical activity, and in more advanced cases, can
lead to respiratory failure; besides being seriously debilitating, it is significantly
affecting the patients’ quality of life.

There are many different types of ILD, with overlapping clinical, radiologi-
cal, and pathological features. The most common type is idiopathic pulmonary
fibrosis (IPF), which is of unknown cause. Other ones that are more preva-
lent are: connective tissue disease-associated ILD in people with autoimmune
diseases (e.g. rheumatoid arthritis and scleroderma), hypersensitivity pneu-
monitis, sarcoidosis, and drug-induced ILD (DIILD).

ILD is known to be difficult to diagnose and treat, and management typi-
cally involves a multidisciplinary approach made of medications, oxygen ther-
apy, pulmonary rehabilitation, and lung transplantation. Treatment efficacy
is usually measured by changes in pulmonary function (forced vital capacity
— FVC), more precisely the reduction of FVC decline over time, changes of
exercise tolerance, or progression-free survival.
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Beyond the individual patient burden, the economic impact of ILD is also
significant, both on a personal and societal level. Here are some factors that
contribute to the economic burden of ILD.

1. Healthcare costs: ILD often requires a suite of highly specific diagnostic
tools, including radiographic imaging, lung function tests, bronchoscopy,
and sometimes lung biopsy. For the progressive nature of the disease,
ongoing monitoring, medication management, and specialist oversight is
necessary. The costs associated with these medical services, including
hospitalizations, medications, and regular follow-up visits, contribute to
the economic burden. The home care for these patients is also substantial
(assistance with daily activities, transportation to medical appointments,
and emotional support).

2. Treatment expenses: ILD treatment may involve a combination of med-
ications, such as corticosteroids, immunosuppressants, and antifibrotic
drugs, depending on the specific type of ILD. These medications can be
costly, and the duration of treatment may extend over a long period,
further increasing the financial impact. In severe cases of ILD, where
conservative treatment options have been exhausted, lung transplanta-
tion remains the only option. Lung transplantation is a complex and
expensive procedure with substantial associated costs.

3. Lost productivity: ILD can significantly impact a person’s ability to work
and engage in daily activities. Consequently, individuals with ILD may
experience decreased work hours, reduced productivity, or even complete
disability, leading to income loss and further diminished quality of life.

The drug-induced interstitial lung disease is a specific type of ILDs that
deserves a separate evaluation. This is a heterogenous group of pulmonary
parenchymal diseases that occur in relation to exposure to certain drugs. To-
date 1,653 drugs and procedures are associated with ILDs, and the list is
increasing. Medicines used in several disease areas are on the list including
many highly promising oncology products that are meant to cover areas of
great unmet need [11]. DIILDs are an outcome of a medication administered
to patients, hence keeping it at lowest possible incidence is a moral obligation
for the physicians and drug-makers. Furthermore, DIILDs are darkening the
results of certain drugs that are otherwise highly successful (e.g. trastuzumab
deruxtecan (T-DXd), Enhertu®, the most successful oncology product dis-
covered in the recent years [25]) and are seriously limiting their use and their
therapeutic potential.
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2 Predicting, diagnosing and monitoring ILDs

Despite the recent advancements of technology and medicinal science, the
effective management of patients with ILDs is still insufficient at three main
levels: the early detection of ILD, accurate prognostication using baseline data,
and accurate and precise monitoring of disease response to therapy through
high-resolution computer tomography (HRCT) [6].

The diagnosis of ILDs is based on integrated clinical evaluation, pulmonary
function tests, radiological assessments, lab tests and, in some cases, histopatho-
logical examination that involves the collaboration of a large multidisciplinary
team.

ILDs should be considered in the differential diagnosis of adults presenting
with unexplained exertional shortness of breath, chronic cough, and/or crack-
les on chest auscultation, especially when the common pulmonary disorders
can be ruled out. ILDs classically produce the “3Cs”: cough, clubbing of the
nails, and coarse crackles on auscultation [32]. At clinical evaluation a detailed
medical history is obtained, including environmental and drug exposure his-
tory, full body examination with focus on clinical signs on the patients’ hand,
joint, and skin. A review of the patients’ medication is needed in search of
agents that are known to cause DIILDs. Common drugs associated with ILD
are cancer therapies (i.e., bleomycin, immune checkpoint inhibitors), rheuma-
tologic agents, amiodarone, and antibiotics (i.e., nitrofurantoin) and several
others. A thorough family history focusing on idiopathic interstitial pneumonia
and autoimmune disease should also be performed.

