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Abstract. In an isolate-free graph Z = (VZ, EZ), a set C of vertices is
termed as a connected certified dominating set of Z if, |NZ(u)∩(VZ\C)| =
0 or |NZ(u)∩ (VZ\C)| ≥ 2 ∀u ∈ C, and the subgraph Z[C] induced by C is
connected. The cardinality of the minimal connected certified dominat-
ing set of graph Z is called the connected certified domination number
of Z denoted by γccer(Z). In graph Z, if the deletion of any arbitrary
edge changes the connected certified domination number, then we call
it a connected certified domination edge critical. If the deletion of any
random edge does not affect the connected certified domination number,
then we refer to it as a connected certified domination edge stable graph.
In this paper, we investigate those graphs which are connected certified
domination edge critical and stable upon edge removal. We then study
some properties of connected certified domination edge critical and stable
graphs.

1 Introduction

Detlaff et al. [8] introduced certified domination in 2020, and it is now a
well-studied domination-related parameter in the domination theory of graphs
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(see, for example, [9, 15, 16, 14] for recent literature on this topic). A set
C ⊆ VZ of a graph Z = (VZ, EZ) is called certified dominating set (CFDS) if
|NZ(u) ∩ (VZ\C)| = 0 or |NZ(u) ∩ (VZ\C)| ≥ 2 ∀u ∈ C. The cardinality of
the minimal CFDS is the certified domination number (CFDN) of the graph
Z, represented by γcer(Z) [8]. A γcer− set C is said to be a connected certi-
fied dominating set (CCDS), if the induced subgraph Z[C] is connected and
|NZ(u)∩ (VZ\C)| = 0 or |NZ(u)∩ (VZ\C)| ≥ 2 ∀u ∈ C. The connected certified
domination number (CCDN) of the graph Z is the cardinality of the smallest
CCDS and is represented by γccer(Z). An element u ∈ VZ is a γccer− good
vertex if u is in some γccer− set of the graph Z, and set of all γccer− good
vertices of the graph Z will be represented by T ccer(Z).
Criticality and stability are important considerations for a lot of graph param-
eters. It is generally essential to understand how a graphical property behaves
when the graph is altered when it is relevant in an application. Much has been
written on graphs where the deletion (addition) of an edge (vertex) affects a
parameter (such as domination number or chromatic number). The γ−critical
graphs when one edge is eliminated were examined by Walikar and Acharya
[17] and in contrast, Dutton and Brigham first studied γ− stable graphs [10].
These problems were then used to investigate critical and stable graphs with
respect to different domination variations such as, “Roman Domination”, “To-
tal Domination”, “Connected Domination”, etc. γc-critical graphs were first
studied by [5] in 2004, while γc-stable graphs were first studied by [7] in 2015.
In 2020, Detlaff et al. [8] studied the influence of edge addition and deletion
on the CFDN of graphs.
The criticality and stability of graph upon edge addition and deletion have
been studied for various domination-related parameters, for example, [6, 2, 4,
12]. In this research, we investigate those graphs where the CCDN increases
when an edge is deleted. We also study those graphs where CCDN remains
unchanged on the deletion of an edge. To analyse stable or critical graphs
when one edge is eliminated, we state that γccer(Z) = ∞ if a graph Z contains
an isolated vertex. Consequently, γccer(Z− e) = ∞ if we delete an edge e ∈ EZ
that is incident with a leaf vertex in Z. In addition, γccer(Z − e) = ∞ if edge
e ∈ EZ divides the graph Z− e into two components.
We state that a graph Z is connected certified domination edge (ccde) stable

or [γccer]
e−-stable, if γccer(Z − e) = γccer(Z) ∀e ∈ EZ. If γccer(Z) = k, and Z is

