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Abstract. Automatic detection of tissue types on whole-slide images
(WSI) is an important task in computational histopathology that can
be solved with convolutional neural networks (CNN) with high accu-
racy. However, the black-box nature of CNNs rightfully raises concerns
about using them for this task. In this paper, we reformulate the task of
tissue type detection to multiple binary classification problems to sim-
plify the justification of model decisions. We propose an adapted Bag-
of-local-Features interpretable CNN for solving this problem, which we
train on eight newly introduced binary tissue classification datasets. The
performance of the model is evaluated simultaneously with its decision-
making process using logit heatmaps. Our model achieves better per-
formance than its non-interpretable counterparts, while also being able
to provide human-readable justification for decisions. Furthermore, the
problem of data scarcity in computational histopathology is accounted
for by using data augmentation techniques to improve both the perfor-
mance and even the validity of model decisions. The source code and bi-
nary datasets can be accessed at: https://github.com/galigergergo/
BolFTissueDetect.
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1 Introduction

The accurate interpretation and analysis of medical images can aid in the
diagnosis of various diseases and conditions [9], provide information about the
progression of diseases [24], and assist in treatment planning [25]. In the field
of histopathological image processing, digital images are obtained as a result
of the invasive technique of removing and scanning specific tissue samples
from a patient’s body through some form of biopsy [8]. The scanned whole-
slide images (WSI) represent high-resolution images of gigapixel order, which
results in a very high computational cost of analyzing them with different
algorithms [16]. To solve the problems caused by WSI sizes, single whole-slide
images can be broken down into several smaller patches, and then processed
in adequately sized batches depending on available resources.

The introduction of WSIs made it possible to develop different computer-
aided diagnosis (CAD) and prognosis systems for automating various tasks
in the field of medical image processing [15]. The task in the field of WSI
processing examined in this paper is cancer detection, more specifically the
detection of different tissue types in WSIs of tumor microenvironments (TME).
TME has a significant impact on tumor initiation and progression [12] and also
affects the prognosis and response to therapy of cancer patients [1].

Automating different tasks of trained human pathologists using CAD sys-
tems poses a variety of different challenges by itself. For instance, machine
learning-based methods may be vulnerable to only changing a single pixel of
an image [19]. In case of WSIs different artifacts (air bubbles, dirt) may con-
taminate tissue samples, and different forms of deterioration (tears, cracks,
color variations) of the samples are also common [15], which could all bias
machine-learning models. Furthermore, creating a large, high-quality anno-
tated medical dataset, which is essential for all tasks involving supervised
learning, is also considered a difficult task. Correct annotation of WSIs is a
time-consuming, costly process that requires the involvement of a large num-
ber of trained professionals [2]. Moreover, privacy concerns may arise when
working with specific medical conditions [20]. Another major challenge of us-
ing CAD systems in the medical sector arises from the black-box nature of
the current state-of-the-art approaches [22]. Although deep learning methods
have shown promising performances in medical tasks, the inability to explain
decisions has raised concern among medical experts [21].

Due to task-related complexities, histopathological segmentation methods
might rely on additional, a-priori information besides the input images. As a
related example, in [11], the proposed state-of-the-art TME tissue segmenta-
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tion method integrates the usage of classification labels of the input images
to achieve good performance. However, no method of identifying these clas-
sification labels was introduced in this paper, the authors implying the task
to be carried out by human radiologists. Thus, the proposed method repre-
sents a semi-automated approach, which heavily relies on human pathologists
identifying different tissue types in WSIs.

The main focus of this paper is to fully automate this process by introducing
a way of identifying the TME tissue types used as inputs for the segmenta-
tion method proposed in [11]. As this approach intends to replace human
experts, the reliability of its decision-making process is of utmost importance.
Therefore, we obtain highly interpretable problems by reformulating the task
of TME tissue type detection as multiple binary classification problems. We
refer to the interpretability of model decisions as the correspondence of the
model activations and the ground truth. For solving the task of binary tissue
classification, we propose an adapted version of the explainable BagNet ar-
chitecture [5], which demonstrates matching performance compared to human
experts. Moreover, the usage of the BagNet architecture also provides a solu-
tion for the concerns regarding the black-box nature of models in the medical
field by being able to justify decisions taken. The proposed models show a
decision-making process that aligns with the expected histopathological rea-
soning of human radiologists. In addition, we solve the problem of medical
data scarcity with data augmentation techniques, the effects of which on both
the performance and validity of model decisions are further analyzed in detail.