Pulmonary function tests (PFTs) are done to assess lung function and
help determine the presence and severity of restrictive or obstructive lung
disease. They typically include measurements of lung volumes, and of the
maximum amount of air a person can forcefully exhale after taking a deep
breath (forced vital capacity — FVC); as well as diffusing capacity for car-
bon monoxide (DLCO), and spirometry. Patients with ILDs typically exhibit
reduced FVC, reduced total lung volume, and reduced diffusing capacities,
though these values may appear normal early in the disease course, and when
combined pulmonary fibrosis and emphysema is present [8].

High-resolution computed tomography (HRCT) is a key imaging modality
for evaluating ILDs. HRCT scans provide detailed images of lung structures,
allowing the detection of characteristic patterns associated with different ILD
subtypes. Radiological features, such as ground-glass opacities, reticular or
honeycomb patterns, nodules, and distribution patterns, help guide the diag-
nosis and classification of ILDs. Computer-aided evaluation of HRCT images,



150 J. Palatka et al.

in support of ILD diagnosis is a rapidly developing area, but the breakthrough
has not yet been achieved [30].

Serological and immunological blood tests may be conducted to assess mark-
ers, autoantibodies, or immunological abnormalities that could indicate an un-
derlying connective tissue disease associated with ILDs, such as rheumatoid
arthritis, systemic sclerosis, or sarcoidosis.

Cytological, or histopathological examination may be required to establish
a definitive diagnosis and determine the underlying histopathological features.
Bronchoalveolar lavage material or lung tissue obtained through biopsy helps
identify the characteristics of the interstitial inflammation, fibrosis, or other
specific changes, aiding in the classification of ILDs. Recently whole transcrip-
tome RNA sequencing of the biopsy tissue sample was found successful in
classifying ILDs. Gene expression analyses can help to distinguish between
types of ILDs. These are areas of intensive ongoing research [26].

2.1 Clinical challenges

The prevalence of ILDs is low, and this already makes it difficult to be rec-
ognized. Their clinical features (such as shortness of breath, cough, and re-
strictive lung function patterns) are similar to those seen in common lung
diseases, therefore the early diagnosis is a challenge. Some patients present
for evaluation of cough and dyspnea several years before being diagnosed with
ILD, after receiving initial diagnoses of chronic obstructive pulmonary disease,
heart failure or other diseases.

Besides of the low prevalence, ILDs have no known clinical or radiologi-
cal predictive biomarkers, only risk factors of low specificity associated with
this disease have been identified (age, male sex, cigarette smoking, hepatitis
C infection, history of tuberculosis, history of pneumonia, COPD, exposure
to toxic substances [13]). Unless there is a specific suspicion for ILDs, the
diagnosis can be easily overlooked. The incorrect or delayed diagnosis leads
to worsening of the disease and the use of invasive and/or costly diagnostic
procedures (like biopsies) of questionable value.

Accurate diagnosis and classification of ILDs often require input from var-
ious medical specialists, including pulmonologists, radiologists, pathologists,
and rheumatologists. Coordinating and integrating the expertise of multiple
disciplines is not easy, particularly in regions with limited access to special-
ized medical resources. Management of ILDs and care for patients with ILDs
remain a challenge throughout the course of their disease for lack of disease-
modifier treatment options.
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2.2 Radiological challenges

The role of HRCT is critical for diagnosing ILDs. The different types of ILDs
express specific imaging features like reticulation, consolidation, micronod-
ules, emphysema, honeycombing, ground-glass opacity and a combination of
these, that are essential for diagnosis. Interpreting radiological findings can
be challenging as there is substantial inter-observer variability even between
experienced radiologists, and the imaging patterns often are mixed, and the
features observed overlap among different ILD subtypes. On the other hand,
visual evaluation of ILD by HRCT has little sensitivity to objective changes
in disease severity over short follow-up periods.

Image standardization is difficult to achieve, for normal lung tissue idiosyn-
crasy and artifacts, caused by patient movement during scanning, different
types of breathing. Though HRCT is the accepted standard to be used when
ILD is suspected, there are inconsistencies between CT technical character-
istics, different scanner manufacturers, models, acquisition protocols, and re-
construction algorithms. International collaborations would be very important
between Academia, Pharma Industry and Healthcare to develop comprehen-
sive guidelines for imaging standards and basic image-processing algorithms.

