On the spread of the distance signless Laplacian matrix of a graph

S. PIRZADA
Department of Mathematics, University of Kashmir, Srinagar, India email:
pirzadasd@kashmiruniversity.ac.in

Mohd Abrar Ul HAQ
Department of Mathematics, University of Kashmir, Srinagar, India
email: abrar14789@gmail.com

Abstract

Let G be a connected graph with \mathfrak{n} vertices, m edges. The distance signless Laplacian matrix $D^{Q}(G)$ is defined as $D^{Q}(G)=$ $\operatorname{Diag}(\operatorname{Tr}(G))+\mathrm{D}(\mathrm{G})$, where $\operatorname{Diag}(\operatorname{Tr}(\mathrm{G}))$ is the diagonal matrix of vertex transmissions and $D(G)$ is the distance matrix of G. The distance signless Laplacian eigenvalues of G are the eigenvalues of $D^{Q}(G)$ and are denoted by $\partial_{1}^{Q}(G), \partial_{2}^{Q}(G), \ldots, \partial_{n}^{Q}(G) . \partial_{1}^{Q}$ is called the distance signless Laplacian spectral radius of $D^{Q}(G)$. In this paper, we obtain upper and lower bounds for $S_{D Q}(G)$ in terms of the Wiener index, the transmission degree and the order of the graph.

Key words and phrases: distance matrix; distance signless Laplacian matrix; distance signless Laplacian eigenvalues; spread; Wiener index; transmission degree

1 Introduction

Let G be a connected simple graph with vertex set $\left.V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$ and edges set $\mathrm{E}(\mathrm{G})$. In G , the distance $\mathrm{d}\left(v_{i}, v_{j}\right)$ between the vertices v_{i} and v_{j} is the length of (number of edges) the shortest path that connects v_{i} and v_{j}. The diameter of G is the maximum distance between any two vertices of G. The distance matrix of G is an $\mathfrak{n} \times \mathfrak{n}$ matrix in which the $(\mathfrak{i}, \mathfrak{j})^{\text {th }}$-entry is equal to the distance between vertices v_{i} and v_{j}, that is, $D_{i, j}(G)=d_{i, j}=d\left(v_{i}, v_{j}\right)$. For more definitions and notations, we refer to [10].
In G, the distance degree of a vertex v, denoted by $\operatorname{Tr}_{G}(v)$, is defined to be the sum of the distances from v to all other vertices in G , that is, $\operatorname{Tr}_{G}(v)=\sum_{u \in V(G)} d(u, v)$. We can also write $\operatorname{Tr}_{G}\left(v_{i}\right)$ as Tr_{i}. A graph G is said to be k-transmission regular if $\operatorname{Tr}_{i}=k$, for each $i=1,2, \ldots, n$. The transmission degree sequence is given by $\left\{\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \operatorname{Tr}_{3}, \ldots, \operatorname{Tr}_{n}\right\}$. The second transmission degree of v_{i}, denoted by T_{i}, is given by $T_{i}=\sum_{j=1}^{n} d_{i j} T_{j}$. The Wiener index of graph G, denoted by $W(G)$, is the sum of the distances between all unordered pairs of vertices in G, that is,

$$
W(G)=\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)=\frac{1}{2} \sum_{u \in V(G)} \operatorname{Tr}_{G}(v)
$$

Let $\operatorname{Tr}_{G}=\operatorname{diag}\left(\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \ldots, \operatorname{Tr}_{n}\right)$ be the diagonal matrix of vertex transmissions of G. Aouchiche and Hansen [5] introduced the Laplacian and the signless Laplacian for the distance matrix of a connected graph G . The matrix $D Q(G)=\operatorname{Tr}(G)+D(G)$ (or simply D^{Q}) is called the distance signless Laplacian matrix of G. Since $\mathrm{DQ}(\mathrm{G})$ is symmetric (positive semidefinite), its eigenvalues can be arranged as: $\partial_{1}^{Q}(G) \geq \partial_{2}^{Q}(G) \geq \cdots \geq$ $\partial_{n}^{Q}(G)$, where $\partial_{1}^{Q}(G)$ is called the distance signless Laplacian spectral radius of G. If $\partial_{i}^{Q}(G)$ is repeated p times, then we say that the multiplicity of $\partial_{i}^{Q}(G)$ is p and we write $m\left(\partial_{i}^{Q}(G)\right)=p$. As $D^{Q}(G)$ is nonnegative and irreducible, by the Perron-Frobenius theorem, $\partial_{1}^{Q}(G)$ is positive, simple and there is a unique positive unit eigenvector X corresponding to $\partial_{1}^{Q}(G)$, which is called the distance signless Laplacian Perron vector of G. The distance signless Laplacian spread of a graph G, denoted by $S_{D Q}(G)$, is defined as $S_{D Q}(G)=\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G)$, where $\partial_{1}^{Q}(G)$ and $\partial_{n}^{Q}(G)$ are respectively the largest and the smallest distance signless Laplacian eigenvalues
S. Pirzada, M. A. U. Haq
of G. Some recent work on distance signless Laplacian eigenvalues can be seen in $[1,4,8,11,12,13,14]$.