Overall, we present four main contributions in this paper: (i) The task of
TME tissue type detection is reformulated to multiple binary classification
tasks for the sake of clear, human-readable justification of model decision-
making. (ii) The BagNet Bag-of-local-Features explainable CNN architecture
is adapted for this task and the validity of its decisions is evaluated using
logit heatmaps. (iii) Eight binary datasets are created for this task from two
publicly available ones and the effects of expanding them using data augmenta-
tion techniques are also reviewed. (iv) A detailed quantitative and qualitative
evaluation of the adapted method is performed on the newly created datasets.

The rest of this paper is structured as follows: Section 2 describes the spe-
cific TME binary classification task formulation and necessary adaptations
in both model architecture and dataset structure. In Section 3, we present
the experiments used to benchmark the adapted BagNet model on the bi-
nary classification task, along with an in-depth analysis of obtained results.
We conclude our findings in Section 4, where we also provide further research
directions regarding this topic.
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2 Methodology

2.1 Problem formulation

For the task of identifying patch-level labels, such as in the case of the train-
ing samples from the two presented datasets, individual patches have to be
assigned to four different classes, thus resulting in a multi-class multi-label
classification task. Successfully solving this problem, while also providing reli-
able explanations for decisions is highly difficult in the case of such a complex
classification task. Therefore, the task should be reformulated to solve one
binary classification task for each of the four classes, i.e. detecting whether or
not one type of tissue (class) is present in a certain patch. This reformulation
yields multiple significantly simpler detection problems, which in turn simplify
the interpretation process of explainable models used for solving these.

Our choice for solving these binary classification problems was the BagNet
interpretable CNN architecture, which showed promising results in a variety
of different tasks [5, 17, 18] and is inherently explainable with pixel-level ac-
tivation heatmaps. As we are using weakly-annotated datasets with fully seg-
mented validation and testing data, the exact location of tissue types in these
cases is precisely known. This implies the natural application of heatmaps
for decision interpretation since pixel activation validity can be verified using
segmentation data.

BagNets were originally proposed for single-label multi-class classification
tasks on the ImageNet dataset [7], which makes adapting it to binary clas-
sification problems a necessary procedure. This was done by changing the
output size of the linear classifier following the average pooling operator to 1
and replacing the softmax operator with sigmoid to infer the image-level class
evidence. By introducing the sigmoid operator, the independence of different
classes is assumed, which is inherent in the case of the two classes of this bi-
nary classification problem: a certain tissue type is present in a patch versus
it is not present.

2.2 Datasets

The scarcity of suitable quality datasets for medical image processing applica-
tions applies to WSIs of tumor microenvironments, which requires radiology
expertise to be correctly annotated [2], and the publication of such datasets
also raises concerns regarding patient privacy [20]. The datasets used in this
paper originate from the previously mentioned paper [11], where two different
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Binary dataset Training Testing Validation
LUAD - LYM 1400 200 100
LUAD - NEC 6000 120 40

LUAD - TE 8000 80 60

LUAD - TAS 8000 140 40

BCSS - NEC 6000 800 800

BCSS - LYM 12000 4000 2000
BCSS - STR 16 000 4000 1600
BCSS - TUM 18000 4000 3000

Table 1: Size distribution of the 8 binary datasets between training, testing,
and validation subsets.

weakly-annotated datasets of TMEs were created and published for further
research:

LUAD-HistoSeg (LUAD): This dataset was specifically created for train-
ing the proposed segmentation model and included patches with four tissue
categories: tumor epithelial (TE), tumor-associated stroma (TAS), necrosis
(NEC) and lymphocyte (LYM).

BCSS-WSSS (BCSS): This dataset was adapted from a previously pub-
lished fully-supervised dataset [2] and included four classes: tumor (TUM),
stroma (STR), lymphocytic infiltrate (LYM), and necrosis (NEC).