The most clinically meaningful information hiding within the very large
medical imaging datasets is generally unstructured, and require extensive pre-
processing (including segmentation, filtering, registration, and labeling) before
further analysis can occur. Defining the segment of interest for evaluation re-
quires manual or semi-manual annotation.

2.3 Image processing challenges

Image standardization is difficult to achieve, for normal lung tissue idiosyn-
crasy, and artifacts caused by patient movement during scanning, different
types of breathing. Though HRCT is the accepted standard to be used when
ILD is suspected, there are inconsistencies between CT technical character-
istics, different scanner manufacturers, models, acquisition protocols, and re-
construction algorithms. International collaborations would be very important
between Academia, Pharmacological Industry and Healthcare to develop com-
prehensive guidelines for imaging standards and image-processing algorithms.

The most clinically meaningful information hiding within the very large
medical imaging datasets is generally unstructured, and require extensive pre-
processing (including filtering, registration, and labeling) before further anal-
ysis can occur. Defining the segment of interest for evaluation requires manual
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or semi-manual annotation, therefore until the machine-learning mechanisms
reach their advanced stage of development, human pre-processing remains es-
sential.

The algorithms developed for image recognition still need to improve for
the precise classification of the patterns seen (honeycombing, reticulation and
ground glass opacity, etc.), especially when they appear mixed on the im-
ages studied. Multiple methods have been proposed for computer-aided object
recognition and classifying (multi-scale rotation invariant algorithms with eg.
Gabor filter, patch-based image representation methods and others), the op-
timal tool is yet to be found.

There is a pronounced need for a computer-based tool that operates on data
from radiological images and clinical data, that predicts ILDs and/or reliably
detects them at earlies (even subclinical) stages of the disease, and enables
monitoring of disease response to therapy.

3 Digital techniques for ILD diagnosis and monitor-
ing

There is a pronounced need for computer-based tools that operate on data
from radiological images and clinical domain, that predict ILDs and/or reliably
detect them at earlier (even subclinical) stages of the disease and enables their
longitudinal follow up and assessing the treatment outcomes.

A few decades ago only simple image analytics were used for image process-
ing purposes. The novel biomarkers based on radiography images have only
started to become available recently, their numbers are steadily increasing
with the implementation of complex image analysis based on machine learn-
ing techniques.

3.1 Quantitative CT

Quantitative CT (QCT) provides an alternative to the visual evaluation, that
is objective and reproducible by the use of computer-based techniques to ana-
lyze HRCT images. This method is based on simple statistical analysis of CT
attenuation values of each targeted pixel of the lung images, without studying
the correlation between them [4].

The only method commercialized and widely used to-date to quantify the
pulmonary tissue is CALIPER (Computer Aided Lung Informatics for Pathol-
ogy Evaluation and Rating), developed by Mayo Clinic of USA. The im-
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age quantification done by CALIPER is based on histogram signature map-
ping techniques trained through datasets confirmed by expert radiologists. As
part of the development for ILDs, the local histograms computed from the
15 x 15 x 15 neighborhood of each of the parenchymal voxel were compared
against the histogram of exemplars identified in the training phase, divided in 5
classes (emphysema, ground glass opacity, honeycombing, reticular infiltrates
and normal tissue). Quantitative discriminability of a number of pairwise dis-
similarity metrics based on the volume of interest histograms was examined
using multi-dimensional scaling. Of several techniques Cramer Von Mises Dis-
tance was found to be most consistent with the expert grouping. CALIPER
is easy to use and provides good support for ILD diagnosis and disease course
monitoring, its performance however leaves room for improvement. The corre-
lation of CALIPER results with physiologic parameters was generally strong
but the correlation with the radiologist assessment of disease type and severity
was only around 50%, hence can only be used in the context of clinical data
[7].

3.2 Complex networks

The new methods of computer aided diagnosis (CAD) for lung HRCTs only
provide a static evaluation of the images and require extensive computing
skills and infrastructure. In response to this challenge, a novel technique was
developed by Trusculescu et al. [31], built on a CN analytic approach for
imagistic aided diagnosis fitness for the possibility of achieving relevant data
for ILD management.

