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Abstract. In this paper, we report on PIN-code typing behaviour on
touchscreen devices of 112 subjects. Detailed statistical analysis revealed
that the major difference between subjects is in inter-key latency. Key-
press duration variations are insignificant compared to inter-key latency
variations. Subjects were grouped into meaningful clusters using cluster-
ing. The resulting clusters were of slow, medium, and fast typists. The
dataset was split randomly into two equal size subsets. The first subset
was used to train different synthetic data generators, while the second
subset was used to evaluate an authentication attack using the generated
synthetic data. The evaluation showed that slow typists were the hardest
to attack. Both the dataset and the software are publicly available at
https://github.com/margitantal68/sapipin_paper.

1 Introduction

While the dynamics of typing a text on a usual keyboard has been shown
to be characteristic to the user, see e.g. [3, 14] and the references therein, the
dynamics of typing PIN codes on numeric keyboards is somewhat understudied
even though most of the wide-spread user authentication techniques are based
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on (or include the use of) PIN-codes: we may use PIN-codes to unlock our
smartphone and One-Time PIN-codes (OTP) in online banking applications.
Therefore, it is important to examine the typing characteristics of people when
typing such short PIN-codes. PIN-codes are usually entered using a numeric
keypad, which may significantly affect the typing rhythm.

Unlike previous research where all participants had to type the same PIN-
code [6, 13], in our research all participants had to type a randomly generated
PIN-code 20 times without error. This made it possible to observe similarities
when typing different PIN-codes, and also made it possible to observe how a
stable typing rhythm develops for each individual.

Our main contributions are as follows:

o We present SapiPin, a new dataset, which contains PIN-code typing data
collected on mobile devices from 112 users.

e Exploratory data analysis through clustering revealed three meaningful
typist groups.

e An attack on typing rhythm was performed using several types of syn-
thetic data. We show the attack effectiveness for different typist groups.

e In order to assist reproduction of the results, we published our code in
a public GitHub repository!.

The rest of the paper is organized as follows. Section 2 provides a concise
overview of related works. Section 3 presents the SapiPin dataset with the
collection protocol and basic information about the subjects. Section 4 is de-
voted to exploratory data analysis. We begin Section 5 with a brief description
of methods used to synthesize data and to detect anomalies. This is followed
by the details of our evaluation protocol and our observations. Finally, we
conclude in Section 6.

2 Related work

Many studies have already examined the dynamics of entering passwords. Ear-
lier studies performed the experiments using a classic keyboard [11, 12], while
the more recent ones used touch-screens of mobile phones [1, 3, 4, 2]. Moreover,
Gunetti and Picardi [10] studied the usage of free text typing for continuous
authentication.

https://github. com/margitantal68/sapipin_paper
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The dynamics of typing may be affected be various properties of the key-
board, such as its size and the placement of keys, especially whether the
keyboard is alphanumeric (QWERTY) or numeric. Therefore, additionally to
the research considering alphanumeric keyboards, it is important to study
keystroke dynamics on numerical keyboards too.

Out of the works related to numeric keyboards, we point of the experiments
of Clarke et al. [6] in which 16 subjects entered 10-digit telephone numbers
and 4-digit PIN-codes. 30 samples were collected from which 20 were used
for template creation and the remaining 10 for validation. They report 11.3%
Equal Error Rate (EER) in an user authentication study. Better performance
(8.60 % EER) was reported by Maxion and Killourhy [13] in an authenti-
cation experiment using 10-digit numbers. 28 subjects were involved in the
experiment who donated 200 samples of the same 10-digit number in 4 con-
secutive sessions. Bours and Masoudian [5] investigated the usage of 6-digit
one-time PIN- codes for user authentication. In an experiment conducted with
30 participants, they found that in the case of one-time PIN-codes the EER
of authentication was 26%.

Some studies focused on the distribution of timings of keystroke dynamics.
Dhakal et al. [8] conducted a study with 168,000 participants in order to find
keystroke patterns linked to typing performance. They found huge differences
in inter-key times between slow and fast typists, however, keypress times were
very similar across these groups. Gonzales et al. [9] compared several distribu-
tions in order to rank them according to their similarity to timing histograms
in free text keystroke dynamics. They found that log-logistic distributions are
excellent choices for modelling the shape of timing histograms.