[γccer]
e−-stable, then Z is [kccer]

e−-stable. A graph Z is ccde critical or [γccer]
e−-

critical , if γccer(Z−e) 6= γccer(Z) ∀e ∈ EZ. We note that eliminating an edge of

a graph Z cannot decrease the CCDN of the graph Z. Hence if Z is [γccer]
e−-
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critical, then γccer(Z− e) > γccer(Z) for every edge e ∈ EZ. If γccer(Z) = k, and

Z is [γccer]
e−-critical, we say that Z is [kccer]

e−-critical.
An edge e ∈ EZ is a critical edge of Z if γccer(Z − e) > γccer(Z), whereas an
edge e ∈ EZ is a stable edge of Z if γccer(Z − e) = γccer(Z). Thus, if Z is

[γccer]
e−-critical graph, then every edge of the graph Z is a critical edge, while

every edge in a [γccer]
e−-stable graph is a stable edge.

1.1 Definitions and notations

We refer to [13] and [18] for general graph-theoretic definitions and notations.
Throughout this paper, by a graph Z we mean a connected, undirected, and
unweighted simple graph (i.e., graph without loops or multiple edges). A graph
Z = (VZ, EZ) with no isolated vertex is an isolate-free graph. The order of Z is
denoted by n(Z) = |VZ| and size of Z by m(Z) = |EZ|. For any vertex u ∈ Z,
dZ(u) will denote the degree of u in Z. The neighborhood of u, represented
by NZ(u), is the set of all nodes adjacent to u, and the degree of u in Z is
|NZ(u)|.

Vertex u ∈ Z is called an isolated vertex if dZ(u) = 0 and is called a pen-
dant or leaf if dZ(u) = 1. δ(Z), (∆(Z)) denotes the minimal (maximal) degree
among the vertices of Z. The diameter of a graph is the largest distance be-
tween two vertices and the maximum distance between x ∈ VZ, and all other
vertices is the eccentricity of the vertex.A universal vertex of a graph Z is a
vertex of degree |VZ| − 1. A leaf is a degree one vertex whose only neighbor
is referred to as a support vertex. A support vertex is strong if it has at least
two leaves as neighbors; otherwise, it is considered weak. We will use LZ and
S1(Z)(S2(Z), respectively) to represent the set of leaves and weak supports
(strong supports, respectively) of graph Z. For a connected graph Z, a vertex
u ∈ VZ is called a cut vertex if Z − u is not connected. The number of cut
vertices of Z is denoted by ζ(Z).
The set NZ(u)∪ {u} = NZ[u] is a closed neighborhood of u. More specifically,
the neighborhood (closed, respectively) of a subset A ⊆ VZ of vertices, rep-
resented by NZ(A) (resp. NZ[A]), is defined to be the set

⋃
u∈A

NZ(u) (resp.

NZ(A) ∪ A). Let C ⊆ VZ and u ∈ C. The C−private neighborhood of u de-
noted by pn(u, C), and is defined by pn(u, C) = NZ[u] −NZ[C − u]. Thus if
w ∈ pn(u, C), thenNZ(w)∩C = {u}. We refer to a vertexw ∈ pn(u, C) as a C−
private neighborhood of u. We construct the set epn(u, C) = pn(u, C)∩(V−C)
and designate a vertex y ∈ epn(u, C) an external C−private neighbor of u. If
the context makes the graph Z clear, we simply write N(u) and N[u] instead
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of NZ(u) and NZ[u], respectively.
The star graph S(1,r) of order n = r+1, “is a tree on n vertices with one vertex
having degree |V(S(1,r))| − 1 and the other n − 1 vertices having vertex degree
1”. Double star graph S(q,r) is a graph obtained by joining center vertex of
two star graphs S(1,q) and S(1,r) with an edge. A tree in which every vertex is
on a central spine or is just one edge away from the spine is known as a cater-
pillar graph, caterpillar tree, or simply a caterpillar (in other words, deleting
its endpoints results in a path graph). “The corona product of two graphs,
H1 and H2, is defined as the graph attained by taking one replica of H1 and
|VH1

| replicas of H2 and linking the jth vertex of H1 to every vertex in the jth

replica of H2”[1, 3, 11].