The method was developed on HRCT images from 65 patients with ILD and
31 with normal lung, acquired from Clinical Hospital of Infectious Diseases and
Pneumophysiology Dr. Victor Babes of Timisoara, Romania. Regions of inter-
est were marked by a radiologist with high experience in imagistic diagnosing
of ILDs. Three non-overlapping separate bands of Hounsfield Units (HU) have
been created in line with the categories of the characteristic attenuations of
the lung alterations. The images were then transformed into complex networks
according to specific predefined attachment rules, based on the HU values of
each pixel. Network nodes and connections have been defined based on the
similarities in HU values of neighboring pixels. CN measurements were done
for interconnectedness and size. Maximum degree number, total degree count
and average degree count were evaluated.

The method was successful for early disease detection in one of the three
bands (the one corresponding to ground glass opacity), partially successful in
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the other (reticulation) and not successful in the third (emphysema). When
used to assess disease course on sequential image sets for the same patient, the
method was highly successful by showing close correlation with the changes of
the clinical parameters [31].

3.3 Convolutional neural network-based methods

Substantial progress has been made in image recognition, with the advent of
CNN-based solutions following the availability of large-scale annotated datasets
like ImageNet which offered very comprehensive database of more than 1.2
million categorized natural images of 1000+ classes [15]. Obtaining datasets
as comprehensively annotated as ImageNet in the medical imaging domain
remains a challenge however, as data acquisition is difficult, and quality an-
notation is costly.

The implementation of machine-learning-based image analysis in the clinical
management of ILDs requires extensive data sets for training purposes. Given
the rarity of ILD access to high-quality medical images and clinical data is
costly and difficult.

Tables 1 and 2 summarize the results achieved by a selection of CNN-based
methods deployed in ILD prediction and diagnosis, presenting details of the
application, information on the used data volume, and the main performance
benchmark values claimed by the authors.

The solutions developed for detecting ILD patterns are broadly divided into
two categories: patch-based methods and slice-based methods, with the desire
to trend towards the latter, which allows a more generalized processing of
images, without the tedious manual work of the patch-based techniques.

3.3.1 Patch-based methods

A plethora of published works refer to patch-based classification of ILD pat-
terns, after manual extraction of patches by radiologists [29]. Informative fea-
tures are extracted from several ILD patches with the help of different feature
extraction techniques for the classification of ILD patterns. The selection of an
appropriate classifier is very important. Common methods used are k-nearest
neighbors [24], artificial neural network, and support vector machines [19].
The classification accuracy of these methods steadily increased over time.
An early method involving near-affine-invariant texture-based feature descrip-
tor based on wavelet transformation used to classify the five ILD patterns
(healthy, emphysema, GGO, fibrosis, and micronodules) showed a classifica-
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Paper Popula- | Data volume |Clinical applica- | Method Results
tion tion

Choi et|IPF 516 cases, 500 |Correlation with|Diagnostic proba-|hazard ratio 1.73 (CI95%: 1.40-

al [12] image  mon- |progressive  pul- | bility of UIP, with |[2.14, p < 107%)

tages each monary fibrosis |a deep CNN
Budzy- |IPF 169 patients, 6 | Association with | Extraction of | nine first-order texture features
kowski ROIs each genetic biomark- |radiomic features, |and one fractal feature were cor-
et al [10] ers (TOLLIP, | paired  with a|related with TOLLIP-1 mutations
MUC5B),  sur-|CNN classifier (AUC: 0.54 to 0.74); five Laws’ fil-
vival ter features were correlated with
TOLLIP-2 mutations (AUC: 0.53
to 0.70)

Park et|IPF 193 patients | Analysis of pre-|Texture-based Reticular Opacity (RO) is sole in-
al [23] dictive factors |automated  sys-|dependent predictor for FVC de-
for a  decline|tem used in-house |cline (p = 0.012; adjusted odds
in forced vital |software to quan-|ratio, 1.047). ROC for RO was
capacity (FVC) [tify  six = ILD|[0.641, optimal RO cutoff value was
imaging features|22.05% (sensitivity, 50.0%; speci-
vs changes in|ficity, 81.4%; negative predictive

FVC values value, 89.1%).

