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Abstract. Let G be a connected graph with vertex set V(G)and edge set
E(G). The eccentric connectivity index of G is defined as

∑
v∈V(G)

ec(v)deg(v)

where ec(v) the eccentricity of a vertex v and deg(v)is its degree and de-
noted by εc(G). In this paper, we investigate the eccentric connectivity
index of the transformation graph Gxy+.

1 Introduction

A topological index is a number that describes a molecular structure and is
obtained from the associated (hydrogen-depleted) molecular graph. Topologi-
cal indices are mathematical properties of graphs that are utilized to establish
relationships between the structural properties of chemical molecules and their
physical attributes. The aforementioned indices are extensively utilized in the
fields of quantitative structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR), chemical documentation and drug
design studies [6, 7, 8, 11, 13, 15].
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112 A. Aytaç , B. Vatansever

In pharmaceutical research, QSAR data is utilized to identify the most viable
compounds with respect to a specific property, thereby reducing the number of
compounds that must be synthesized in the process of designing new drugs. De-
spite the fact that many topological indices have been described, only a small
number of them have been used effectively in QSAR investigations. These
include Wiener’s index, Balaban’s index, Hosoya’s index, Randic’s molecular
connectivity index, and the eccentric connectivity index [2, 10, 9, 21]. Eccen-
tricity has been used to create a variety of indexes [3, 12, 4, 5, 14, 20] . Some
of these are eccentric connectivity index, graph shape index, and connective
eccentricity index. In this study, we discussed the index which is defined, in
1997, by Sharma et al., as eccentric connectivity [14]. The eccentric connec-
tivity index εc(G) of G is defined as εc(G) =

∑
v∈V(G)

ec(v) deg(v).

Consider a simple connected graph denoted by G with its set of vertices
represented as V(G) and the set of edges as E(G). The metric that quantifies
the distance between two vertices u and v in a graph G, denoted by dG(u, v),
is defined as the minimum number of edges that must be traversed in order
to travel from u to v along the shortest path in G. The vertex eccentricity,
denoted as ecG(u), in a graph G refers to the greatest distance between vertex
u and any other vertex in G. The mathematical definition of the diameter,
denoted as d, of a graph G is the largest possible value of the eccentricities
of all vertices in G. The definition of the radius of a graph G is such that
it corresponds to the minimum value of the eccentricities of the vertices that
comprise G. In graph theory, a vertex in a graph G is considered to be central
if its eccentricity is equivalent to the radius of G. The number of edges that
are connected to a vertex w ∈ V(G) is defined as the degree of the vertex,
denoted by degG(w). A graph theory term for a vertex with only one adjacent
vertex is a pendant vertex, also known as a leaf vertex, of a given graph G.
The open neighborhood and closed neighborhood of a vertex v in a graph G

are defined as NG (v) = {u ∈ V (G) : uv ∈ E (G)} and NG [v] = NG (v) ∪ {v},
respectively. Let the set Ni

G(v) be the set of vertices where the vertex v is at
a distance i in the graph G. That is, Ni

G(v) = {u ∈ V(G) |d(v, u) = i }. Thus,
we have N(v) = NG(v) = N1

G(v) and N [v] = NG [v] = N1
G(v) ∪ {v} [16].

The vertex set of the complement Ḡ of a graph G consists of the same
vertices as G, but in Ḡ, two vertices are adjacent if and only if they are not
adjacent in G. On the other hand, the line graph L(G) of G is a graph whose
vertex set is composed of the edges of G, and two vertices in L(G) are adjacent
if and only if the corresponding edges are adjacent in G [16].
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The transformation graph Gxyz is a graph whose vertex set is V(G)∪ E(G),
and s, t ∈ V (Gxyz). The vertices s and t are adjacent in Gxyz if and only if
one of the following properties holds [1, 19, 18, 17]:

(P1) Consider s, t ∈ V(G). If x = +, then t ∈ NG(s); while if x = −, then
t /∈ NG(s).
(P2) Consider s, t ∈ E(G). If y = +, then t ∈ NG(s); while if y = −, then

t /∈ NG(s).
(P3) Consider s ∈ V(G), t ∈ E(G). If z = +, then s is the end-vertex of t;

while if z = −, then s is not the end-vertex of t.

