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Abstract. E-super arithmetic graceful labelling of a graph G is a
bijection f from the union of the vertex set and edge set to the set
of positive integers (1,2,3,...|V(G) U E(G)|) such that the edges have
the labels from the set {1,2,3,...,|E(G)[} and the induced mapping f*
given by f*(uv) = f(u) + f(v) — f(w) for uv € E(G) has the range
{IVIG)UE(G)[+ T, IV(G) UE(G)[+2,...,[V(G)| + 2[E(G)[}

In this paper we prove that Hi(m, m) and Hg)(m, m) and chain of
even cycles C4 r, Cg n are E-super arithmetic graceful.

1 Introduction

Rosa [9] in 1967, called a function f a 3-valuation of a graph G with q edges if
f is an injection from the vertices of G to the set {0,1,..., g} such that when
each edge xy is assigned the label [f(x) — f(y)|, the resulting edge labels are
distinct. Golomb [3] subsequently called such labelling graceful.
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In 1970 Kotzig and Rosa [5] defined a magic valuation of a graph G(V,E)
as a bijection f from VU E to {1,2,...,|V U E|} such that for all edges xy,
f(x) + f(y) + f(xy) is constant (called the magic constant).

Acharya and Hegde [1] have defined (k, d)-arithmetic graphs.

Let G be a graph with q edges and let k and d be positive integers. A la-
belling f of G is said to be (k, d)-arithmetic if the vertex labels are distinct
nonnegative integers and the edge labels induced by f(x) + f(y) for each edge
xy are kK, k+d,k+2d,...,k+ (q—1)d. The case where k =1 and d = 1 was
called additively graceful by Hegde [4].

J. A. Gallian [2] surveyed numerous graph labelling methods.

V. Ramachandran and C. Sekar [8] introduced ( 1,N)-arithmetic labelling.

A labelling of G(V,E) is said to be E-super if f(E(G)) ={1,2,3,...,[E(G)|}

MacDougall, Slamin, Miller and Wallis [6] introduced the notion of a vertex-
magic total labelling in 1999. For a graph G(V,E) an injective mapping f
from V UE to the set {1,2,...,|V|+|E|} is a vertex-magic total labeling if
there is a constant k, called the magic constant such that for every vertex v,
f(u) + Zf(vu) = k where the sum is taken over all vertices u adjacent to v.

Marimuthu and Balakrishnan [7] defined a graph G(V,E) to be edge magic
graceful if there exists a bijection f from V(G) UE(G) to {1,2,...,p + q} such
that [f(u) + f(v) — f(uv)| is a constant for all edges uv of G.

We define a graph G(p,q) to be E-super arithmetic graceful if there
exists a bijection f from V(G) U E(G) to {1,2,...,p+ q} such that
f(E(G)) ={1,2,...,q}, f(V(G)) ={q+1,9+2,...,q9+p} and the induced
mapping f* given by f*(uv) = f(u) 4 f(v) — f(uv) for uv € E(G) has the range
pP+qg+l,p+q+2,...,p+2q}.

In this paper we prove that Hij(m,m) and Hg)(m, m) and C4n,Cen are
E-super arithmetic graceful.

2 Preliminaries

Definition 1 A connected graph is highly irregular if each of its vertices
s adjacent only to vertices with distinct degrees. Let H denote the bipartite
graph of order n = 2m, m > 2 having partite sets, Vi = {uj,uz,...,un} and
Vo ={vi,v2,...,vm} and edge set E(H) ={ujv; : T <i<m, 1 <j<m+1—1i}
with degy(wy) = degy(vi) =m+1—1 fori=1,2,...,m.

H is a irregular graph of order n = 2m, m > 2. Let us denote this graph as
Hi(m, m) .



E-super arithmetic graceful labelling 83

(i8) u? w3 LY K] us
L

L] §

V5 V4 V3 \'%. Vi

Figure 1: H;(5,5) — highly irregular graph of order 10

Definition 2 By subdividing the edge uyvy_1 of Hi(m,m) for m > 4, we
obtain a highly irreqular graph of order 2m + 1 > 9. Denote this graph by

(M
H; " (m, m).
Uy U Uus Uy
m
vy U3 va U1

Figure 2: Hg)(4,4) — highly irregular graph of order 9

Definition 3 Let Cyx be an even cycle. Consider n copies of Cax. A chain of
even cycles Cyy denoted by Cyrn is obtained by identifying the vertex w1 of
each copy of Cox with the vertex Wy of the successive copy of Coy.

Cokn has (2k — 1)n + 1 wertices and 2kn edges.

Cokn has (k — 1)1 upper nodes uy, Uz, ...y Wi—1)n 5

(k—1)n lower nodes Wi, Wy, ..., Wy_1)n and (n+1) middle nodes v, V2, ..., Vni1.
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Uy U U3 ¥
.
wq wa w3 wy
Figure 3: C44

3 Main results

Theorem 4 Hi(m,m) is E-super arithmetic graceful for m > 2.

1
Proof. Let G = H;(m, m). G has 2m vertices and <m; ) = M edges.
Define f: V(G) UE(G) — {1,2, e 2m W} as follows:
1
ﬂwjz(m;'>+g i=1,2,...,m

]
fWﬂ—<m+ Fam4T—i i=1,2,...m

: o
flupyy) = <m; )+i— <“2”>,i:1,2,...,m; j=1,2,... (m+1)—i

N

1
Clearly f is a bijection from VUE to {1,2,..., m;— >—|—2m} where
m+ 1
f(E)=41,2,... :
o i (")
Also
+ 1 +1
rreoumm) = {("7) +2me1, (M) amas,

("))

Therefore, Hi(m, m) for m > 2 is E-super arithmetic graceful. O
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Example 5 E-super arithmetic graceful labelling of Hi(6,6).