Table 2: Relevant studies in ILD prognostication
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Figure 1: The structure of the CNN used for patch-based recognition of ILD,
adapted from [2].

tion accuracy of 76.9% [16]. Another method based on texture and gradient
features for patch-based classification of the ILD patterns using support vector
machine, reported Fl-scores (F1 = 2 x (precision x recall)/(precision + recall))
for healthy, emphysema, GGO, fibrosis, and micronodules are 84%, 75.3%,
78.2%, 84.1%, and 85.7%, respectively [28].

The first deep CNN designed for lung pattern classification achieved an av-
erage Fl-score of 85.47% across 7 classes of CT image patches (6 typical ILD
patterns and healthy tissue). The network, shown in Figure 1, was built of 5
convolutional layers, each of them used kernels of 2 x 2 and Leaky ReLU as
activation function. The method used three dense layers with 7 outputs, in line
with the ILD image classes targeted: ground glass opacity, micronodules, con-
solidation, reticulation, honeycombing and a combination of GGO /reticulation
and healthy tissue. Training was done on a dataset of 14,696 image patches
extracted from 120 HRCT images obtained from healthcare institutions [2].

More recently, another such method reported Fl-score of 97.91%. This was
achieved with a deep CNN architecture built from six different convolutional
layers followed by batch normalization layers and ending with a fully connected
layer. The network used input patches of size 32 x 32 extracted from ILD
HRCT images. Each layer worked with kernel size of 2 x 2, with number of
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kernels gradually increasing layer to layer from 32 to 192. ReLLU was employed
as activation function. The learning of unlabeled data was done through an
unsupervised method. The results showed that the proposed CNN architecture
outperforms most of the state-of-the-art ones [19].

Another promising method has been recently reported to identify radio-
graphic patterns that precede the development of ILD with an average sensi-
tivity of 91.41% and average specificity of 98.18% across 8 classes of HRCT
pattern (healthy tissue, five interstitial features subtypes and two emphyse-
matous classes), on 37,424 radiographic tissues extracted from 208 CT images.
Deep learning approach was used on a highly complex ensemble of CNN archi-
tecture that comprises three different architectures such as 2D, 2.5D, and 3D
for the classification of ILD abnormalities. Each individual network was trained
from scratch from the database, the outputs of the networks are summed up in
a weighted manner and combined to form the overall output of the ensemble.
The resulting ensemble achieved a higher performance compared to each of the
individual models, and the reported CNN methods of the domain, showing the
potential of combined use of a suite of classifiers [9]. The network architectures
involved in this study are depicted in Figure 2.

The results achieved with patch-based classification methods are remark-
able, however their use is limited by computational challenges, the manual
annotation involved and their limitation to be used for screening of HRCT
patterns at slice level.

3.3.2 Slice-based methods

Early attempts to classify HRCT slices depending on the presence of pathol-
ogy used pretrained AlexNet, but reported poor classification results. More
complex solutions testing multiple systems (Cifarnet, AlexNet, GoogLeNet)
showed improved slice level classification accuracy of ILD patterns on HRCT
slices, the highest F1-Score achieved being with GoogLeNet, of 92% [27]. De-
tails of the deployed network structures are given in Figure 3.

Deep CNN network with dilated filters were reported to be successful to seg-
mentation of ILD patterns. The network proposed used input images of any
arbitrary size of lung HRCT and the generated outputs were label maps. The
network, as shown in Figure 4, consisted of eight convolutional layers having
different dilation rates that increase exponentially. This helped to increase the
receptive field while linearly growing the number of parameters. The perfor-
mance was evaluated on 172 HRCT slices collected from two hospitals such
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Figure 2: The CNN structures proposed by Bermejo-Peldez et al. [9].
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Figure 3: CNN architectures proposed by Shin et al, adapted from [27]. Each
Inception module contains six convolution layers, a pooling layer and a con-

catenate layer.
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Figure 4: The CNN structure proposed by Anthimopoulos et al, adapted from
3]

as Geneva University Hospital and Bern University Hospital. This network
achieved an accuracy of 81.8% [3].

Agarwala et al. [1] proposed a solution for localization of the typical ILD
patterns in a HRCT slice using a more efficient region-based convolutional
network (R-CNN) driven object detection network. GoogLeNet architecture
has been modified for lower complexity by using only 5 inception blocks instead
of 9 and used to extract the image features for faster object detection. The
features provided by the fifth inception block were used as proposal for finding
the targeted region. To overcome the limited amount of annotated training
data, data augmentation techniques (flip, rotation, change of contrast, and
addition of Gaussian noise) have been used. Six ILD patterns have been used
(Consolidation, Emphysema, Fibrosis, GGO, Micronodule and healthy tissue).
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The above-oultined method performed very well across all patterns, little less
for fibrosis, achieving F1-scores between 0.55 and 0.86. It is fast and accurate,
avoids the hassles of lung field segmentation and could be used in the screening
of ILD using HRCT image slices.