2 [γccer]
e−-critical graphs

We provide the characterization of “[γccer(Z)]
e−-critical graphs” in this section.

Before moving on to the key findings, we first define the family of trees T as
follows.
We define T as a family of trees in which each vertex is a leaf or of degree at
least 3. A tree T ∈ T , if T is a non-trivial star S(1,r), r ≥ 2, or T is double
star graph S(q,r), q, r ≥ 2, or T is a caterpillar, or if T can be constructed
by subdivided star S(1,r), r ≥ 2 by adding zero or at least two vertices to the
vertices of degree 1, or if T can be constructed by subdivided double star graph
S(q,r), q, r ≥ 2 by adding at least two vertices to the vertices of degree 1.
We begin this section with the following observation.

Figure 1: A graph T18 in the family of trees T .

Observation 1 If C is the smallest γccer−set of a graph Z, then for each vertex
u ∈ C, |epn(u, C)| ≥ 1.
Note that if C is the smallest γccer−set of a connected graph Z = (VZ, EZ) such
that C = VZ, then epn(u, C) = φ.
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Proposition 1 Let Z be an isolate free graph of order n with dia(Z) ≤ 2 and

δ(Z) = 1, then Z is [γccer]
e−-critical.

Proof. Let Z be any connected graph of order n, with dia(Z) ≤ 2 and
δ(Z) = 1, and let C be the γccer−set of the graph Z. We will prove it in two
cases.
Case 1. When dia(Z) = 2.
If a graph Z has diameter two, then every pair of non-adjacent vertices has a
common neighbor, and γccer(Z) = 1, whenever dia(Z) = 2 and δ(Z = 1. Let
e = uv ∈ Z be such that either u ∈ C or v ∈ C. Therefore, if we delete edge
e = uv from Z, then the CCDN of the graph Z− e will change, and we know
that deletion of an edge from any arbitrary graph cannot decrease its CCDN.
Therefore γccer(Z− e) > γccer(Z), implying that Z is [γccer]

e−-critical.
Case 2. When dia(Z) = 1.
If a graph Z has a diameter 1, then Z is a path graph P2 on two vertices u and
v connected with only edge e = uv ∈ Z. Now if we remove this edge e then the
resultant graph will be a disconnected graph implying that γccer(P2 − e) = ∞
and hence Z is [γccer]

e−-critical.

Hence from Case 1 and case 2, we conclude that Z is [γccer]
e−-critical. �

Proposition 2 If Z is [γccer]
e−- critical graph and dia(Z) ≤ 2, then for every

γccer(Z)−set C of Z, Z[C] is either a trivial graph or a star graph.

The CCDN of a an isolate free graph Z with dia(Z) ≤ 2 in most of the cases
is one and is two in the only case when Z u P2. So in cases when γccer(Z) = 1,
the subgraph induced by γccer−set of graph Z is a trivial graph, and when
γccer(Z) = 2 the subgraph induced by γccer−set is a star graph. Also, if a graph

Z has δ(Z) = 1, then Z is always [γccer]
e−-critical.

Corollary 3 Let T be an isolate free graph such that T ∈ T , then γccer− set
of T will be a star or double star graph.

Proposition 4 Let Z be an isolate free graph of order n and let C be the γccer−
set of Z. For any edge e = uv ∈ EZ, where u ∈ C and v /∈ C, if |N(v)∩ C| = 1,
then the graph Z is [γccer]

e−-critical.