The rest of the paper is organized as follows. In Section 2, we obtain lower and upper bounds for $S_{\mathrm{DQ}}(G)$ in terms of the Wiener index $W(G)$, the transmission Tr and the order n of G .

2 Bounds for spread of distance signless Laplacian matrix

For a graph G with n vertices, let $\operatorname{Tr}_{\max }(\mathrm{G})=\max \{\operatorname{Tr}(v): v \in \mathrm{~V}(\mathrm{G})\}$ and $\operatorname{Tr}_{\min }(\mathrm{G})=\min \{\operatorname{Tr}(v): v \in \mathrm{~V}(\mathrm{G})\}$. Whenever the graph G is understood, we will write $\operatorname{Tr}_{\max }$ and $\operatorname{Tr}_{\min }$ in place of $\operatorname{Tr}_{\max }(\mathrm{G})$ and $\mathrm{Tr}_{\min }(\mathrm{G})$, respectively. From the definitions, we have $2 W(G)=\partial_{1}^{Q}+\partial_{2}^{Q}+\cdots+\partial_{n}^{Q}$. Also, $\operatorname{Tr}_{\max } \geq \frac{2 W(G)}{n}$ and $\operatorname{Tr}_{\min } \leq \frac{2 W(G)}{n}$, where $\frac{2 W(G)}{n}$ is the average transmission degree. First we note the following observations.

Lemma 1 [2] Let G be a simple, connected graph. Then

$$
\frac{\mathrm{Tr}_{\min }+\sqrt{\mathrm{Tr}_{\min }^{2}+8 \mathrm{~T}_{\min }}}{2} \leq \partial_{1}^{Q}(\mathrm{G}) \leq \frac{\mathrm{Tr}_{\max }+\sqrt{\mathrm{Tr}_{\max }^{2}+8 \mathrm{~T}_{\max }}}{2}
$$

equality hold if and only if the graph is transmission regular.
Lemma 2 [6] Let G be a connected graph with minimum and maximum transmissions $\operatorname{Tr}_{\min }$ and $\operatorname{Tr}_{\max }$. Then $2 \operatorname{Tr}_{\min } \leq \partial_{1}^{\mathrm{Q}}(\mathrm{G}) \leq 2 \operatorname{Tr}_{\max }$, and the equality hold if and only if G is transmission regular.

Now, we obtain bounds for the distance signless Laplacian spread $S_{D Q}(G)$ of a graph G in terms of the Wiener index $W(G)$, the order n, the maximum transmission degree $\operatorname{Tr}_{\max }(\mathrm{G})$ and the minimum transmission degree $\mathrm{Tr}_{\text {min }}$ of G .
Theorem 3 Let G be a connected graph with n vertices having Wiener index $W(G)$. Then

$$
\begin{aligned}
& \frac{\mathrm{n}\left(\mathrm{Tr}_{\min }+\sqrt{\operatorname{Tr}_{\min }^{2}+8 \mathrm{~T}_{\min }}\right)-4 \mathrm{~W}(\mathrm{G})}{2(\mathrm{n}-1)} \leq \mathrm{S}_{\mathrm{DQ}}(\mathrm{G}) \\
& <\frac{\mathrm{n}\left(\mathrm{Tr}_{\max }+\sqrt{\mathrm{Tr}_{\max }^{2}+8 \mathrm{~T}_{\min }}\right)-4 W(\mathrm{G})}{2}
\end{aligned}
$$

