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Abstract. The energy E(G) of a graph G is the sum of the absolute
values of eigenvalues of G and the Seidel energy Es(G) is the sum of the
absolute values of eigenvalues of the Seidel matrix S of G. In this paper,
some relations between the energy and Seidel energy of a graph in terms
of different graph parameters are presented. Also, the inertia relations
between the graph eigenvalue and Seidel eigenvalue of a graph are given.
The results in this paper generalize some of the existing results.

1 Introduction

Let G be a simple, finite and undirected graph of order n with vertex set
V ={v1,v2...,vn}. The adjacency matrix A = [a] of G is a square matrix of

Key words and phrases: graph eigenvalues, graph energy, Seidel eigenvalues, Seidel energy

46


https://doi.org/10.2478/ausi-2023-0005
https://www.kud.ac.in
https://www.kud.ac.in
https://www.kud.ac.in
https://www.kud.ac.in
mailto:hsramane@yahoo.com
https://orcid.org/0000-0002-0248-207X
https://orcid.org/0000-0002-0248-207X
https://orcid.org/0000-0002-0248-207X
https://orcid.org/0000-0002-0248-207X
mailto:ashokagonal@gmail.com
https://www.kacd.ac.in/Departments/Mathematics
https://www.kacd.ac.in/Departments/Mathematics
https://www.kacd.ac.in/Departments/Mathematics
https://www.kacd.ac.in/Departments/Mathematics
https://www.kacd.ac.in/Departments/Mathematics
mailto:bparvathalu@gmail.com
https://orcid.org/0000-0001-8884-5910
https://orcid.org/0000-0001-8884-5910
https://orcid.org/0000-0001-8884-5910
https://orcid.org/0000-0001-8884-5910
mailto:daneshwarip@gmail.com

Some relations between energy and Seidel energy of a graph 47

order n whose (i,j)-th entry aj; = 1 if v; and v; are adjacent and 0 otherwise.
The complement of a graph G is denoted by G. The degree of a vertex vy,
denoted by d(vi), is the number of edges incident with v;. A graph G is called
r- regular if d(vi) = r for all v; € V. Let A be the maximum degree of G. Much
like adjacency matrix, in 1966 J. H. van Lint and J. J. Seidel [24] introduced
one more real symmetric {0, £1}-matrix, called the Seidel matrix S as a tool
for studying the systems of equiangular lines in Euclidean space. Later in 1968
J. J. Seidel studied the Seidel eigenvalues of strongly regular graphs [21]. The
eigenvalues 07 > 0, > --- > 0, of the adjacency matrix A are called the
eigenvalues of G. A graph is integral if its eigenvalues are integers. Similarly,
the eigenvalues A1, Az, ..., A, of the Seidel matrix S of G are called the Seidel
eigenvalues of G. For a given interval I, ng(I) denotes the number of eigenvalues
of G which belongs to the interval I. The number of positive, negative and zero
eigenvalues of G are denoted by n*, n~ and n° respectively, called inertia of
G.

The graph energy defined by I. Gutman in 1978 [7] and gained its own
importance in the spectral graph theory. The energy of a graph G is defined

as n
G) =) |6y
j=1

The graph energy has applications in chemistry [6, 12]. An equivalent definition
to the energy of a graph G is as follows:

n n
G) :229j = —ZZen i _21@% e _21@% 1 —Onji1-

— — i
Two graphs G; and G; of same order are said be equienergetic if E(G;) =
E(G;). Similarly, the Seidel energy Es(G) [8] of a graph G is defined as the
sum of the absolute values of eigenvalues of Seidel matrix S. The Seidel energy
is invariant under Seidel switching and complement of a graph. The Seidel en-
ergy Es(G) of a graph G introduced by W. H. Haemers in 2012 and presented
a relation between energy of a complete graph and Seidel energy of G. How-
ever, the exact relation of Seidel energy of graph and bounds for it haven’t
been much studied in the literature so far. One of the interesting problem
on graph energy is to characterize those graphs which are equienergetic with
respect to both adjacency and other matrices like distance matrix, Seidel ma-
trix etc. A weaker problem is to construct the families of graphs which are
equienergetic with respect to both the adjacency and the other matrices re-
lated to graphs. For instance, see [11, 16]. This motivates us to study some
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relations between the energy and the Seidel energy in terms of different graph
parameters. The research related to the Seidel energy and its variants, see
(2, 13, 14, 15, 18, 22, 23]. Two graphs G7 and G; of same order are said be Sei-
del equienergetic if Es(G1) = Es(G2). Let K and Ky, n, (N =n7+n;) denote
the complete graph and the complete bipartite graph of order n respectively.
This paper is organized as follows. In section 2, basic definitions, known re-
sults on eigenvalues, energy, Seidel eigenvalues and Seidel energy of graph are
presented. In section 3, the exact relations between the Seidel energy and en-
ergy of a regular graph in terms of other graph parameters are given. Also, a
large class of Seidel equienergetic graphs are presented. The obtained results
in this section generalize some of the existing results. Section 4 provides iner-
tia relations between the graph eigenvalues and Seidel eigenvalues. Also, the
relations between the Seidel energy and energy of a graph in terms of other
graph parameters are given. As a consequence, some bounds for the Seidel
energy of a graph are obtained.

2 Preliminaries

Definition 1 [9] The line graph L(G) of a graph G is the graph with vertex
set same as the edge set of G. In the line graph L(G) any two vertices are ad-
jacent if the corresponding edges in G have a common vertex. The k" iterated
line graph of G for k € {0,1,2,...} is defined as L*(G) = L(L*"(G)), where
[°(G) =G and L'(G) = L(G).

Theorem 2 [3] If G is an r-regular graph of order n with the eigenvalues
1,02,...,0n, then the eigenvalues of S aren—2r—1,—1—20,,...,—1—20,.

Lemma 3 [10] Let P and Q be two Hermitian matrices of same order n and

R=P+ Q. Then
Hn—i—k(R) > tn—i(P) + un—x(Q)

Hstt4+1(R) < psy1(P) + i1 (Q)

where 0 <i,k,s,i+k+1,s+t+1<n and w(B) is the it largest eigenvalue
of a Hermitian matriz B.

Theorem 4 [1] Let G be a graph of order n. Then
E(G)+E(G)—2(n—1) < Es(G) < E(G) + E(G).

The equality in the right side holds if G = K, or G = K.
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Proposition 5 [2
1. E(G) +E(G) <n(yn+1)
2. E(G)+EG) <(m—=1(WN+T1+1)4fG is a reqular graph.

5] Let G be a graph of order n. Then

Lemma 6 [4] Let P, Q be two real symmetric matrices of same order n such
that R=P+ Q. Then
E(R) < E(P) +E(Q),

where E(P) = Z;l:]|pj| is the energy of P, and w5 (j = 1,2,...,m) are the
eigenvalues of P.

3 The exact relation between Seidel energy and en-
ergy of a regular graph
In this section, we study the relations between the Seidel energy and the

energy of a regular graph. As a consequence, the Seidel equienergetic graphs
are constructed by taking regular equienergetic graphs.

Theorem 7 Let G be an r-regular graph of order n. Then

Es(G)=m—2r—1|+n—2r—1—-2n" +2E(G) + 2 Z (205 +1).
2<<n
€(-1/2,0)

Proof. Let 67 > 0, > --- > 0, and A, Ay, ..., A, be the eigenvalues and the
Seidel eigenvalues of a graph G respectively. By definition of the Seidel energy
and Theorem 2, we have

=n— 2r—1\—|—Z|7\)]—|n 2r—1|—|—Z!— — 26|
—n—2r—1|+ Z —26;) + Z 14 26;)

2<j<n 2<j<n
0;<-1/2 0;>—1/2
=n—2r—1|—mel-—r,—1/21+2 > [6j|+no(—1/2,7)
2<j<n
0;<-1/2
+2 ) 6+2 > 6y (1)

2<j<n 2<j<n
0;€(—1/2,0) 0;>0
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For convenience, the energy of G can be written as

EG) =7+ > 18+ > 6+ > 8.
2<j<n 2<j<n

2<j<n
0;<—1/2 8;,>0

0;€(—1/2,0)
With this, (1) becomes

Es(G) = [n—2r— 1| —me[-1,—1/2 +ne(-1/2,71) +2 > 6
2<j<n
0;€(—1/2,0)
+2(E(G) —r— > 18))
2<j<n
0;€(1/2,0)