Proof. Let Z be any isolate free graph of order n and C be the γccer−set of
graph Z. Let e = uv ∈ EZ be such that u ∈ C, v /∈ C and |N(v)∩ C| = 1. Since
C is γccer−set of the graph Z, therefore |N(w) ∩ (VZ\C)| = 0 or ≥ 2, ∀w ∈ C,
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that is, every vertex in C has 0 or at least two neighbors in VZ\C, implying that
|N(u) ∩ (VZ\C)| ≥ 2, as v is one such neighbor of u in VZ\C. By assumption,
the vertex u cannot be weak support of the graph Z. We consider two cases:
u ∈ S2(Z) and u /∈ S2(Z).
Case 1. u ∈ S2(Z).
If u ∈ S2(Z), then degZ(u) ≥ 2, and v ∈ LZ is one such neighbor of u in Z.
Also, every strong support vertex of a graph Z belongs to every γccer−set of the
graph Z. If we eliminate the edge e = uv from the graph Z then the CCDN of
the graph Z− e will change, as u is the only neibhor of v in C, implying that
Z is [γccer]

e−-critical.
Case 2. u /∈ S2(Z).
Since |N(v) ∩ C| = 1, so if u /∈ S2(Z) then its neighbor v cannot be a leaf in
the graph Z, because if v is a leaf, then the vertex u ∈ S2(Z) which will be
a contradiction to our assumption. As u is the only neighbor of the vertex
v in γccer−set C of the graph Z, therefore if we delete the edge e = uv from
the graph Z, then the vertex v ∈ Z − e will be the only vertex in the graph
Z − e which is not adjacent to any of the vertex in γccer−set C of the graph
Z, implying that the removal of the edge e = uv from the graph Z changes
the CCDN of Z − e, i.e., γccer(Z − e) > γccer(Z) as removal of an edge cannot
decrease the CCDN of a graph.
Hence from the above two cases, we conclude that for any edge e = uv such
that u ∈ C, v /∈ C and |N(v) ∩ C| = 1, then Z is [γccer]

e−-critical. �

Proposition 5 Let Z be an isolate free graph of order n, then Z is [γccer]
e−-

critical if there exists a vertex u ∈ Z such that u ∈ S2(Z).

Proof. Let C be the γccer−set of the graph Z. Suppose there exists a vertex
u ∈ Z such that u ∈ S2(Z). Let v ∈ LZ be a leaf of the graph Z adjacent to the
strong support vertex u. Since u is the only neighbor of the vertex v in graph
Z and every strong support vertex of a graph Z belongs to every γccer−set of
the graph Z. Therefore u ∈ C, v ∈ LZ i.e., v /∈ C and |N(v) ∩ C| = 1 implies

that Z is [γccer]
e−-critical by preposition 4. �

Theorem 6 A connected graph Z is [γccer]
e−-critical if and only if Z ∈ T .

Proof. Suppose that Z is [γccer]
e−-critical graph. Let C be the γccer−set of the

graph Z. If l is the leaf in the subgraph Z[C] induced by γccer− set C, then l is
adjacent to a node of degree at least 2 in Z[C] and by observation 1 |epn(l, C)| ≥
1. Thus, l is a neighbor of at least two nodes in VZ\C because l has an external
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private neighbor. The fact that Z is [γccer]
e−-critical is contradicted by the

assumption that if C is γccer−set in Z − e, ∀e ∈ Z, then γccer(Z − e) ≤ |C| =
γccer(Z). As a result, the set C is not a γccer−set in Z − e ∀e ∈ Z. Hence
VZ\C is an independent set and every node in VZ\C is adjacent to precisely
one node of C and is thus, a leaf of Z. Since C is the γccer− set of the graph
Z, the subgraph Z[C] induced by C in Z is connected. Hence Z[C] will either
be a double star or star graph, and so Z ∈ T . We may suppose that Z[C] is
a star S(1,r). As each node in the induced star Z[C] is adjacent to at least two
nodes in VZ\C. Let J denote the set of q = 2r, r ≥ 2 nodes in VZ\C that is
adjacent to the set of r leaves in Z[C], then Z[C ∪ J ] = S∗(1,r) is a subdivided
star graph and can be obtained by adding each node in C with at least two
pendant edges. Thus Z ∈ T .
Now, assume that Z = (VZ, EZ) ∈ T and let e = uv ∈ EZ be any edge in the
graph Z. If the edge e = uv is such that one of the end vertex of e is a leaf in
Z, then γccer(Z−e) = ∞, and so the edge e = uv is critical. Therefore, we may
suppose that the edge e is not a pendant edge in Z. More precisely, Z is not
a star graph S(1,r). If Z is a double-star graph S(q,r) with central vertices u1
and u2, then the edge e = u1u2 joins the two vertices u1 and u2 of Z. Thus,
γccer(Z− e) = ∞ while γccer(Z) = 2, so the edge e = uv is critical, and graph Z