Timing distributions are very important when the task is to generate syn-
thetic forgeries. Deian et al. [7] examined the robustness of keystroke-dynamics
based biometrics against synthetic forgeries. Their bots generate both the
keystroke duration and inter-key latency using Gaussian distributions. They
reported high True Positive and low False Positive rates on a small dataset
containing the data of 20 users. The good result is probably due to the weak at-
tack, because the inter-key latency cannot be considered normally distributed.

None of the aforementioned works examined the distribution of keystroke
timing in case of a numeric keyboard. This study aims to fill this gap.
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Personal attribute Amount

Age
21-30 years 103
40-60 years 9
Gender
Male 85
Female 27

Table 1: Personal information of the 112 subjects of the SapiPin dataset.

3 The SapiPin dataset

The SapiPin? dataset was collected in 2021 and contains 6-digit PIN typing of
112 voluntary participants. Each subject typed a randomly generated 6-digit
PIN-code 20 times on his/her own mobile device. Only error-free typing was
saved.

We used a web application only available on touchscreen mobile devices to
collect data®. The application is implemented in PHP and JavaScript. Time-
stamps are recorded by the Date.now() JavaScript function. Subjects agree to
have their data used for scientific experiments by sending the collected data
to the email address provided for this purpose.

The keyboard layout of this data collector is shown in Fig. 1. Detailed
personal information of the subjects is presented in Table 1.

4 Preprocessing and Data Analysis

4.1 Preprocessing

The collected dataset was preprocessed to remove corrupted items. We ex-
cluded the data of a single person, the user with ID number 96, in case of
whom it happened several times that the timestamps of pressing were identi-
cal to the timestamps of release which indicates an error with recording the
data. As a result, we work with the data of 111 users from now on (The
database published in 2022 still contains the data of user with ID 96).

In the next step, we computed two types of features: (i) keypress duration,
a.k.a. hold time, and (ii) inter-key latency, i.e., the duration between releasing

2https://github.com/margitantal68/sapipin
3source code: https://github.com/gzsolt11/PinLogger.git
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Figure 1: PIN logger.

a key and pressing the next key. Therefore, in the case of a 6-digit PIN-code,
the following features were computed: HT;, HT,, HT3, HT4, HT5, HTs (hold
times), and RP;, RP2, RP3, RP4, RP5 (release-press times).

The next step in preprocessing was outlier detection. We found no outliers
regarding keypress duration. In contrast, there were quite a few outliers for
inter-key intervals. In such cases, users appeared to pause while typing. We
declared a value of a feature as an outlier if it was greater than pu + 100,
where 1 and o are the average and the standard deviation of the feature. For
the subsequent analysis, outliers were always replaced by the average of the
corresponding feature of the given user. In total, 13 outliers were replaced.
These outliers belonged to the following 11 distinct users: 2, 11, 20, 21, 25,
48, 53, 58, 73, 77, 93. In most cases, each user exhibited a single instance of
an outlier feature within their respective samples, with the exception of users
25 and 77, who each presented two instances. Of the 13 detected cases, 70%
involved the user’s first sample as the source of the outlier feature.

The final dataset contains 13320 keystrokes from 111 participants (120
keystrokes per participant). Boxplots of keypress duration and inter-key la-
tency are shown in Fig. 2.
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Figure 2: Keypress duration and inter-key latency boxplots

4.2 Data analysis

Outlier correction was followed by descriptive statistics. Keypress duration
and inter-key intervals were analyzed separately. Fig. 3 shows the histograms of
keypress duration (HT hold times) and inter-key interval (release-press times).
The average keypress duration is 76.89 ms with a standard deviation of 22.17.
The skewness of the distribution is 0.40, while its kurtosis is 0.64. In contrast,
the average inter-key interval is 269.56 ms with standard deviation, skewness
and kurtosis of 266.67, 3.78 and 21.36 respectively. It can be observed that
the inter-key interval average is more than three times higher than keypress
duration average. The high positive skewness of the inter-key interval distri-
bution is inline with the observations in [8]. However, we observed an even
higher skewness than in case of usual keyboards.

In a previous study [4], we observed that the average keypress duration,
as well as the average inter-key interval is a discriminative feature for user
authentication based on keystroke dynamics. Therefore, we computed three
new features of PIN-code typing for each user: (i) AVGyr, the average of
keypress duration, (ii) AVGgp, the average of inter-key interval, and (iii)
TOTALtme, the duration of typing the entire PIN code. In the next step, corre-
lations were computed between these features: while the correlations between
AVGyr and the two other features are close to zero (corr(AVGyr, AVGgp) =
—0.04, corr(AVGyr, TOTALTime) = 0.08), AVGgp strongly correlates with
TOTALtme (corr(AVGgp, TOTALme) = 0.99). We can state that the typing
speed clearly depends only on the inter-key latency. Fig. 4 shows the uncorre-
lated nature of the AVGyr and AVGgp features.