In this paper, we study about eccentric connectivity index of the transforma-
tion graph Gxy+. Various notations are employed to enhance the comprehen-
sibility of the proofs of the aforementioned theorems. Consider two arbitrary
vertices s and t in the graph G. In the context of graph theory, it is customary
to denote the edge between two adjacent vertices s and t in a graph G as
est. Moreover, the aforementioned edge is denoted by the vertex st within the
graph Gxyz.

Theorem 1 [22] Let G be a connected graph with m edges. Then,

2m(rad(G)) ≤ εc(G) ≤ 2m(diam(G)).

2 Eccentric connectivity index for the graph Gxy+

We begin this subsection by determining the eccentric connectivity index of
the transformation graph Gxy+ when G is a specified family of graphs.

Theorem 2 When xyz = +−+, let the transformation graph of the graph G

be G+−+ and q is the number of edges of the graph G+−+.

(a) If G ∼= Pn (n ≥ 6), then εc(G+−+) = 2n2 + 6n− 4;

(b) If G ∼= Cn (n ≥ 6), then εc(G+−+) = 2n2 + 10n;

(c) If G ∼= Kn (n ≥ 4), then εc(G+−+) = (n− 1)
(
n3−5n2+18n

2

)
= 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc(G+−+) = 10n;

(e) If G ∼= W1,n (n ≥ 3), then εc(G+−+) = 6n2 + 10n = 4q;

(f) If G ∼= Km,n (m,n ≥ 2), then εc(G+−+) = 2mn(mn−m− n+ 7);
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Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily seen
that degG+−+(x) = degG+−+(y) = 2 and for all v ∈ V(G) − {x, y} degG+−+(v) =
4. Furthermore, degG+−+(xNG(x)) = degG+−+(yNG(y)) = n − 1 and for uv ∈
V(L(G)) − {xNG(x), yNG(y)) degG+−+(uv) = n− 2. The eccentricity value of
the vertices of the graph is calculated according to the vertices as follows.

� e(u) value of for all u ∈ V(G):
Let A = NG(u), B = V(G) −NG[u], C = uNG(u), D = V(L(G)) − C.
The shortest distance between the vertex u and the vertices in A∪C, in
D ∪ N2

G(u) and in V(G) − (NG[u] ∪ N2
G(u)) is 1, 2 and 3, respectively.

Thus, we get e(u) = 3.

� e(uv) value of for all uv ∈ V(L(G)):
Let A = N

L(G)
(uv) and B = V(L(G)) −N

L(G)
[uv]. The shortest distance

between the vertex uv and the vertices in A ∪ {u, v}, in NG(u) − {v} ∪
NG(v) − {u} ∪ NG(A) and in B = N

L(G)
(A) − N

L(G)
[uv] is 1, 2 and 2,

respectively. Thus, we get e(uv) = 2.
With the results we found, we get, for n ≥ 6,

εc
(
G+−+

)
=
∑

deg(v)e(v)

= 2 · 2 · 3+ (n− 2) · 4 · 3+ 2 · (n− 1) · 2+ (n− 3)(n− 2) · 2
= 2n2 + 6n− 4.

(b) We can easily observe that for ∀v ∈ V(G)degG++(v) = 4 and for uv ∈
V(L(G)) degG+(uv) = n − 1. The eccentricity value of the vertices of the
graph is calculated according to the vertices as follows.