Equality holds in the left if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$.
Proof. Let $\partial_{1}^{Q}(G), \partial_{2}^{Q}(G), \ldots, \partial_{n}^{Q}(G)$ be $D^{Q}(G)$-eigenvalues. Then we have

$$
2 \mathrm{~W}(\mathrm{G})=\partial_{1}^{\mathrm{Q}}(\mathrm{G})+\partial_{2}^{\mathrm{Q}}(\mathrm{G})+\cdots+\partial_{n}^{\mathrm{Q}}(\mathrm{G}) \geq \partial_{1}^{\mathrm{Q}}(\mathrm{G})+(\mathrm{n}-1) \partial_{n}^{\mathrm{Q}}(\mathrm{G})
$$

which implies that $\partial_{n}^{Q}(G) \leq \frac{2 W(G)-\partial_{1}^{Q}(G)}{n-1}$, with equality if and only if $\partial_{2}^{Q}(G)=\partial_{3}^{Q}(G)=\cdots=\partial_{n}^{Q}(G)$. For equality, consider the following two cases.
Case 1. Clearly, $\partial_{1}^{\mathrm{Q}}(\mathrm{G})=\partial_{2}^{\mathrm{Q}}(\mathrm{G})=\partial_{3}^{\mathrm{Q}}(\mathrm{G})=\cdots=\partial_{n}^{\mathrm{Q}}(\mathrm{G})$, is not possible, since the spectral radius of D^{Q} is always simple.
Case 2. $\partial_{1}^{\mathrm{Q}}(\mathrm{G})>\partial_{2}^{\mathrm{Q}}(\mathrm{G})$ and $\partial_{2}^{\mathrm{Q}}(\mathrm{G})=\partial_{3}^{\mathrm{Q}}(\mathrm{G})=\cdots=\partial_{n}^{\mathrm{Q}}(\mathrm{G})$. Then $G \cong K_{n}$, as K_{n} is the unique graph having only two distinct distance signless Laplacian eigenvalues. Therefore,

$$
\begin{aligned}
S_{\mathrm{DQ}}(G) & =\partial_{1}^{\mathrm{Q}}(G)-\partial_{n}^{Q}(G) \geq \partial_{1}^{Q}(G)-\frac{2 W(G)-\partial_{1}^{\mathrm{Q}}(G)}{n-1} \\
& =\frac{(n-1) \partial_{1}^{Q}(G)-2 W(G)-\partial_{1}^{Q}(G)}{n-1} \\
& =\frac{n \partial_{1}^{Q}(G)-2 W(G)}{n-1} .
\end{aligned}
$$

Now, using Lemma 1, we get

$$
\begin{aligned}
S_{\mathrm{DQ}}(\mathrm{G}) & \geq \frac{\mathrm{n}\left(\frac{\left.\operatorname{Tr}_{\min }+\sqrt{\operatorname{Tr}_{\text {min }}^{2}+8 \mathrm{~T}_{\text {min }}}\right)}{2}-2 \mathrm{~W}(\mathrm{G})\right.}{n-1} \\
& =\frac{n\left(\operatorname{Tr}_{\min }+\sqrt{T_{\min }^{2}+8 T_{\min }}\right)-4 W(G)}{2(n-1)}
\end{aligned}
$$

with equality if and only if $G \cong K_{n}$. Also, we have $2 W(G)=\partial_{1}^{Q}(G)+$ $\partial_{2}^{Q}(G)+\cdots+\partial_{n}^{Q}(G) \leq(n-1) \partial_{1}^{Q}(G)+\partial_{n}^{Q}(G)$. We observe that the above inequality is strict as the distance signless Laplacian spectral radius is always simple, that is, $\partial_{n}^{Q}(G) \geq 2 W(G)-(n-1) \partial_{1}^{Q}(G)$. Therefore,

$$
S_{D Q}(G)=\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G)<\partial_{1}^{Q}(G)-2 W(G)+(n-1) \partial_{1}^{Q}(G) .
$$

By using Lemma 1, we get

$$
\begin{aligned}
\mathrm{S}_{\mathrm{DQ}}(\mathrm{G}) & \leq \frac{\mathrm{n}\left(\mathrm{Tr}_{\max }+\sqrt{\mathrm{Tr}_{\max }^{2}+8 \mathrm{~T}_{\min }}\right)}{2}-2 \mathrm{~W}(\mathrm{G}) \\
& =\frac{\mathrm{n}\left(\mathrm{Tr}_{\max }+\sqrt{\operatorname{Tr}_{\max }^{2}+8 \mathrm{~T}_{\max }}\right)-4 W(\mathrm{G})}{2}
\end{aligned}
$$

and we get the desired result.
The following lemma will be used in the next theorem.
Lemma 4 [15] Let G be a connected graph on n vertices. Then $\partial_{1}^{\mathrm{Q}}(\mathrm{G}) \geq$ $\frac{4 W(G)}{n}$ with equality holding if and only if G is transmission regular.