25 26 27
®
18 15 11 6
b
4\
31 32 33

Figure 4: H;(6,6)

Theorem 6 Hg)(m, m) for m >4 is E-super arithmetic graceful.

1
Proof. Hg”(m, m) for m > 4 has 2m + 1 vertices and <m;— ) + 1 edges.

Define

1
fluy) = (m; >+1+i, i=1,2,...,m

Flvy) = (m;”) tm42,

m+ 1

f(vi) = < ) >—|—2m+3—i, i=12,...,m

(
(wvi) =
(u1vm)—2
(u2vo) =
(VoVm— 1) m+ 2

flupvmear—i) =i1+1, i=3,4,...m
Fori=1, j=2,3,...,m—1 and
fori=23,....m, j=1,2,...;,(m+1)—

flugvy) = <m2+1) F24io (i?)

Clearly f is a bijection from VUE to {1,2, vy

f
£
£
p

]) —|—2m—|—2} where
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£(E) :{1,2,...,("12“) +1}.

Also
FEM (m, m))) = {(m; 1) +2m 3, <m2+ 1) +2m+5,.,
2 [<m+]) +m] +3}
2
Therefore, Hg)(m, m) for m > 4 is E-super arithmetic graceful. O

Example 7 E-super arithmetic graceful labelling of HEU(S,S).

21
®
6
27
: .y
Figure 5: H; *(5,5)
Theorem 8 Cy4,, are E-super arithmetic graceful.
Proof. C4,, has 3n + 1 vertices and 4n edges.
Let u,uy,...,uy be the upper nodes,wi,wy,...,wy be the lower nodes and

V1,V2y...,Vnt1 be the middle nodes.
Define f(w) =4n+1i, i=1,2,...,n.
flvi)=n+1i, 1=12,...,n+1.
flwi))=én+1+1, i=1,2,...,n.

uvi) =1, i=12,...,n

(

(

(upvi) =2n+1i, i=2,...,n
(

(viwi) =3n+1, i=12,...,n
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flvigiwy) =n+1+1i, i=1,2,...,n
*(uvy) =8n+1
{f (upwy) 11=1,2,3,...,n}={/m+2,7n+3,...,8n}
" (wvi) 11=1,2,3,...,n}={n+2,9m+3,...,10n+ 1}
{f* (viny) [1=1,2,3,...,n}={8n+2,8n+3,...,I + 1}
{f* (vipowy) 11=1,2,3,...,n}={10n+2,10n+ 3,...,1In+ 1}
Thus £*(E(Cyn)) ={7n+2,7n+3,...,1In+1}.

Therefore, C4, is E-super arithmetic graceful. O

Example 9 E-super arithmetic graceful labelling of Cas.

Figure 6: C45

Theorem 10 Cg, is E-super arithmetic graceful for all n.

Proof. Let G = Cg . Let ug”,ugz),ug),ugz), e ,ug),ug] be the upper level
vertices of G.

Let wi,wy, ..., w1 be the middle level vertices of G.

Let v%”,vgz),vg),vgz), . ,vg),vg) be the upper level vertices of G.
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IMlustration: Cgy

(1] [2) (1] (2) (1] (2) (1) (2]

'I.L.l 1L pie hia 1L his 1w §s
w W) w3 Wy Ws
(1) (2) (1) 2) 2) M (2)

Vi Vi Va Voo Vs V3 Yy Vg

Figure 7: Cg4

Ce,n has 5n+1 vertices and 6n edges.
Define f: V(G)UE(G) — {1,2,3,...,11n + 1} as follows:

ful) =6n+i, i=1,2,...,n
f(uEz)—7n+l> i=1,2...,n
flw)) =8n+1, i=1,2,...,n+1
fol)=9n+1+i, i=1,2,...,n
fo)y=1on+141i, i=1,2,...,n
f(ug)ugz))—l, i=1,2

fgwig) =nti, i=1,2..n
fow) =3n—1i, i=1,2,.
fvPwig) =2n+i, i=1,2,...,n—1
f(vg)viz))zd,n—]—i—l i=1L2,...,n—1
fvh i) = 6n

fowy ) =5n+i, =12, n—1
(

(

ngz)WnH) =5n—1
learly f is a bijection and f(E(G)) ={1,2,...,6n}

f

C

{f Wy i=1,2,. }:{13n+1,13n+2,...,14n}
{f*(ugz)wm)|i:1,z,...,n}:{14n+2,14n+3,...,15n+1}
{f*(w u)li=1,2,. }:{nn+2,nn+3,...,1zn+1}
{f*(wlv ) li=1,2,. —1}:{1zn+2,1zn+3,...,13n}
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f* vn”vnz])} =15m+2

==

=

3
<

|2

——
I

—
N
3
_|_
—

f*(v%z]wnﬂ)} =15n+3
Combining all the above we have f*(E(G)) ={1Tn+2,1In+3,...,17n+ 1}
Therefore, G is E-super arithmetic graceful. O

Example 11 E-super arithmetic graceful labelling of Ceg.

37 1 43 38 2 44 39 3 45 40 4 46 41 5 47 42 6 48

Figure 8: Cgp

Conjecture: Chains of all even cycles Comx are E-super arithmetic graceful.
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