� e(u) value of ∀u ∈ V(G) : Let A = NG(u), B = V(G) − NG[u], C =
uNG(u) and D = V(L(G))−C. The shortest distance between the vertex
u and the vertices in A∪C, in D∪N2

G(u) and in V(G)−
(
NG[u] ∪N2

G(u)
)

is 1, 2 and 3, respectively. Thus, we get e(u) = 3.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = N
L(G)

(uv) and B = V(L(G)) −

N
L(G)

[uv]. The shortest distance between the vertex uv and the vertices

in A∪ {u, v}, in NG(u)− {v}∪NG(v)− {u}∪NG(A) and in B = N
L(G)

(A)−

N
L(G)

[uv] is 1, 2 and 2, respectively. Thus, we get e(uv) = 2.

With the results we found, we get, for n ≥ 6,

εc (G+−+) =
∑

deg(v)e(v) = n · 4 · 3+ n · (n− 1) · 2 = n2 + 10n.
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(c) It can easily be observed that for ∀v ∈ V(G) degG+−+(v) = 2(n − 1)

and for uv ∈ V(L(G)) degG+−+(uv) = n2−5n+10
2 . The eccentricity value of the

vertices of the graph is calculated according to the vertices as follows.

� e(u) value of ∀u ∈ V(G) : Let A = NG(u), B = V(G) −NG[u] = ∅, C =
uNG(u) and D = V(L(G))−C. The shortest distance between the vertex
u and the vertices in A∪C and in D = N

L(G)
(C) is 1 and 2, respectively.

Thus, we get e(u) = 2.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = N
L(G)

(uv), B = V(L(G)) −

N
L(G)

[uv], C = NG(uv) and D = V(G) − C. The shortest distance be-

tween the vertex uv and the vertices in A∪C, in B = N
L(G)

(A)−N
L(G)

[uv]

and D is 1, 2 and 1, respectively. Thus, we get e(uv) = 2. With the results
we found, we get, for n ≥ 4,

εc
(
G+−+

)
=
∑

deg(v)e(v) = n.2(n− 1).2+
n(n− 1)

2
.
n2 − 5n+ 10

2
.2

= (n− 1)

(
n3 − 5n2 + 18n

2

)
Furthermore, since the graph’s vertices have an eccentricity value of 2,
according to Theorem 1, εc (G+−+) = 4q where q is the number of edges
of the graph G+−+.

(d) Let c be the central vertex of the graph G. It is easily seen that degG+−+(c)
= 2n and for ∀v ∈ V(G)− {c} degG+−+(v) = 2. Since the structure of L (K1,n)
consists of n isolated vertices, degG+−+ (cNG(c)) = 2. Also, e(c) = 1 and for
∀w ∈ V (G+−+) − {c}, e(w) = 2.

With the results we found, we get, for n ≥ 3,
εc (G+−+) =

∑
deg(v)e(v) = 2 · n+ 2 · n · 2 · 2 = 10n.

(e) Let c be the central vertex of the graph G. It is easy to see that
degG+−+(c) = 2n and for ∀v ∈ V(G) − {c} degG+−+(v) = 6. For the ver-
tices corresponding to the edges connecting the central vertex and the ver-
tices on the cycle graph, degG+−+ (cNG(c)) = n and for ∀uv ∈ V(L(G)) −
{cNG(c)}degG+(uv) = 2n− 3. The graph’s vertices have an eccentricity value
of 2.

With the results we found, we get, for n ≥ 3,

εc
(
G+−+

)
=
∑

deg(v)e(v) = 1·2n·2+n·6·2+n·n·2+n·(2n−3)·2 = 6n2+10n.
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Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G+−+) = 4q where q is the number of edges of the
graph G+−+.

(f) While the degree of m vertices in the graph G is degG+−+(v) = 2n,
the degree of n vertices is degG+−+(v) = 2m. Since an edge in the graph G

is connected to (m − 1) + (n − 1) edges, each vertex in the graph L(G) is
adjacent to (m − 1) + (n − 1) vertices. Therefore, in the graph L(G), each
vertex is adjacent to mn − 1 − (m + n − 2) vertices. Therefore, for ∀uv ∈
V(L(G)) degG+−+(uv) = mn − m − n + 3. The graph’s vertices have an
eccentricity value of 2.