In a similar manner to the used model architecture, the two original datasets
would have been adequate for a different type of problem, a multi-class multi-
label classification task. This resulted in both of the datasets having to be
adapted to the newly formulated binary classification problems. The adapta-
tion consisted in creating a binary classification dataset for each of the classes
from the original datasets. This was done by first counting the positive and
negative examples for a given class in a dataset, i.e. the number of samples
that contained a given tissue type and the number of samples that did not.
To obtain an optimal balance between the two classes, the binary datasets
were constructed with the smaller one of the two binary classes (positive or
negative) and a randomly sampled version of the larger binary class. Applying
this method to all four classes of both datasets resulted in 8 (4 x 2) binary
datasets of varying sizes. Table 1 shows the size distribution of the 8 binary
datasets.
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Transformation Probability
Horizontal skew 1.0
Low-angle rotation 1.0
90-degree-multiple rotation 0.75
Horizontal flip 0.5
Vertical flip 0.5

Table 2: Probabilities of applying different data augmentation transformations
when expanding binary datasets.

2.3 Data augmentation

The original LUAD and BCSS datasets are relatively small for training DNNs
in a supervised manner, even for the task of binary classification. The prob-
lem of data scarcity is further accentuated by the fact that the actual datasets
used for binary classification are even smaller than the original ones. This hap-
pens because these represent subsets of the original datasets obtained by their
adaptation to the binary classification task, four binary datasets having been
created from a single original dataset. To alleviate the issue of small datasets,
we used data augmentation methods to expand all eight binary datasets to 10
times their original size.

To simulate common, practically occurring changes in WSIs such as different
rotation and skew angles of slides during the scanning procedure, only related
augmentation transformations were used. The augmentation techniques used
for the expansion of the binary datasets were limited to morphological trans-
formations, which included low-magnitude skew operations, random-angle ro-
tations by a maximum of 3 degrees, rotations with 90-degree multiples, and flip
operations. All of the listed transformations were applied with certain proba-
bilities, as shown in Table 2. These values were chosen based on the following
reasoning: skew and low-angle rotation are always applied to introduce some
level of morphological diversity in every single new image, while the remaining
three transformations further differentiate images, the probability for rotation
being higher since flip operations are twice as many in number.

2.4 Implementation details

All the convolutional neural networks analyzed in our experiments were im-
plemented in PyTorch and we used the Augmentor' Python package for aug-

! Augmentor Python Package (https://augmentor.readthedocs.io/en/stable)
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menting the binary datasets. We trained the models using an NVIDIA Titan
Xp GPU and utilized ResNet-50 as the classification backbone for the Bag-
Net architecture. The resolution of the input patches was 224 x 224 and the
batch size was set to 29, the maximum value we could obtain before reach-
ing GPU memory limitations. The network weights were optimized for binary
cross-entropy loss using stochastic gradient descent (SGD) with a weight de-
cay of 0.0001 and a momentum of 0.9. The learning rate was set to 0.01 and
divided by 10 every 30 training epochs. These hyperparameter settings were
inspired by the ImageNet training example from the original PyTorch GitHub
repository?.

3 Experiments and results

3.1 Training process
3.1.1 Receptive field size

The main advantage of using the BagNet architecture lies in the simplicity of
explaining its decision-making process, which is a consequence of its separation
of receptive fields in inferring class evidence. From the originally proposed
BagNet—q models, with q € {9, 17,33} receptive field sizes, BagNet—17 showed
the best classification performance on the ImageNet dataset [5]. However, the
transferability of ImageNet results to WSI processing is questionable due to
the inherent differences between natural images and tissue scans. As a result,
we benchmarked all three BagNet models for binary tissue classification on
the LUAD — LYM dataset to find the most suitable receptive field size for this
application. The results of this experiment are shown in Table 3.

In contrast to the natural images from ImageNet, where the BagNet—17
model showed clearly superior classification performance, the results are less
clear in this case. The smaller receptive field size of 9 x 9 pixels leads to the
highest values in some of the calculated performance measures, although these
are not significantly better than the ones obtained with 17 x 17 receptive fields,
with below 2% differences in average validation precision, recall, and specificity.
However, there are significant differences in performance in every other case
where the values obtained by BagNet—17 are highest, mostly exceeding 5%,
and even 10% in some cases. As a result of these findings, we use the BagNet—
17 model in the following experiments, which we will also refer to as BagNet.