We investigated how the typing rhythm of PIN code of each user evolves over
time. To this end, we computed the ratio of AVGgp to AVGyt for each PIN
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Figure 5: Rhythm of typing stabilises over time

typing. Our analysis revealed that the first two samples typically exhibited
significant differences from subsequent samples. However, once these initial
samples were completed, a more consistent rhythm emerged with relatively
smaller variations, as depicted in Figure 5.

4.3 Clustering

The objective of clustering is to find meaningful groups within a dataset. Clus-
tering belongs to unsupervised learning: unlabelled instances are grouped (or
the labels of instances are not used when the groups are determined). In our
case, we expect to see clusters of users having similar typing characteristics.
The original dataset was converted to a reduced dataset, where each user is
represented by a single aggregated instance, which contains only two features
AVGyt and AVGgp corresponding to the average hold time and average inter-
key latency of the user. K-means was used as the clustering algorithm. In
order to find the most suitable number of clusters, we used the elbow method.
Fig. 6a shows the result of the elbow method, which indicates that this dataset
contains four meaningful groups. We have one group containing only one user
(userid=93), who has extremely large inter-key latency (this can be seen in
Fig.4 too). We excluded this user from further analysis. We denote the three
other groups as slow (13 users, green dots), medium (37 users, black x marker)
and fast (60 users, yellow diamond marker) typists. It can be seen in Fig. 6b
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that these three groups are separated by the AVGgp feature. The typing pat-
terns of a slow typist and a fast typist are illustrated in Figure 8.

During the preprocessing phase of the data analysis, a total of 13 outliers
were identified and attributed to 11 unique users. Specifically, one of the users
(user ID=93) exhibited a significantly slow typing speed. The remaining 10
users were distributed across three typing categories, with four users catego-
rized as slow typists (IDs 21, 25, 73, and 74), four users classified as medium
typists (IDs 2, 11, 20, and 58), and two users classified as fast typists (IDs
48 and 53). These findings indicate that outliers were present across all levels
of typing proficiency. As noted in the data analysis chapter, it was observed
that outliers were more frequently detected within the initial typing pattern
of each user.
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Figure 8: Typing patterns

5 Attack framework

5.1 Synthetic data generation

The SDV package was used to generate synthetic data*. We used three types
of models: Gaussian Copula, Conditionally Time Generative Adversarial Net-
work (CTGAN), and Time Variational Autoencoder (TVAE). The CTGAN
and TVAE models were proposed by Lei Xu et al. in a paper presented in 2019
at the NeurIPS conference [15].

A copula in mathematical terms is a distribution over [0,1]¢ unit cube,
created by using the probability integral transform from a multivariate normal
distribution over RY. Essentially, a copula is a mathematical function that
describes the joint distribution of multiple random variables by examining the
dependence between their marginal distributions.

CTGAN is a method that uses GANs to model the distribution of tabular
data and generate samples from it. It overcomes the issues of non-Gaussian
and multimodal distributions with mode-specific normalization. CTGAN em-
ploys a conditional generator and training-by-sampling. High-quality models
are trained with fully-connected networks and several recent techniques [15].

The third synthetic data generation method is a special variational autoen-
coder, named TVAE, as this is an adaptation of variational autoencoders to
tabular data.

Synthetic data generators must be trained and the data used for their train-
ing should not be used in further evaluations. We solved this issue by dividing
the SapiPin dataset into two subsets: we used the data of 55 randomly selected

‘https://sdv.dev/
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Figure 9: Evaluation of PIN-code attack framework

users to train the synthetic data generator, and we evaluated our attack frame-
work on the data of the remaining 56 users (see the inital splitting of the data
in the top-left of Figure 9).

5.2 Anomaly detector

We evaluate synthetic data quality via anomaly detector. High-quality syn-
thetic data is difficult to detect. There are many different types of anomaly
detectors. In the case of keystroke dynamics-based user authentication, one of
the well-established detectors is the scaled Manhattan [12].