With the results we found, we get, for m,n ≥ 2

εc
(
G++

)
=
∑

deg(v)e(v)

= m · 2n · 2+ n · 2m · 2+m · n(mn−m− n+ 3) · 2
= 2mn(mn−m− n+ 7).

Furthermore, since the graph’s vertices have an eccentricity value of 2, accord-
ing to Theorem 1, εc (G++) = 4q where q is the number of edges of the graph
G+−+.

The theorem is thus proved. �

Theorem 3 When xyz = −++, let the transformation graph of the graph G

be G−++ and q is the number of edges of the graph G−++.

(a) If G ∼= Pn (n ≥ 6), then εc(G−++) = 2n2 + 10n− 18;

(b) If G ∼= Cn (n ≥ 6), then εc(G−++) = 2n2 + 10n;

(c) If G ∼= Kn (n ≥ 3), then εc(G−++) = 2n2(n− 1) = 4q;

(d) If G ∼= W1,n (n ≥ 3), then εc(G−++) = 4n2 + 26n;

(e) If G ∼= Km,n (m,n ≥ 2), then εc(G−++) = 2(m+n)(mn+m+n−1) = 4q.

Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily
seen that for ∀v ∈ V(Ḡ) degG++(v) = n−1. Furthermore, degG−++ (xNG(x)) =
degG−++ (yNG(y)) = 3 and for uv ∈ V(L(G))− {xNG(x), yNG(y)}degG−++(uv)
= 4. The eccentricity value of the vertices of the graph is calculated according
to the vertices as follows.



Eccentric conn. index in trans. graph Gxy+ 117

� e(u) value of ∀u ∈ V(Ḡ) : Let A = NḠ(u), B = V(Ḡ) − NḠ[u], C =
NL(G)(u) and D = V(L(G)) − C. The shortest distance between the
vertex u and the vertices in A∪C and in B∪D is 1 and 2, respectively.
Thus, we get e(u) = 2.

� e(uv) value of ∀uv ∈ V(L(G)) : Let A = NḠ(uv), B = V(Ḡ) − NḠ(uv)
and C = NL(G)(uv). The shortest distance between the vertex uv and

the vertices in A∪C, in B and in V(L(G)) −
{
NL(G)[uv] ∪N2

L(G)(uv)
}

is

1, 2 and 3, respectively. Thus, we get e(uv) = 3.

With the results we found, we get, for n ≥ 6, we have

εc
(
G−++

)
=
∑

deg(v)e(v) = n·(n− 1)·2+ 2·3·3+ (n− 1− 2)·4·3

= 2n2 + 10n− 18.

(b) It is easily seen that for ∀v ∈ V(Ḡ) degG−++(v) = n − 1 and for ∀uv ∈
L (Pn) degG−++(uv) = 4. As in Theorem 2 (a), we get eccentricity value for
∀u ∈ V(Ḡ) and ∀uv ∈ V(L(G)) is e(u) = 2 and e(uv) = 3, respectively.

With the results we found, we get, for n ≥ 6, we have
εc (G−++) =

∑
deg(v)e(v) = n(n− 1)2+ n · 4.3 = 2n2 + 10n.

(c) We can easily observe that for ∀v ∈ V(Ḡ) degG−++(v) = n− 1 and for
all uv ∈ L(G) degG−++(uv) = 2n− 2. It is also seen that he eccentricity value
of ∀u ∈ V (G−++)is e(u) = 2. With the results we found, we get, for n ≥ 5,

εc (G−++) =
∑

deg(v)e(v) = n(n− 1)2+ n(n−1)
2 2(n− 1)2 = 2n2(n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem1, εc (G−++) = 4q where q is the number of edges of the
graph G−++.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG−++(c) = n and for ∀v ∈ V(Ḡ) − {c}degG−++(v) = n. For the vertices
corresponding to the edges connecting the central vertex and the vertices
on the cycle graph, degG−++ (cNG(c)) = n + 3 and for ∀uv ∈ V(L(G)) −
{cNG(c)}degG−++(uv) = 6. The graph’s vertices have an eccentricity value of
2.