=n—2r—1|—mgl—r,—1/2 +ne(-1/2,1) +2 ) 6

2<j<n
0;€(—1/2,0)
+2E(G)—2r—2 ) |6y
2<j<n
0;€(—1/2,0)
=n—2r—1+2E(G)—2r+4 > 6 —nel-1,—1/2]
2<j<n
0;€(—1/2,0)

+n—1—ngl-r,—-1/2]

=n—2r—1]+2E(G)—2r+4 )  6+n—1-2ng[-1,—1/2].

2<j<n
8;€(—1/2,0)
(2)
We have the following
ng[-r,—1/2] =n~ —ne(—1/2,0).
and
> 20;+1)= > 20+ne(—1/2,0). (3)
2<j<n 2<j<n
8;€(—1/2,0) 8;€(—1/2,0)

Now, using (3) in (2)

Es(G)=[n—2r—T|+n—2r—1-2n" +2E(G)+2 )  (20;+1)
2<j<n
0;€(—1/2),0)
which completes the proof.
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It is easy to see that ) (20;+1) > 0. With this we have the following:
255<n
0;€(—1/2,0)

Corollary 8 Let G be an r-regular graph of order n. Then

1. ES(G) > 2(TL—1 —2r—m~ _|_E(G)) Zf r< (n;])

2. Es(G) > 2(E(G) —n7) if r> 1

Corollary 9 Let G be an r-regular graph of order n and 0; ¢ (—1/2,0). Then

_ . (n—1)
ES(G):{Z(“_1_2i_“ +E(G)) ffrg I
2(E(G) —n) if r>

Proof. If 6; ¢ (—1/2,0) then Y (26; + 1) = 0. Now r < ™ implies

2<5<n
0;€(—1/2,0)
n—2r—1>0and r > @ implies n — 2r — 1 < 0. With these, Theorem 7
gives the desired results. n

Remark 10 In Theorem 3.11 of [1] it is proved that Es(G) =2(n—1—2r —
n- +E(G)) if 05 ¢ (—1,0) and r < an The Corollary 9 gives the same even
if 05 ¢ (—1/2,0), which shows that Theorem 3.11 of [1] is enriched.

Corollary 11 Let G be an r-reqular integral graph of order n. Then

E(G) {2(n—1—2r—n+E(G)) ifr < In

Corollary 12 Let G be an r-regular graph of order n. Then Es(G) = E(G) if
and only if

2n-2r—1-n"+ Y (20;+1) ifr<l
2<j<n
E(G) = 85€(—1/2,0)
“2(-m 4+ Y (20, +1)) if >
2<j<n
85€(—1/2,0)
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In a particular case if 6; ¢ (—1/2,0), then Es(G) = E(G) if and only if

E(G) = 2n—2r—1-n") %f r< ‘“g”
2n~ if >

From the first case of above results and the fact that E(G) > 0, one can easily
observe that if n —n~ > 2r + 1 then there is no graph with Es(G) = E(G).
The one of interesting problem in studying the Seidel energy of graphs is to
find the Seidel equienergetic graphs. In this direction, we have the following:

Theorem 13 Let Gy and Gy be two equienergetic, - reqular graphs of same
order n with no eigenvalue in the interval (—1/2,0). If Gy and Gy both have
same number of negative eigenvalues, then Gy and G are Seidel equienergetic.

Proof. Proof follows directly from Corollary 9. g

If G is an r-regular graph of order n with r > 3, then the iterated line graphs
L*(G), k > 2 have all negative eigenvalues equal to —2 [17]. If G; and G, are
two r-regular graph of order n, where v > 3 then L*(Gj), L*(G;) have same
number of negative eigenvalues and E(L*(G1)) = E(L*(G,)), k > 2 [20].

Remark 14 In [19] Ramane et al. studied the Seidel energy of iterated line
graphs LX(G), k > 2 of a r-reqular graph, v > 3 and constructed a large class
of Seidel equienergetic graphs by taking two r-regular graphs of same order. It
is noted that the results in [19] become the particular case of Theorem 13.