4 Public datasets of ILD-related images

Beyond the private datasets of Healthcare institutions, there are multiple data
sources and registries for ILD patients that provide access to radiography
images (mostly HRCT) and clinical data points for research purposes. The
most widely used open data sources are discussed below.

4.1 Lung Tissue Research Consortium database

The Lung Tissue Research Consortium database (LTRC-DB') was a resource
program of the National Heart, Lung, and Blood Institute that provides CT
scans, as well as biospecimens to researchers of the domain. The LTRC was
established in 2005 by the National Institutes of Health based on a coalition
of 4 major clinical centers from the USA: Mayo Clinic Rochester, University
of Michigan—Ann Arbor, University of Pittsburgh, and Temple University.
During its active years between 2005 to 2019, the LTRC’s main task was
to collect, store, and make available imaging samples and clinical data from
patients with various types of lung diseases. The LTRC sample and data set
was sourced from more than 4,200 patients, with over 100 of cases with one of
the several forms of ILDs.

4.2 Multimedia database of Interstitial Lung Diseases

The multimedia database for ILDs (MD-ILD?) was developed as part of the
Talisman project at the University Hospital of Geneva and is made publicly
available. This highly valuable database is specific to ILDs, and contains stan-
dard HRCT image series of 10-mm slice spacing. Annotations of pathological
lung segments together with clinical parameters from patients with patholog-
ically proven diagnoses of ILDs have been obtained from expert radiologists
and treating clinicians. There are 128 ILD cases in the database with one
of the 13 histological diagnoses of ILDs, 108 image series are available with

Thttps://ltrcpublic.com
2http://medgift.hevs.ch/wordpress/databases/ild-database/
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1,946 delineated polygons of annotated lung parenchyma patterns, along a
comprehensive dataset of 99 clinical parameters related to ILDs.

4.3 Inselspital Interstitial Lung Diseases database

The Inselspital ILD database (INSEL-DB) is a smaller but very well structured
library, which has two main parts, based on the accompanying annotations.
The first part consists of 60 HRCT image series of 9-mm slice spacing lung
scans with annotated tissue from 2 radiologists (INSEL-DB-Seg), and the sec-
ond consists of 105 HRCT lung scans provided by the ILD board of Bern
University Hospital. The HRCT scans have been collected retrospectively, be-
tween October 2015 and June 2017. Demographic, clinical and laboratory data
for each patient (e.g. sex, age, smoking history, duration of illness, lung func-
tion tests, results of blood tests) was also collected and made available to
researchers.

4.4 AIFPR: Australian Idiopathic Pulmonary Fibrosis reg-
istry

A large regional library of patients data has been developed in Australia by
University of Sydney?. AIPFR has been developed in Australia by University
of Sydney3 with IPF cases recorded between February 2011 and December
2020. A total of 21 sites participated across Australia and New Zealand col-
lecting impressively large datasets from over 2,700 patients enrolled in the
program. Longitudinal follow-up data was also collected every 6 months when
possible. The dataset collected includes clinical parameters (PFT), patient re-
ported outcome (PRO) data, HRCT images and blood samples data. Data
collection finished on 31 December 2021, the data continues to be available for
research.

4.5 Open Source Imaging Consortium (OSIC) data repository

OSIC, an international group of leading experts, established OSIC Data Repos-
itory? on 22nd of May, 2019. This global, not-for-profit organization is a co-
operative and open-source effort between academia, healthcare and industry
to enable rapid advances in the detection and diagnosis of these conditions
through digital imaging and machine learning.

3https://www.sydney.edu.au/medicine-health /our-research /research-centres/aildr.html
“https://www.osicild.org/
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OSIC was created to drive collaboration between distant partners and to
unite their capabilities. It was created to use artificial intelligence and other
technological advances to build, and learn from, the largest and most diverse
image and clinical database for fibrotic lung diseases. To-date OSCI has over
15,000 anonymized scans with accompanying clinical data, with over 106,000
anonymized data points from 1,843 patients with various forms of ILD. The
enrollment of participants is ongoing.