With the results we found, we get, for n ≥ 3,

εc (G−++) =
∑

deg(v)e(v) = (n+1) ·n ·2+n(n+3)2+n ·6 ·3 = 4n2+26n.
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(e) In the graph Ḡ, the degree of each vertex v is degG−++(v) = m+ n− 1.
Since an edge in the graph G is connected to (m − 1) + (n − 1) edges, each
vertex in the graph L(G) is adjacent to (m−1)+(n−1) vertices. Therefore,
for ∀uv ∈ V(L(G)) degG−++(uv) = (m − 1) + (n − 1) + 2 = m + n. The
graph’s vertices have an eccentricity value of 2.

With the results we found, we get, for m,n ≥ 2,
εc (G−++) =

∑
deg(v)e(v) = 2(m+ n)(mn+m+ n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G−++) = 4q where q is the number of edges of the
graph G−++.

The theorem is thus proved. �

Theorem 4 When xyz = −−+, let the transformation graph of the graph G

be G−−+, and q is the number of edges of the graph G−−+.

(a) If G ∼= Pn (n ≥ 3), then εc (G−−+) = 4
(
n2 − 2n+ 2

)
= 4q;

(b) If G ∼= Cn (n ≥ 4), then εc (G−−+) = 4
(
n2 − n

)
= 4q;

(c) If G ∼= Kn (n ≥ 4), then εc (G−−+) = n(n− 1)(n− 7)(n+ 2)/2 = 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc (G−−+) = 2n2 + 6n = 4q;

(e) If G ∼= W1,n (n ≥ 4), then εc (G−−+) = 8n2 − 4n = 4q.

Proof. (a) Let x and y be the pendant vertices of the graph G. It is easily seen
that for ∀v ∈ V(Ḡ) degG−−+(v) = n − 1. Furthermore, degG−−+ (xNG(x)) =
degG−−+ (yNG(y)) = (n − 2 − 1) + 2 = n − 1 and for ∀uv ∈ V(L(G)) −
{xNG(x), yNG(y)} degG(uv) = n− 2. The graph’s vertices have an eccentricity
value of 2.

With the results we found, we get, for n ≥ 3, we have

εc
(
G−−+

)
=
∑

deg(v)e(v) = n · (n− 1) · 2+ 2 · (n− 1) · 2+ (n− 3)(n− 2)2

= 4
(
n2 − 2n+ 2

)
.

(b) We can easily observe that for ∀v ∈ V (G−−+) degG−−+(v) = n − 1. The
graph’s vertices have an eccentricity value of 2. With the results we found, we
get, for n > 3,

εc (G−−+) =
∑

deg(v)e(v) = 2n(n− 1)2 = 4n(n− 1).
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(c) We get for ∀v ∈ V(Ḡ) degG−−+(v) = n − 1 and ∀uv ∈ V(L(G))
degG−−+(uv) =

(
n2 − 5n+ 10

)
/2. The graph’s vertices have an eccentricity

value of 2. With the results we found, we get, for n > 3,

εc
(
G−−+

)
=
∑

deg(v)e(v) = n(n− 1)2+ n(n− 1)/2.
(
n2 − 5n+ 10

)
/2.2

= n(n− 1)(n− 7)(n+ 2)/2.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG−−+(c) = n and for ∀v ∈ V(Ḡ) − {c}degG−−+(v) = n. Since L (K1,n)
contains n isolated peaks, for ∀uv ∈ V(L(G)) degG−−+(uv) = 2. The graph’s
vertices have an eccentricity value of 2. With the results we found, we get, for
n ≥ 3,

εc (G−−+) =
∑

deg(v)e(v) = (n+ 1) · n · 2+ n · 2 · 2 = 2n2 + 6n.