2PyTorch GitHub Repository (https://github.com/pytorch/examples/tree/main/
imagenet)
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Model Acc. Prec. Recall  Spec.
Without data aug.
BagNet—9 0.93 0.875 0.9667 0.9459
BagNet—17 0.94 0.925 0.95 0.925
BagNet—33 0.88 0.8 0.9333  0.8889
With data aug.
BagNet—9 0.908 0.9225 0.8983  0.8581
BagNet—-17 0.954 0.9175 0.9783 0.966
BagNet-33 0.873 0.7675  0.9433  0.9003

Table 3: Results of training BagNet models with different receptive field sizes.
The values shown in this table are the average validation accuracy, precision,
recall, and specificity scores obtained after training the models on the LUAD
— LYM dataset with and without using data augmentation.

3.1.2 Model backbone

Neural networks show a tendency to benefit from increasing depth in various
image processing tasks [10]. In [5], the BagNet network was proposed with the
ResNet-50 architecture as a backbone, which is considered a highly layered
architecture by current standards [13]. In order to test the necessity of such
a deep backbone architecture for the binary classification task of TME tissue
types, we trained the BagNet model on the LUAD — LYM dataset using two
different backbones: the previously mentioned ResNet-50, and a significantly
smaller CNN, which consisted of two convolutional layers of 32 and 64 neurons
respectively, followed by a ReLLU activation layer.

To present the findings of this experiment, the average validation accuracy
values of the two models are illustrated on the left side of Figure 1. Using the
small CNN as a backbone, the accuracy values converge in around 30 epochs,
not improving considerably on initial values. This could be caused by the
small network’s inability to sufficiently generalize the complex image process-
ing problem. In contrast, the significantly deeper ResNet-50 backbone leads to
later conversion but shows substantially improved classification performance.
Therefore, we use the ResNet-50 as the backbone for our BagNet models in
the following experiments.
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Figure 1: Results of benchmarking small CNN and ResNet-50 backbones for
BagNet for binary classification trained on the LUAD — LYM dataset.

3.1.3 Transfer learning

Likewise to many other architectures, leveraging transfer learning, i.e. initial-
izing BagNet weights with weights originally trained on the ImageNet dataset
leads to significant performance increases in many different tasks [4, 17]. To
verify the validity of the premise for the task of TME tissue binary classifica-
tion, we evaluated three different ways of weight initialization for the adapted
BagNet model:

Default initialization: No pre-trained weights were loaded in this case,
initialization was done by the default PyTorch weight initialization process.

Loading ImagelNet pre-trained weights: In this case, weights were
loaded from the original pre-trained BagNet model published with the original
paper [5]. As with the network architecture, adaptations had to be carried out
in the case of the pre-trained weights as well, since the last linear transfor-
mation layer of the architectures did not match. The adaptation consisted in
averaging the weights corresponding to the 2048 ImageNet classes in order to
obtain a single weight tensor.

Loading LUAD — NEC pre-trained weights: We managed to obtain
promising results by training the BagNet model with default initialization on
the LUAD — NEC binary dataset. The weights of this pre-trained model were
also used in this benchmark for initialization for training on binary datasets
different from LUAD — NEC.
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Figure 2: Results of training BagNet with ResNet-50 backbone on the LUAD —
LYM dataset with weight initialization using pre-trained models on ImageNet
and LUAD — NEC datasets.

These weight initialization approaches were benchmarked by using them for
training on the LUAD — LYM binary dataset. The right side of Figure 1 shows
training and validation results obtained by training the BagNet model with
no weight initialization. The model is unable to escape from a local optimum
during 100 epochs of optimization, the training values are slightly oscillating,
while the validation values stay constant. This phenomenon might be caused by
unlucky weight initialization, however, three separate runs of this experiment
showed similar behavior.

The results of training the BagNet model with the two different pre-trained
sets of weights are shown in Figure 2. Both approaches show similar behavior
in terms of accuracy and loss, both converging after approximately 60 epochs,
however, ImageNet weight initialization leads to slightly better classification
performance. This demonstrates the generalizability of deep networks such as
ResNet-50, which was able to successfully transfer knowledge learned on the
ImageNet dataset to the completely different task of WSI binary classification.
The underperformance of LUAD — NEC weights might be caused by the signif-
icantly lower training time of this model (approximately 400 epochs) compared
to the original BagNet model, which was trained for over 5000 epochs on the
ImageNet dataset [5].
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Figure 3: Results of training BagNet with ResNet-50 backbone, ImageNet
weight initialization on datasets of different sizes: LUAD — LYM with 1400
training samples and 100 validation samples, augmented LUAD — LYM with
14 000 training samples, and 1000 validation samples, BCSS — STR, with 16 000
training samples, and 1600 validation samples.