Theorem 5 Let G be a connected graph of order n. Then $S_{\mathrm{DQ}}(\mathrm{G}) \geq$ $\frac{2 W(G)}{n-1}$, and equality holds if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$.

Proof. If $\partial_{1}^{Q}(G), \partial_{2}^{Q}(G), \ldots, \partial_{n}^{Q}(G)$ are $D^{Q}(G)$-eigenvalues, then we have $2 W(G)=\partial_{1}^{Q}(G)+\partial_{2}^{Q}(G)+\cdots+\partial_{n}^{Q}(G) \geq \partial_{1}^{Q}(G)+(n-1) \partial_{n}^{Q}(G)$,
which implies that $\partial_{n}^{Q} \leq \frac{2 W(G)-\partial_{1}^{Q}(G)}{n-1}$, with equality if and only if $G \cong K_{n}$. Therefore,

$$
\begin{aligned}
S_{D Q}(G) & =\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G) \geq \partial_{1}^{Q}(G)-\frac{2 W(G)-\partial_{1}^{Q}(G)}{n-1} \\
& =\frac{(n-1) \partial_{1}^{Q}(G)-2 W(G)+\partial_{1}^{Q}(G)}{n-1} \\
& =\frac{n \partial_{1}^{Q}(G)-2 W(G)}{n-1}
\end{aligned}
$$

Using Lemma 4 , we get $S_{D Q}(G)=\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G) \geq \frac{2 W(G)}{n-1}$, equality holds if and only if $G \cong K_{n}$.
Since $D^{Q}(G)$ is nonnegative and irreducible, by the Perron-Frobenius theorem, $\partial_{1}^{\mathrm{Q}}$ is positive, simple and there is a unique positive unit eigenvector X corresponding to ∂_{1}^{Q}. Using Lemma 4 and the fact that $\partial_{1}^{Q}(G) \geq$
$\frac{2 \sqrt{\sum_{i=1}^{n} T_{i}^{2}}}{n}$, equality hold if and only if G is transmission degree regular graph [9], we get

$$
S_{D Q}(G) \geq \frac{2(n-1) \sqrt{\sum_{i=1}^{n} \operatorname{Tr}_{i}^{2}}-2 W(G)}{n-1}
$$

and equality holds if and only if G is transmission degree regular graph.
Lemma 6 [3] If the transmission degree sequence of G is $\left\{\operatorname{Tr}_{1}, \operatorname{Tr}_{2} \ldots, \operatorname{Tr}_{\mathrm{n}}\right\}$, then

$$
\sum_{i=1}^{n} \partial_{i}^{Q}(G)^{2}=2 \sum_{1 \leq i<j \leq n}\left(d_{i j}\right)^{2}+\sum_{i=1}^{n} \operatorname{Tr}_{i}{ }^{2}
$$

Theorem 7 Let G be a connected graph with n vertices. Then

$$
\mathrm{S}_{\mathrm{DQ}}(\mathrm{G}) \geq 2 \operatorname{Tr}_{\min }-\sqrt{\frac{R_{1}-4 \mathrm{Tr}_{\min }^{2}}{n-1}}
$$

and equality holds if and only if $\mathrm{G} \cong \mathrm{K}_{\mathrm{n}}$.
Proof. From Lemma 6, we have $\sum_{i=1}^{n} \partial_{i}^{Q}(G)^{2}=2 \sum_{1 \leq i<j \leq n}\left(d_{i j}\right)^{2}+$ $\sum_{i=1}^{n} \operatorname{Tr}_{i}{ }^{2}=R_{1}$. Clearly, $R_{1}=\sum_{i=1}^{n} \partial_{i}^{Q}(G)^{2} \geq \partial_{1}^{Q}(G)^{2}+(n-1) \partial_{n}^{Q}(G)^{2}$, which implies that $\partial_{n}^{Q}(G) \leq \sqrt{\frac{R_{1}-\partial_{1}^{Q}(G)^{2}}{n-1}}$, with equality if and only if $G \cong K_{n}$. By using this inequality for $\partial_{n}^{Q}(G)$, we have

$$
S_{D}(G)=\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G) \geq \partial_{1}^{Q}(G)-\sqrt{\frac{R_{1}-\partial_{1}^{Q}(G)^{2}}{n-1}}
$$

Now, using Lemma 2, we get

$$
S_{\mathrm{DQ}}(\mathrm{G}) \geq 2 \operatorname{Tr}_{\min }-\sqrt{\frac{R_{1}-4 \mathrm{Tr}_{\min }^{2}}{n-1}}
$$

which is the required inequality. Clearly, the equality holds if and only if $G \cong K_{n}$.