(e) Let c be the central vertex of the graph G. It is easy to see that ∀v ∈ V(Ḡ)
degG−−+(v) = n. For the vertices corresponding to the edges connecting the
central vertex and the vertices on the cycle graph, degG−−+ (cNG(c)) = n and
for ∀uv ∈ V(L(G)) − {cNG(c)} degG−−+(uv) = 2n − 3. The graph’s vertices
have an eccentricity value of 2.

With the results we found, we get, for n ≥ 4,

εc (G−−+) =
∑

deg(v)e(v) = (n+1)·n·2+n·n·2+n·(2n−3)2 = 2n(4n−2).

Because of the form of the graph G−−+ (G ∼= Pn, Cn, Kn, K1,n,W1,n), it can
be easily seen from above that the graph’s vertices have an eccentricity value
of 2. According to Theorem 1, we get εc (G−−+) = 4q where q is the number
of edges of the graph G−−+.

The theorem is thus proved. �

Theorem 5 When xyz = +++, let the transformation graph of the graph G

be G+++and q is the number of edges of the graph G+++.

(a) If G ∼= Cn (n ≥ 3), then εc (G+++) = 8n
⌈
n
2

⌉
;

(b) If G ∼= Pn (n ≥ 5), then εc (G+++) = 6(n− 1)2;

(c) If G ∼= Kn (n ≥ 3), then εc (G+++) = 2
(
n2 + n

)
(n− 1) = 4q;

(d) If G ∼= K1,n (n ≥ 3), then εc (G+++) = 2n2 + 8n;

(e) If G ∼= W1,n (n ≥ 5), then εc (G+++) = 2n2 + 46n.
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Proof. (a) The graph G+++ is a 4-regular graph. We get that the graph’s
vertices have an eccentricity value of

⌈
n
2

⌉
. With the results we found, we get,

for n ≥ 3, εc (G++) =
∑

deg(v)e(v) = 8n
⌈
n
2

⌉
.

(b) Let x and y be the pendant vertices of the graph G. It is easily seen
that degG+++(x) = degG+++(y) = 2 and for ∀v ∈ V(G)− {x, y} degG+++(v) =
4. Furthermore, degG+++ (xNG(x)) = degG+++ (yNG(y)) = 3 and for
∀uv ∈ V(L(G)) − {xNG(x), yNG(y)) degG+++(uv) = 4. There occur two cases
depending on n for the graph’s vertices’ eccentricity values.

To make the proof clearer, let the n vertices of G be v1, v2, v3 . . . vn−1,, vn
and the n− 1 vertices of L(G) be v1v2, v2v3, v3v4, . . . , vn−1vn.
Case 1. For n even. By the definition of the eccentricity value, for every

vertex of G, it can easily be observed that,

e
(
vn

2

)
=e
(
vn

2
+1

)
, e
(
vn

2
−1

)
= e
(
vn

2
+2

)
, . . . , e (v2)= e(vn−1) , e (v1) = e (vn) .

Thus, we have e (vi) = e
(
vn−(i−1)

)
= n− i, where i ∈ {1, 2, . . . , n/2}.

For every vertex of L(G), we receive the following equalities.

e
(
vn

2
−1vn

2

)
= e

(
vn+2

2
vn+4

2

)
, e
(
vn−4

2
vn−2

2

)
= e

(
vn+4

2
vn+6

2

)
, . . . , e (v2v3) =

e (vn−2vn−1) , e (v1v2) = e (vn−1vn). These value are e (vjvj+1)=e
(
vn−jvn−(j−1)

)
= n− j, where j ∈ {1, 2, . . . , (n/2) − 1} and e

(
vn

2
vn

2
+1

)
= n− n

2 .

With the results we found, we get, for n ≥ 6,

εc
(
G+++ = 2

2(n− 1) +

n−2∑
i=n/2

4i

+ 2

3(n− 1) +

n−2∑
j=(n+2)/2

4j

+ 4
n

2

= 6n2 − 12n+ 6 = 6(n− 1)2.