5 Discussion

Over the recent years a myriad of computational techniques emerged in the
support of radiographic image processing for ILDs. The example solutions dis-
cussed in the earlier sections outline encouraging trends, but the breakthrough
has not yet been achieved. Many of the developed tools are highly performing,
the competition for finding the optimal method is advanced and still ongoing.
An ultimate breakthrough might not be possible however without addressing
the key needs in image standardization, harmonization of definitions and clas-
sifications. This is not uncommon in the field of digital image-processing. For
example, the automatic segmentation of brain tumors based on MRI data has
been a widely researched topic for at least three decades. The development of
segmentation methodology in the beginnings was similar to the current case of
ILD: research groups were elaborating methods and techniques based on own
data collections, usually captured by a low number of medical devices. Conse-
quently their methods may have learned specific features of tumors together
with parameters of the imaging equipment. Further on, the accuracy bench-
mark values were not objectively comparable with each other, because not
even the testing data differed from team to team, but also the goals of the seg-
mentation. Some were using single channel MRI volumes or only slices (cross
sections), others lately turned to multi-spectral volumetric MRI data [17]. Tt
is also necessary to mention, that this field grew together with the spectacu-
lar advances in the available computation speed and dynamic storage space,
and the latest revolution of artificial intelligence brought by CNNs and deep
learning. But the greatest factor in the development of brain tumor segmenta-
tion techniques represents the Brain Tumor Segmentation (BraTS) challenge
[22, 5] organized yearly since 2012 by the Medical Image Computation and
Computer-Assisted Interventions (MICCAI®) conference, which provided the
common data, common goals and a common evaluation framework. BraTS

Shttps://www.miccai.org
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thus provoked the explosion in the field that is directly responsible for thou-
sands of methods and works elaborated in this field. The amount of training
and testing data, and also the variability of data sources widened year by
year, and new questions or secondary goals were defined (e.g. give an estimate
of the time the patient lived after the MRI data were recorded). The initial
training dataset contained only 30 records, and they were not even format-
ted to the same volume size. The experience accumulated year by year made
the BraTS challenge an easily accessible research for all, and this led to the
exponential growth of developed methods. The whole arsenal of artificial in-
telligence got involved in various solutions not only in the direct classification
of pixels, superpixels or patches, but also in the preprocessing of the data and
postprocessing of the classification outcome to optimize the accuracy of the
final result [18].

The history of BraTS could be considered a guideline in the field of auto-
matic processing of ILD-related image and medical data. An open challenge
could bring considerable advancement in the development of segmentation
methods. The most appropriate goal to set could be the automatic segmenta-
tion (localization and quantification) of fibrotic tissues from series of chest CT
scans that come from the same patient during observation time, and eventually
to give some prognosis of the illness using further available medical data. As
it was already stated, the organization of this challenge would require estab-
lishing a collection of ILD patient records, image data collected from multiple
institutions and various CT scanners, each record accompanied by the same set
of medical parameters, and a ground truth established by competent human
experts. Building up these foundations could help the scientific community in
understanding the background of ILDs and could cause spectacular advances
in the methodology of ILD treatment.

6 Conclusion

Research on imaging biomarkers in ILD is advancing rapidly. Machine learning
stands at the core of this process, supported by on deep-learning-based image
analysis. Several clinical challenges could be addressed by this technology like
the prediction, early detection and precise categorisation of ILDs, along the
improved monitoring of the disease’s natural course and response to therapy.
The results seen with Quantitative CT, Complex Networks, and Convolutional
Neural Networks hold the promise of a brighter future.
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The accuracy of recognizing ILD features in HRCT images already exceeds
90% in some of the methods, however, the most precise techniques are still ex-
perimental and need advanced computational resources and substantial man-
ual work for training and annotations. In an ideal world the image recognition
techniques should be integrated onto the everyday Radiology and Pulmonology
practice to operate on entire CT slices, without any specific pre-work from the
radiologists. There are still unmet needs both to increase sensitivity and speci-
ficity of the methods, as well as to achieve solutions that run seamlessly on
regular healthcare I'T infrastructure. The integration of rapidly evolving digital
biomarkers with the physiological, proteomic, and genomic data for patients
will offer the greatest patient benefit.
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