is [γccer]
e−-critical. Therefore, let’s suppose Z isn’t a double star. Henceforth,

Z is the graph formed from a star S(1,r) for some r ≥ 2, by appending at least
two pendant edges to each leaf of S(1,r). In the set EZ\ES(1,r) every edge is a
pendant edge in Z. Hence, by our previous assumption e ∈ ES(1,r) . But then
γccer(Z− e) = ∞, which again implies that the edge e is critical. Therefore, Z

is [γccer]
e−-critical. �

Corollary 7 If Z is an isolate free graph of order n ≥ 4, then Z is [γccer]
e−-

critical if Z has unique minimal γccer−set.

Observation 2 If Z = H ◦ K is the corona of graphs H and K, then Z is
[γccer]

e−-critical.

3 [γccer]
e−-stable graphs

We present the characterization of [γccer]
e−-stable graphs in this section. Note

that γccer(Z) = ∞ if Z is a graph containing atleast one isolated vertex. As a
result, if we eliminate any pendant edge e from the graph Z, then γccer(Z−e) =∞.
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We have observed that if δ(Z) = 1, then the graph Z is always [γccer]
e− −critical.

For a graph Z to be a [γccer]
e−-stable graph if δ(Z) ≥ 2. For this purpose, we

need the following proposition.

Proposition 8 Let Z be an isolate-free graph, then the following two condi-
tions hold:

(1) If Z is [γccer]
e−-stable, then δ(Z) ≥ 2.

(2) If the edge e ∈ EZ is stable, then every γccer(Z− e)−set is a γccer(Z)−set.

Proof.

(1) Suppose, on the contrary, that δ(Z) = 1. Then graph Z has at least
one pendant edge e incident on a leaf vertex. Since Z is an isolate-free
graph, the removal of the edge e from the graph Z will result in a graph
Z − e containing an isolated vertex and, therefore γccer(Z − e) = ∞,

implying that Z is [γccer]
e−-critical, a contradiction. Hence, δ(Z) ≥ 2 if

Z is [γccer]
e−-stable graph.

(2) Suppose e ∈ EZ is a stable edge of the graph Z; it means that the removal
of the edge e ∈ EZ from the graph Z does not change its CCDN; that is
γccer(Z − e) = γccer(Z) = |γccer(Z) − set|, which implies that every γccer−
set of the graph Z− e is a γccer−set of the graph Z

�

Proposition 9 A graph Z is [γccer]
e−-stable if and only if for each e = uv ∈ EZ

and δ(Z) ≥ 2, ∃ a γccer(Z)-set C such that:

(1) u, v /∈ C.

(2) If u, v ∈ Z, then |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2.

(3) If u ∈ C and v /∈ C, then |NZ(v) ∩ C| ≥ 2.

Proof. Suppose that Z is [γccer]
e−-stable. By preposition 8, δ(Z) ≥ 2. Let

e = uv be any edge of the graph Z. Let Z
′
= Z − uv and let C be any γccer−

set of the graph Z
′
. By proposition 8, the set C is a γccer−set of the graph Z.