3.1.4 Dataset properties

The training speed and convergence rate, as well as the ability of neural net-
works to learn generalization of task-related information, are all dependent
on the quality and size of the dataset used for training them. As the eight
binary datasets created for the task of binary TME tissue classification are
all different in size, we evaluate the effect of dataset size on the training and
validation process of the adapted BagNet model. This is done by comparing
training and validation accuracy values of three different binary datasets over
100 training epochs.

Figure 3 shows the results of the dataset size examination carried out on
LUAD - LYM, augmented LUAD — LYM and BCSS — STR, with 1400, 14 000
and 16 000 training samples respectively. By analyzing the results obtained
from this experiment, we managed to draw two different conclusions, one re-
garding the size of two completely different datasets and one regarding the
size difference obtained by using data augmentation.

On the one hand, by comparing the training process on the smallest binary
dataset, LUAD — LYM, and one of the largest non-augmented datasets, BCSS
— STR, we can observe that a larger dataset leads to a slower and more gradual
convergence both in case of training and validation. The smaller dataset ap-



Bag-of-local-features for histopathology tissue type detection 71

pears to show significantly better validation performance, however, this might
be heavily influenced by the significantly smaller size of the validation dataset,
100 samples versus 1600 samples for BCSS — STR. Both validation and accu-
racy metrics could also be skewed by the fact that the original BCSS dataset
was significantly less detailed since it was adapted from a more general dataset
[11].

On the other hand, the effects of data augmentation on the training pro-
cess could also be evaluated by comparing the results on the non-augmented
and augmented versions of the LUAD — LYM dataset. Augmenting this small-
sized dataset leads to faster convergence and better classification performance
including unseen data. However, the model appears to be overfitting the train-
ing data after approximately 50 epochs, where the validation accuracy starts
showing a descending trend, while the training accuracy is still increasing. This
is most likely caused by the low diversity of the augmented dataset, which is a
result of applying morphological transformations to the LUAD — LYM binary
dataset.

3.2 Quantitative evaluation

In order to benchmark the adapted BagNet architecture for the task of binary
classification of TME tissues, the model was first trained on datasets of differ-
ent sizes with and without using data augmentation, followed by an evaluation
on previously unseen data. The results of this experiment are shown in Table
4, along with the sizes of datasets the models were trained and validated on.

By analyzing the performance measure scores obtained in this experiment,
we can draw some conclusions about the usability of the BagNet architecture
for this specific binary classification task. All models trained on the binary
datasets derived from the original LUAD dataset showed promising results
with accuracy values starting at 0.94 on previously unseen data, however, the
relatively small size of the validation datasets has to be taken into account in
this case as well. In the case of the BCSS — STR dataset, which contains a
slightly larger validation subset, the BagNet model obtained significantly lower
scores than the models trained on the LUAD datasets. This might be caused
by the BCSS dataset being less detailed, a topic that is further discussed in
Section 3.3.

By comparing the results obtained on augmented datasets with their non-
augmented counterparts in the first four rows of Table 4, an increase in ac-
curacy values can be observed in both cases, which indicates that the usage
of data augmentation leads to improvements in classification performance.
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Dataset Acc. Prec. Recall ~ Spec. Train s. Val. s.
LUAD -
LYM 0.94 0.925 0.925 0.95 1400 100
LYM aug.  0.954 0.966 0.9175  0.9783 14000 1000
NEC 0.975 0.9091 1.0 0.9667 6000 40
NEC aug.  0.985 0.9434 1.0 0.98 60 000 400
TE aug. 0.9467 1.0 09135 1.0 80000 600
BCSS -
STR 0.7888 0.8368 0.7732  0.8085 16 000 1600

Table 4: Results of training BagNet with ResNet-50 backbone with ImageNet
weight initialization on binary datasets of different sizes with and without
data augmentation. The values shown in this table are the average validation
accuracy, precision, recall, and specificity, along with training and validation
subset sizes for different binary datasets.

Moreover, the results presented in this table demonstrate comparable perfor-
mances to radiology experts, in most cases even exceeding the capabilities of
human pathologists [14], which shows real-world applicability. However, the
robustness of the model on WSI-specific artifacts, color variations, or slide
deteriorations mentioned in Section 1 has not been tested, which might limit
model usability in real-world environments.