4  Seidel energy and energy of a graph

In this section, we study the connection between the Seidel energy and the
energy of a graph G in terms of different graph parameters. Also, obtained the
inertia relations between the graph eigenvalues and the Seidel eigenvalues of
a graph G.

Lemma 15 Let G be a graph of order n, n > 2. Then forj > 2,
29]- + )\nfj+2 <-1< Zej + 7\n,j+1 . (4)

Proof. By definition of Seidel matrix S = J -1 —-2A or 2A +S =] — L
In Lemma 3, by taking P = 2A, Q = S and R = ] — I we have p,_i k(] —
[) > 2pn i (A) + wn—k(S), now letting i =n —j, k =j — 2, we get wp(J — 1) >
20;(A) + An—j+2(S). But J —I has only two different eigenvalues n — 1 and —
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1 which implies 20; +An_j2 < —1. Similarly, by letting s =j—1 and t = n—j
in Lemma 3, we get the right side inequality of (4). O

The inertia of S is the number of positive, negative and 0 eigenvalues of S and
denoted by ngr, ng and ng respectively.

Theorem 16 Let G be a graph of order n > 2. Then
(a) 1<ni+n" <n+1
(b) 0§n§+n°§n
(c) n—1<ng+n".

Proof. The ng = 1if and only if G = Ky, n,(n1 +n2 =n) or Ky [5] which
implies A; > 0 for remaining graphs. This shows that lower bound in (a) is
clear. The lower bound in (b) follows from the fact that many graphs are not
Seidel integral. Let us rewrite the eigenvalues of G as

012200 >0=0n141 =" =0+ 10 =0>0p+ 047 =
1
2 en++n°+j > 2 > en++n°+j+1 22 6.

From the left side inequality of (4), we have 20; + Aq_j12 < —1 for j > 2. And
if j > 2 and 8; > —J then An_j, < —1—26; <0.
Therefore,

ng >nt+n’+j—1 (5)
which implies
n§+n‘2n++no+j—1+n_:n+j—1 >n—1.
Now by using (5),
nf+nf=n—ng-—ni+n"<n—-m"+n+j-1)—n+nt <n+1.
Next, by using above bounds
n+nl=m-mi+n)—mg+n)<2n—1-(n—1)=n.

O

In the following result we give necessary and sufficient condition to hold the
equality in left side of (4).
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Lemma 17 Let G be a graph of order n. Then 20; + An_j42 = —1 for all j €
{2,3,...,n} if and only if G is an r-regular graph with largest Seidel eigenvalue
n—2r—1.

Proof. If G is an r-regular graph. Then by Theorem 2 it is clear that 20; +
An—j+2 = —T1forallj €{2,3,...,n}. Conversely, assume that 20;+A,_j;2 = —1
for all j € {2,3,...,n}. Let the number of edges in G and its complement G be
m and m respectively. By Rayleigh quotient with all one’s vector 1, we have

xTSx.  1T(A—A)1 _ 2m—2m
A1 = max{ P> > .
x£0  xTx 1T1 n

From the fact that 3 ', 0; =0 and 3} | A; =0, we have

(26; + Aj) = 0 which implies 207 +A; =n —1.

n
=1

)
2m
On the other hand, from the fact 87 > o we have

4m  2m—2
20+ A > oy T oy,
n n

Now we arrive at 67 = sz and Ay = @, which shows that G is an
r-regular graph with r = sz and Ay =n—2r—1.
This completes the proof. ]
Proposition 18 Let G be a graph of order n. Then

|[Es(G) —2E(G)| < 2n — 2.
FEquality holds if and only if G is a complete graph.

Proof. By definition of Seidel matrix, S = ] — I — 2A. Now using Lemma 6,
we have, E(S) < E(] —1I) +2E(A) and 2E(A) < E(] —I) + E(S) which implies
|[Es(G) —2E(G)| < 2n — 2. O
Theorem 19 Let G be a graph of order n. Then

(a) 2E(G) — Es(G) < 40y
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(b) Es(G) —2E(G) < 2A;.