Now, if u, v ∈ Z, then condition (1) holds. Assume that u, v ∈ C, then since
C is γccer− set of the graph Z

′
, |NZ

′ (u) ∩ C| ≥ 1 and |NZ
′ (v) ∩ C| ≥ 1, and

so |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2, thus condition (2) holds. If u ∈ C
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and v /∈ C, then since C is γccer− set of the graph Z
′
, |NZ

′ (v) ∩ C| ≥ 1, and so
|NZ(v) ∩ C| ≥ 2. Thus (3) holds. Henceforth, the set C is a γccer− set of the
graph Z such that one of the three conditions (1), (2), and (3) is satisfied.
To prove the sufficiency, assume that δ(Z) ≥ 2, and for every edge, e = uv ∈
EZ there exists a γccer−set C of the graph Z satisfying the three conditions
(1), (2), and (3). Note that in all three conditions, the set C is also a γccer−set
for Z − uv. Hence, γccer(Z) ≤ γccer(Z − uv) ≤ |C| = γccer(Z), implying that

γccer(Z) = γ
c
cer(Z− uv). Therefore, the graph Z is [γccer]

e−-stable.
�

We have the following observation as a result of proposition 9.
Observation 3. Let Z be a [γccer]

e−- stable graph, then Z has at least two
distinct γccer−sets.
Observation 4.

(a) Every cycle graph Cn is a [γccer]
e−-stable graph ∀n ≥ 4.

(b) For every integer s ≥ 4, ∃ sccer-stable graph.

Theorem 10 Let Z be a complete bipartite graph K(m,n),m, n ≥ 3, then Z is

[γccer]
e−-stable if and only if |NZ(x) ∩ T ccer(Z)| ≥ 2, ∀x ∈ Z.

Proof. Assume that Z is a complete bipartite [γccer]
e−-stable graph and x ∈

VZ. Let C be a γccer− set of the graph Z. Then, there exists a vertex y ∈ C that
is adjacent to x. Now, by definition of the set T ccer(Z), we note that C ⊆ T ccer(Z)
and so y ∈ NZ(x)∩ T ccer(Z). Let C

′
be the γccer− set of the graph Z

′
= Z−uv,

and let z be a vertex in C
′

adjacent to x. By preposition 8, C
′

is aγccer− set
of the graph Z, and so C

′ ⊆ T ccer(Z). Thus, z ∈ NZ(x) ∈ T ccer(Z). Since y /∈ z,
we have |NZ(x) ∩ T ccer(Z)| ≥ | {y, z} | = 2, as claimed.
For sufficiency, let Z be a complete bipartite graph K(m,n),m, n ≥ 3, and C be
the γccer− set of the graph Z. Suppose that |NZ(x) ∩ T ccer(Z)| ≥ 2,∀x ∈ Z. Let
y ∈ C be a vertex in the γccer− set of the graph Z adjacent to the vertex x.
Then in the graph Z

′
= Z−uv, |NZ

′ (x)∩T ccer(Z)| ≥ 1, and so |N(Z
′
)(x)∩C| ≥ 1,

implying that |NZ(x) ∩ C| ≥ 2. Hence by proposition 9, Z is [γccer]
e−-stable.

�

We have observed that the above theorem is not true for bipartite graphs, and
its converse does not hold for graphs in general. See the examples below for
demonstration.
Example 1. Let Z be a bipartite graph shown in figure 2 below. The colored
vertex set u, v form the γccer− set of the graph Z, implying that γccer(Z) = 2.
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However, γccer(Z
′
= Z − uv) = 6, which implies that γccer(Z) 6= γccer(Z

′
) and

hence Z is not [γccer]
e−-stable graph.

Example 2. If Z is a graph obtained from a 6−cycle x1x2..., x6x1 by adding the
chord x1x4 and x3x6 then Z has exactly two γccer−sets, namely the sets x1, x4
and x3, x6. Thus T ccer(Z) = {x1, x4, x3, x6} and |NZ(x) ∩ T ccer(Z)| ≥ 2,∀x ∈ Z.
However the edges x1x4 and x3x6, are both critical in Z, and so Z is not a
[γccer]

e−-stable graph.

Figure 2: Bipartite graph K3,3.

Consequently, as a direct conclusion of Theorem 10, we have the following
result.