The BagNet model has also been compared to the non-interpretable con-
volutional networks VGG19 and the backbone used for all BagNet models in
this paper, ResNet50. We trained and validated these models on the LUAD
— NEC binary dataset with and without transfer learning, and summarized
the obtained results in Table 5 using four different performance metrics. Al-
though the added interpretability of the BagNet architecture often leads to
slightly worse results compared to its backbones [5], there are cases where
interpretable models outperform their non-interpretable counterparts [6, 23].
This phenomenon can also be observed in this experiment, where the BagNet—
17 model shows the highest values across all performance measures. This could
either be caused by the simplicity of the binary classification problem, or the
different nature of tissue scans compared to natural images from ImagNet.

3.3 Qualitative evaluation and interpretability

As our approach is intended to replace human specialists in the safety-critical
healthcare industry, one of the main reasons for choosing the BagNet archi-
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Model Acc. Prec. Recall  Spec.
Random weights
VGG19 0.8 0.625 0.5 0.9
ResNet50 0.925 0.8182 0.9 0.9333
BagNet—17 0.95 0.8333 1.0 0.9333
ImageNet weights
VGG19 0.925 0.7692 1.0 0.9
ResNet50 0.95 0.8333 1.0 0.9333
BagNet—17 0.975 0.9091 1.0 0.9667

Table 5: Results of training non-interpretable CNNs for the binary classifica-
tion task. The values shown in this table are the average validation accuracy,
precision, recall, and specificity scores obtained after training the models on
the LUAD — NEC dataset with and without using data augmentation.

tecture was its inherent explainability. To demonstrate expected behavior, we
hereby evaluate the decision-making process of our models, which in the case
of the adapted BagNet architecture consists in the analysis of the models’ pixel
activation heatmaps. As all of our datasets contain expert annotated segmen-
tation masks for both validation and testing, the exact location of tissue types
on WSIs can be leveraged to examine the validity of heatmap pixel activations,
thus making it possible to quantitatively measure model interpretability and
accordance with expected behavior.

In this experiment, we evaluated trained models on specific WSI patches
from the test subsets of different binary datasets and measured in what amount
the decisions were based on expected premises. This was done by identifying
the top 5% most important heatmap patches, i.e. the ones which contribute
most in inferring class evidence, and calculating what percentage of these were
located inside the corresponding segmentation mask. Representative examples
for this evaluation are shown in Figures 4 and 5. Both of these figures illustrate
model performance using four images divided clockwise as follows: the model
input WSI patch is visible on the upper left, the segmentation mask for the
specific class is shown in the upper right image, the lower right image shows
the pixel activation heatmaps for the trained model with a pale outline of the
segmentation mask, and the image on the lower left illustrates the top 5%
most influential pixels colored green if they lie inside the segmentation mask

and yellow otherwise. The most important heatmap patches are illustrated in
red.
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Specific examples from datasets of different sizes are shown in Figure 4.
The difference in WSI qualities between the LUAD and BCSS datasets is
visible when comparing segmentation masks of the BCSS — STR example
with the other examples from the LUAD datasets. The magnification of the
BCSS samples appears to be significantly greater, thus resulting in less detailed
samples and segmentation masks as well. This observation should be taken
into account when evaluating BagNets’ performance on this dataset, which
although showing 67.26% of the most important patches in their expected
location, appear to be heavily concentrated in the edge of the sample.

When evaluating the other three examples from this figure, the BagNet mod-
els appear to be showing promising behavior. The examples from the LUAD
— LYM and LUAD — TE datasets demonstrate a decision-making process that
aligns with the expected segmentation masks with 80.38% and respectively
89% of the most important patches being inside of their expected locations.
The LUAD — NEC example shows slightly weaker performance in this context,
however, this might be caused by this class being inherently more difficult to
identify than others. Therefore, because of the possible difference in classifica-
tion difficulty for different datasets, conclusions can not be drawn about the
influence of dataset size on the decision-making process of the models.

Model generalizability can be improved by augmenting training data [15].
Therefore, we examine the effects of data augmentation on the decision-making
process of the BagNet models by analyzing Figure 5, where examples for two
different classes are shown with and without data augmentation. By comparing
the two heatmaps of any one of the two classes side-by-side, the confidence-
increasing effect of using data augmentation becomes apparent. The patches
on the examples without data augmentation are significantly more blurred
than on the ones with augmentation, especially in the case of the LUAD —
NEC example. This effect might be a consequence of the low diversity dataset
expansion resulting from augmentation. Thus, the augmented dataset con-
tains multiple slightly different versions of all images, which could inherently
increase classification confidence.