Remarks. If G is a connected graph of order n, then $\partial_{n}^{Q}(G) \leq T r_{\text {min }}$, where $\mathrm{Tr}_{\min }$ is the smallest transmission [7]. From Theorem 7, we have $S_{D Q}(G) \geq 2 \operatorname{Tr}_{\min }-\partial_{n}^{Q}(G)$. Combining, we get $\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G) \geq \operatorname{Tr}_{\min }$.

If G is a connected graph of order $n>2$, then $\partial_{1}^{Q}(G) \geq 2(n-1)$ [9]. Using the inequality $\partial_{n}^{Q}(G) \leq \frac{2 W(G)}{n}$., we get $S_{D Q}(G)=\partial_{1}^{Q}(G)-\partial_{n}^{Q}(G) \geq$ $2(n-1)-\frac{2 W(G))}{n}=\frac{2(n(n-1)-W(G))}{n}$.

References

[1] A. Alhevaz, M. Baghipur, S. Pirzada, Y. Shang, Some inequalities involving the distance signless Laplacian eigenvalues of graphs, Transactions Combinatorics 10(1) (2021) 9-29. $\Rightarrow 40$
[2] A. Alhevaz, M. Baghipur, E. Hashemi, H. Ramane, On the distance signless Laplacian spectrum of graphs, Bull. Malays. Math. Sci. Soc. 42 (2019) 2603-2621. $\Rightarrow 40$
[3] A. Alhevaz, M. Baghipur, S. Paul, On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs, Discrete Math. Algorithms and Appl. 10(3) (2018) 1850035 (19 pages). \Rightarrow 43
[4] A. Alhevaz, M. Baghipur, H. Ahmad, S. Pirzada, Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, Linear Multilinear Algebra 69 (2019) 1-18. $\Rightarrow 40$
[5] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21-33. $\Rightarrow 39$
[6] M. Aouchiche, P. Hansen, A signless Laplacian for the distance matrix of a graph, Cahiers du GERAD G-2011-78. $\Rightarrow 40$
[7] K. C. Das, H. Lin, J. Guo, Distance signless Laplacian eigenvalues of graphs, Front. Math. China 14 (2019) 693-713. $\Rightarrow 44$
[8] S. Khan, S. Pirzada, Distance signless Laplacian eigenvalues, diameter, and clique number, Discrete Mathematics Letters 10 (2022) 28-31. $\Rightarrow 40$
[9] L. Medina, H. Nina, M. Trigo, On distance signless Laplacian spectral radius and distance signless Laplacian energy, Mathematics 8 (2020) 792. $\Rightarrow 43,44$
[10] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012. $\Rightarrow 39$
[11] S. Pirzada, B. A. Rather, M. Aijaz, T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_{n}, Linear Multilinear Algebra 70 (2022) 3354-3369. $\Rightarrow 40$
[12] S. Pirzada, B. A. Rather, R. U. Shaban, M. I. Bhat, On distance Laplacian (signless) eigenvalues of commuting graphs of dihedral and dicyclic groups, Springer Proceedings on Algebra and Related Topics with Applications, ICARTA 2019 (2022) 413-425. $\Rightarrow 40$
[13] B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group, Art Discrete Appl. Math. 5 (2022) P2.09. $\Rightarrow 40$
[14] R. U. Shaban, B. A. Rather, S. Pirzada, A. Somasundaram, On distance signless Laplacian spectral radius of power graphs of cyclic and dihedral groups, Annales Mathematicae et Informaticae 55 (2022) 172-183. $\Rightarrow 40$
[15] R. Xing, B. Zhou, J. Li, On the distance signless Laplacian spectral radius of graphs, Linear Multilinear Algebra 62 (2014) 1377-1387. $\Rightarrow 42$