Corollary 11 Let Z be a bipartite graph such that Z has two disjoint γccer−sets

then Z is [γccer]
e−-stable.

Next, we will show that if a graph Z has at least two disjoint γccer− sets then
Z cannot have critical edges more then γccer(Z)

Proposition 12 If Z is connected graph of order n such that Z has two dis-
joint γccer−sets, then Z has a maximum of γccer(Z) critical edges.

Proof. Suppose that X and Y be two disjoint γccer−sets of an isolate free

graph Z of order n. If the graph Z is [γccer]
e−-stable, then every edge of Z

stable, and the result is thus straightforward. Assume that Z contains at least
one [γccer]

e−-critical edge and define e = uv as such an edge. If e has no
end in the set X , then the set X is a γccer− set in Z − e, which implies that
γccer(Z− e) = γccer(Z), a contradiction. Therefore, e has at least one end in X .
Likewise, e has at least one end in Y. Thus, e = uv where u ∈ X and v ∈ Y.
If |N(v) ∩ X | ≥ 2, then X is a γccer− set in Z − e, a contradiction. Hence,
N(v)∩X = {u}, and similarly, N(u)∩Y = {v} . This means that Z has critical
edges that are at most the CCDN of the graph Z. �
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Corollary 13 For any integer t ≥ 1, ∃ a graph Z with precisely two disjoint
γccer− sets such that γccer(Z) = t and Z has precisely t critical edges.

Observation 5. The following graphs are [γccer]
e−-stable.

(1) Complete graph Kn is [γccer]
e−-stable for all n ≥ 3.

(2) Complete bipartite graph K(m,n) is [γccer]
e−-stable for all m,n ≥ 3.

(3) Bipartite graphs satisfying the corollary 11 are [γccer]
e−-stable.

(4) Cycle graph Cn is [γccer]
e−-stable for all n ≥ 4.

4 Conclusion

The study of criticality and stability of graphs upon edge removal or addition
on any graph domination parameter has exciting applications in networking.
In this article, we have initiated the study of connected certified domination
criticality and stability upon edge removal.
For connected certified domination edge critical graphs, we have proved that
every graph with dia(Z) ≤ 2 and δ(Z = 1,is [γccer]

e−-critical, and if Z is

[γccer]
e−-critical graph with dia(Z) ≤ 2, then for every γccer(Z)− set C of Z,

Z[C] is either a trivial graph or a star graph. Also, if C is the γccer− set of a
graph Z and for any edge e = uv ∈ Z, where u ∈ C and v /∈ C, if |N(v)∩C| = 1,
then the graph Z is [γccer]

e−-critical, and Z is [γccer]
e−-critical if the graph Z

contains a support vertex. We have proved a necessary and sufficient condition
that a graph Z is [γccer]

e−-critical iff Z ∈ T .
Similarly, for connected certified domination edge stable graphs, we have
proved the following results:
If a graph Z is [γccer]

e−-stable, then δ(Z) ≥ 2, and if the edge e = uv ∈ EZ is

stable, then every γccer(Z−e)− set is a γccer(Z)−set. Also, a graph Z is [γccer]
e−-

stable if and only if for each e = uv ∈ EZ and δ(Z) ≥ 2, ∃ a γccer(Z)−set C such
that: (1). u, v /∈ C. (2). If u, v ∈ C, then |NZ(u) ∩ C| ≥ 2 and |NZ(v) ∩ C| ≥ 2.
(3). If u ∈ C and v /∈ C, then |NZ(v) ∩ C| ≥ 2. We have shown that if Z is a

complete bipartite graph K(m,n),m, n ≥ 3, then Z is [γccer]
e−-stable if and only

if |NZ(x) ∩ T ccer(Z)| ≥ 2, ∀x ∈ Z, and we have justified that this result is not
true for bipartite graphs, and its converse is not valid for graphs in general.
And finally, we have shown that if Z is a connected graph of order n such
that G has precisely two disjoint γccer−sets, then Z has a maximum of γccer(Z)
critical edges.
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