Proof. Let Ay > Ay > --- > Ay and 67 > 0, > .. > 0, are the Seidel
eigenvalues and the eigenvalues of a graph G respectively. From the definition
of the Seidel energy and the energy of a graph G, we have

n
Es(G) =M+ ) _[A]
j=2

n
2E(G) =261+ ) _[20n 2.
j=2

By combining the above two equalities we get

n

2E(G) — 201 — Es(G) + A1 = ) (120n—j12] — IAj])
j=2

n
< ) 1200542 + Nl
j=2

Now from the left side inequality of (4), we have 20; + An_j42 < —1 for j > 2.
Therefore

n n
D 2002+ A== 200440+ A =201 + A
j=2 j=2

With this fact we arrive at 2E(G) — Es(G) < 46;.
Similarly one can prove (b) easily. d

Remark 20 The case (b) of Theorem 19 with the fact \y <n—1 gives
Es(G) —2E(G) <2\ <2n—2.

And Proposition 18 gives that Es(G) —2E(G) < 2n—2 which implies the result
(b) of Theorem 19 is better than this inequality.

Theorem 21 Let G be a graph of order . with Seidel eigenvalues Ay > Ay >
<+ > An. Then

2E(G) —Eg(G) <467 —2n+2n~ + 2. (6)

Equality holds if and only if G is a graph with 20; + Aq_j.2 = —1 for all
j€{2,3,...,zandn” +ng =n—1, where z =n* +n°.
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Proof. Let 67 > 0, > --- > 0,, be the eigenvalues of G. From the definition
of energy of a graph G, we have

n z z
E(G)=) I6/=2) 6;,=201+2) 6
j=1 j=2

j=1
z

< 260, —i—ZZ 1(—1 —An—j+2) by left side of (4)  (7)
J:

z—1
=201 —z+1-) Aujii
j=1
i
<201 —z+1 ~Ani 8
<201 —z+ +]I£3§§1._ nitl (8)

1
=20 —m+n +1 +2ES(G)

2E(G) —Es(G) <4067 —2n+2n~ + 2.

For equality we have the following. Let G be a complete graph of order n, then
07 =n—1and n= = n — 1. Hence equality holds in (6). Suppose G is not a
complete graph then 8, > 0, which gives z=n"4+n®=n—n—> 2.

Now, to have equality in (6) the inequalities (7) and (8) must be equalities.
Equality in (7) holds if and only if 20; + An_j4, = —1 for all j € {2,3,...,z}.
From the energy of a graph and equality in (8) holds if and only if

ng <z—1 §n§+ng.

Sincez=n—-n" wegetng +n° <n-—1I and ng +n- >n—1 —ng.

Now, from (c) of the Theorem 16, the above right side inequality is obvious.
Again using (c¢) of the Theorem 16 with left side inequality of above, we have
n~ +ng =n— 1. This completes the proof. O

Corollary 22 Let G be a graph of order n. Then
2E(G) —Es(G) <4A—2n+2n" + 2.
Equality holds if and only if G is regular graph with n™ +ng =n—1.

Proof. Let A be the maximum degree of G. It is well-known fact that 0; < A.
And 67 = A holds if and only if G is a regular. Using these in Theorem 21, we
arrive at required results. ]
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Remark 23 From the fact that n~ <n—1, Theorem 21 gives
2E(G) —Es(G) <401 —2n+2n~ + 2 < 460;.

And the case (a) of Theorem 19 shows that 2E(G)—Es(G) < 407 which implies
the result in Theorem 21 is better than this inequality.

Corollary 24 Let G be a graph of order n. Then
2E(G) —Es(G) <2Mm—T14n") <2(2n—1—«). (9)

Proof. Let « be the independence number of G. Using the fact that 8; < n—1
in Theorem 21 the left side inequality in (9) is clear. Now using the well known
inequality n~ < n — «, we get the right side inequality in (9). O

Theorem 25 Let G be a graph of order n. Then
(a) 2(n"+n®—1) <Es(G) < n(yn+1)
(0) 2T +n° —1) <Es(G) < (n—1)(vn+T1+1) if G is a regular graph.

Proof. Left side inequality in (a) and (b) follows by using the fact E(G) >
20; in (6). Now by using the right side inequality of Theorem 4 and (1) of
Proposition 5, we have the right side inequality of (a). Now by using the right
side inequality of Theorem 4 and (2) of Proposition 5, we have the right side
inequality of (b). O
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