Case 2. For n odd. The eccentricity values for every vertex of G are

e
(
vn−1

2

)
= e

(
vn+1

2
+1

)
, e
(
vn−3

2

)
= e

(
vn+1

2
+2

)
, . . . , e (v2) = e (vn−1) ,

e (v1) = e (vn) .
It is easy to see that e (vi) = e

(
vn−(i−1)

)
= n − i where i ∈

{
1, 2, . . . , n−1

2

}
and e

(
vn+1

2

)
= n − n+1

2 . Since the vertices in the L(G) subgraph are even

with degrees, the eccentricity values of the vertices are as in Case 1.
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With the results we found, we get, for n ≥ 5,

εc
(
G+++

)
=2

2(n− 1)+

n−2∑
i=(n+1)/2

4i

+4
n− 1

2
+2

3(n− 1)+

n−2∑
i=(n+1)/2

4i


= 6n2 − 12n+ 6 = 6(n− 1)2.

(c) We get for ∀v ∈ V(G) degG+++(v)=2(n−1) and ∀uv∈V(L(G)) degG+++(uv)
= 2(n− 1). The graph’s vertices have an eccentricity value of 2. With the re-
sults we found, we get, for n ≥ 3,

εc (G+++) =
∑

deg(v)e(v) = 2
(
n2 + n

)
(n− 1).

Furthermore, since the graph’s vertices have an eccentricity value of 2, ac-
cording to Theorem 1, εc (G+++) = 4q where q is the number of edges of the
graph G+++.

(d) Let c be the central vertex of the graph G. It is easy to see that
degG+++(c) = 2n and for ∀v ∈ V(G) − {c} degG+++(v) = 2. Since the struc-
ture of the L(G) subgraph is a complete graph with n vertices, for ∀uv ∈
V(L(G)) degG+++(uv) = n + 1. Also, it is easily seen that e(c) = 1 and for
∀v ∈ V (G+++) − {c} e(v) = 2.

With the results we found, we get, for n ≥ 3,

εc (G+++) =
∑

deg(v)e(v) = 2n+ n · 2 · 2+ n · (n+ 1)2 = 2n2 + 8n.

(e) The vertex set of G+++ can be partitioned into four subsets as

V1 (G
+++); central vertex c of G. degG+++(c) = 2n.

V2 (G
+++) = V(G) − {c}. For ∀u ∈ V2 (G

+++) , degG+++(u) = 6.

V3 (G
+++): the {cNG(c)} vertices in L(G). For ∀xy ∈ V3 (G

+++) degG+++(xy)
= n+ 3.

Furthermore, the vertices of V3 (G
+++) are a complete graph in themselves.

V4 (G
+++); the vertices in L(G) formed by the edges of the graph Cn. For

∀xy ∈ V4 (G
+++) degG+++(xy) = 6.
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The eccentricity values of the vertices are as follows: If the central vertex c,
then for ∀u ∈ V2 (G

+++)d(c, u) = 1, for ∀xy ∈ V3 (G
+++)d(c, xy) = 1 and for

∀xy ∈ V4 (G
++)d(c, xy) = 2. Thus, we get e(c) = 2.

If v ∈ V2 (G
+++), then d(c, v) = 1, for ∀u ∈ V2 (G

+++)−NG[v] d(v, u) = 2,
for ∀xy ∈ V3 (G

++) d(v, xy) ≤ 2 and for ∀xy ∈ V4 (G
+++)d(v, xy) ≤ 3. Hence,

we have e(v) = 3. Similarly, we have e(xy) = 2 for ∀xy ∈ V3 (G
+++) and

e(xy) = 3 for ∀xy ∈ V4 (G
+++). With the results we found, we get, for n ≥ 5,

εc (G+++) =
∑

deg(v)e(v) = 4n+ 18n+ n(n+ 3)2+ 18n = 2n2 + 46n. �
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