We trained a separate model for each user of the dataset using only real
user data, and then evaluated it on both real and synthetic data. Based on
the real and synthetic score values obtained from the evaluation results, we
calculated the area under the curve (AUC). Average and standard deviation
of these AUCs are reported for the 56 users in the evaluation dataset (see 4th
step in Figure 9).

High quality synthetic data is difficult to detect by the anomaly detector,
hence a lower AUC will be obtained in the case of better synthetic data.



SapiPin 21

5.3 Evaluation protocol and results

Each user in the dataset has 20 typing examples. As we observed that the first
two examples are significantly different from the remaining ones, see Fig. 5,
we excluded these two from anomaly detector training. Therefore, the first
two examples were dropped, and only 8 genuine examples were used for train-
ing the anomaly detector. The remaining 10 examples were used for testing
the anomaly detector, obtaining 10 positive (genuine) scores. We randomly
selected 10 examples from the synthetic data as fraudulent examples, and pre-
sented them as an input to the anomaly detector. This resulted in 10 negative
or attack scores. Based on the negative and positive score values, we calcu-
lated the AUC value for each user. The evaluation was repeated 10 times, each
time using other randomly selected synthetic data for attack. Our synthetic
data was generated based on training data which contains typing of different
PIN-codes, therefore its samples are general typing rhythms of 6-digit PIN-
codes. In our attack model we assume that the attacker knows the subject’s
PIN-code, but does not know its typing rhythm. Therefore, it uses a random
sample from synthetic typing rhythms.

Table 2 reports the mean AUC and its standard deviation for each type of
synthetic data. These results suggest that, compared with the synthetic data
generated by CTGAN, both Gaussian Copula and TVAE generated data were
highly similar to the genuine data, because in these cases it was more difficult
to detect for the anomaly detector whether the data is real or synthetic, as
indicated by the lower AUC value of Gaussian Copula and TVAE compared
with that of CTGAN.

Synthetic data AUC (std)
generation method

Gaussian Copula ~ 0.90 (0.10)
CTGAN 0.98 (0.03)
TVAE 0.89 (0.11)

Table 2: Synthetic attacks on the SapiPin dataset.

The present study aimed to investigate the potential relationship between
typing speed and AUC values. To this end, we analyzed the average typing time
per participant, derived from eight training samples, in conjunction with the
AUC values obtained from TVAE synthetic data (see Fig. 10). Each data point
in the figure corresponds to a specific participant. Our findings reveal that
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Figure 10: TVAE-based synthetic attack: users average typing time vs. AUC.

the AUC values attained by the slow typists were found to be comparatively
elevated and exhibit a low degree of standard deviation. Although the majority
of fast typists exhibit relatively high AUC values, there are several individuals
in this group who demonstrate lower AUC values compared to the overall
average.

5.4 Evaluation on typist groups

This section presents the outcomes of our investigation regarding three dis-
tinct typist groups, namely slow, medium, and fast typists. To this end, we
applied the protocol described in the preceding section, with the evaluations
carried out thrice, once for each typist group. Our findings, summarized in
Table 3, highlight the highest degree of detection success among the slow typ-
ists, implying that they represent the most challenging target for potential
attackers.

6 Conclusions

In this paper we presented SapiPin, a new dataset of 6-digit PIN-code typ-
ing on touchscreens. Data analysis revealed that the data can be divided into
meaningful groups belonging to slow, medium, and fast typists. The major
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Synthetic data AUC (std)

generation method Slow Medium Fast
Gaussian Copula  0.93 (0.08) 0.89 (0.12) 0.90 (0.09)
CTGAN 0.98 (0.03) 0.98 (0.04) 0.98 (0.03)
TVAE 0.95 (0.05) 0.89 (0.12) 0.88 (0.10)

Table 3: Synthetic attacks on the typist groups.

difference between these groups is the inter-key latency. This observation con-
firms the results of a previous study [8] in which the same observations were
reported for free text typing. Moreover, the reported timing distributions are
similar to ours, even though only a 10-digit software keyboard was used in our
study.

The dataset was split randomly into equally sized subsets. Half of the data
was used to train different synthetic data generators. The best quality syn-
thetic data (the most similar to the original one) was generated by the TVAE
method. Using the synthetic data, we performed synthetic attacks on each user
from the second half of the SapiPin dataset. Results show that slow typists are
the hardest to attack. At the same time, in this group we can see the greatest
dispersion among the typing samples of a user.

We acknowledge limitations regarding the generalizability of the results, as
young, European participants (university students) are over-represented in the
data.
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