In terms of the more quantitative metric of the percentage of most important
patches in their expected location the effects of data augmentation are not as
clear. In the case of the LUAD — NEC example, which showed the worst per-
formance in Figure 4, data augmentation leads to significant improvements
in terms of decision making with an increase from 39% to 62.64% of most
important patches in their expected location. However, applying data aug-
mentation on the smaller LUAD — LYM dataset leads to a slightly worse value
for this metric, with an effect of moderately spreading the most important
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patches over the image. Apart from this minor decay in expected behavior, we
overall advise the usage of data augmentation for the task of TME tissue bi-
nary classification because of the effects of increased confidence and accuracy
improvements shown in Section 3.2.

4 Conclusion and discussion

The automation of tasks performed by human pathologists poses various chal-
lenges. For instance, a machine learning model trained on data from one hos-
pital may perform poorly on data from another hospital due to differences
in scanning equipment and tissue processing protocols. Medical datasets also
require expert annotation, which is time-consuming and resource-intensive,
leading to a scarcity of high-quality annotated data. Moreover, the black-box
nature of deep learning models is also a significant challenge in medical im-
age processing, where the interpretability and explainability of algorithms are
becoming essential.

The focus of this paper lies in solving the cancer detection problem of iden-
tifying differences in tissue types of tumor microenvironments. Qur approach
to TME tissue type detection involves breaking it down into multiple binary
classification problems. This method can be used in conjunction with or as
a replacement for human radiologists to label whole-slide images, which can
later be used as inputs for more complex segmentation techniques.

To accomplish binary tissue classification, we introduced a modified version
of the explainable BagNet architecture. The proposed model is capable of out-
performing human experts in different binary classification tasks, providing
a viable alternative to human-based tissue detection. Using the BagNet net-
work architecture also addresses concerns surrounding the back-box nature of
medical image processing models by being able to justify its decisions. In ad-
dition, we also demonstrated that the decision-making process of these models
is also aligned with that of human radiologists. Furthermore, we addressed the
challenge of limited medical data by augmenting our binary datasets, and we
analyzed the effects of augmentation techniques on model performance and
decision-making validity.

Being able to accurately and reliably identify TME tissue types without
the need for the involvement of human experts presents a variety of different
advantages in the field of medical imaging. Firstly, it leads to the burden of
disease diagnosis being taken off the shoulders of pathologists, them being able
to focus on patient treatment and care. Secondly, this could also lead to new
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developments in more complex classification and segmentation tasks regarding
tumor microenvironments. For instance, our trained models could also be used
for creating large datasets annotated with patch-level classification labels of
tissue types, thus providing future models with sufficiently large annotated
datasets without the necessity for human involvement. Moreover, these models
could provide a way to fully automate more complex approaches that rely on
human labeling, such as the method introduced in [11].

The first future research direction possibly worth exploring regarding the
proposed models is the evaluation of the benefits these create in terms of
new developments in this field. This could be done by using the models to
create annotated datasets, which would then be used for training and bench-
marking various state-of-the-art approaches in TME image processing. The
usability of these models as initial steps for more complex methods should
also be evaluated by carrying out experiments comparing performances with
and without using them. Another related question concerns the robustness of
the models for WSI differences caused by artifacts, discoloration, and tissue
deterioration. This characteristic could be reviewed by evaluating the models
on new datasets obtained at different laboratories with slight variations in
tissue sample acquisition pipelines.

Further research regarding this work could be carried out in the direction
of model decision analysis. Although heatmaps can be reviewed qualitatively,
there is a requirement for a more objective quantitative evaluation. The process
of location of the most relevant patches carried out in this paper represented
one quantitative evaluation method, however, more complex and representa-
tive quantities could also be analyzed, such as the relevance mass accuracy and
relevance rank accuracy metrics proposed in [3]. Moreover, model performance
could be evaluated on larger validation and testing datasets as well to further
solidify results regarding classification accuracy.
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Figure 4: Heatmap analysis of BagNet models trained on four different datasets
with varying sizes.
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Figure 5: Heatmap analysis of BagNet models trained for binary classification
of two different classes with and without data augmentation.
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