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Abstract. We prove sharp versions of several inequalities dealing with
univalent functions. We use differential subordination theory and Her-
glotz representations in our proofs.

1 Introduction

Let U = {z ∈ C :
∣

∣z
∣

∣ < 1} be the unit disk in the complex plane. Let An be the
class of analytic functions of the form

f(z) = z+ an+1z
n+1 + an+2z

n+2 + · · ·

which are defined in the unit disk U, and let A1 = A. Evidently An+1 ⊂ An.

The subclass of A, consisting of functions f for which the domain f(U) is
starlike with respect to 0, is denoted by S∗. It is well-known that f ∈ S∗ ⇔
Re zf

′(z)
f(z)

> 0, z ∈ U. A function f ∈ A for which the domain f(U) is convex, is
called convex function. The class of convex functions is denoted by K. We have

f ∈ K ⇔ Re
(

1+
zf ′′(z)
f ′(z)

)

> 0, z ∈ U. Let µ ∈ [0, 1). If for some function f ∈ A we

have Re zf
′(z)

f(z)
> µ, z ∈ U, Re

(

1+
zf ′′(z)
f ′(z)

)

> µ, z ∈ U,
∣

∣

∣
arg zf ′(z)

f(z)

∣

∣

∣
< µπ

2 , z ∈ U,

then we say that the function f is starlike of order µ, convex of order µ, and
strongly starlike of order µ, respectively. We introduce the notations:

V[λ, γ; f](z) ≡

(

zF ′(z)

F(z)

)γ

, (1)
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W[λ, γ; f](z) ≡ γ
F(z)

F ′(z)

(

zF ′(z)

F(z)

) ′

, (2)

where

F(z) = (1− λ)f(z) + λzf ′(z), z ∈ U, γ ∈ C∗, λ ∈ [0, 1], f ∈ An.

The authors proved in a recent paper [3] the following results:

Theorem 1 If 0 < β ≤ 1, f ∈ A, then

∣

∣W [λ, γ; f](z)
∣

∣ < β, z ∈ U,⇒
∣

∣ argV[λ, γ; f](z)
∣

∣ <
π

2
β, z ∈ U.

Theorem 2 If M ≥ 1, z ∈ U, n ∈ N, f ∈ An, then

Re{W [λ, γ; f](z)} <
nM

1+ nM
, z ∈ U ⇒

∣

∣V[λ, γ; f](z)
∣

∣ < M, z ∈ U.

Theorem 3 If 0 ≤ µ < 1, z ∈ U, n ∈ N, f ∈ An, then

Re{W[λ, γ; f](z)} > ∆n(µ), z ∈ U ⇒ ReV[λ, γ; f](z) > µ, z ∈ U,

where

∆(µ) =






nµ
2(µ−1)

, if ν ∈ [0, 12 ]

n(µ−1)
2µ , if ν ∈ [12 , 1).

The goal of this paper is to prove the sharp version of Theorem 1 and also the
sharp version of Theorem 2 and Theorem 3 in case of n = 1. To do this we
need some preliminary results which will be exposed in the following section.

2 Preliminaries

Lemma 1 [2, p.24] Let f and g be two analytic functions in U such that

f(0) = g(0), and g is univalent. If f ⊀ g then there are two points, z0 ∈ U and

ζ0 ∈ ∂U, and a real number m ∈ [1,∞) such that:

1. f(z0) = g(ζ0), 2. z0f
′(z0) = mζ0g

′(ζ0).

Lemma 2 [1, p.27] If p is an analytic function in U, with p(0) = 1 and

Rep(z) ≥ 0, z ∈ U, then there is a probability measure ν on the interval

[0, 2π], such that f(z) =
∫2π
0

1+ze−it

1−ze−itdν(t).
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Lemma 3 If α ∈ [1, 2), then the following inequality holds:
∣

∣(1 + z)α − 1
∣

∣ ≤

2α − 1, z ∈ U.

Proof. According to the maximum modulus principle for analytic functions,
we have to prove the inequality only in case if z = eiθ, θ ∈ [−π, π]. The
inequality

∣

∣(1+ eiθ)α − 1
∣

∣ ≤ 2α − 1, θ ∈ [−π, π], α ∈ [1, 2) is equivalent to

2α−1
(

1− cos2α
θ

2

)

− 1+ cosα
θ

2
cos

αθ

2
≥ 0, θ ∈ [−π, π], α ∈ [1, 2). (3)

Let f : [−π, π] → R be the function defined by f(θ) = 2α−1
(

1− cos2α θ
2

)

− 1+

cosα θ
2 cos

αθ
2 . We have: f ′(θ) = α cosα−1 θ

2 sin
θ
2

[

2α−1 cosα θ
2 − 1

2

sin
(α+1)θ

2

sin
θ
2

]

.

Let α ∈ (1, 2), and θ ∈ [0, 2π
α+1) be two fixed real numbers. We define the

functions g1, g2 : [0, α] → R by g1(x) =
(

2 cos θ
2

)x
, g2(x) =

sin
(x+1)θ

2

sin
θ
2

.

It is simple to prove that g1 is a convex and g2 is a concave function. Thus
the graphs of the two functions have at most two common points . Since
g1(0) = g2(0) and g1(1) = g2(1), it follows that the two graphs have exactly
two common points, and g2(x) > g1(x), x ∈ (0, 1), and g1(x) > g2(x), x ∈

(1, α]. Thus we have g1(α) > g2(α) in case of α ∈ (1, 2), and θ ∈ [0, 2π
α+1).

The inequality g1(α) > g2(α) holds in case of α ∈ (1, 2) and θ ∈ [ 2π
α+1 , π]

too, because in this case we have: g1(α) > 0 ≥ g2(α). This means that the
inequality g1(α) > g2(α) holds for α ∈ (1, 2) and θ ∈ [0, π]. It is easily seen that
the inequality g1(α) > g2(α) can be extended to α ∈ (1, 2) and θ ∈ [−π, π].

Consequently, 2α−1 cosα θ
2 − 1

2

sin
(α+1)θ

2

sin
θ
2

≥ 0, (∀) α ∈ (1, 2), (∀) θ ∈ [−π, π];

f ′(θ) < 0, θ ∈ (−π, 0) and f ′(θ) > 0, θ ∈ (0, π).

Thus it follows that minθ∈[−π,π] f(θ) = f(0) = 0, and the inequality (3) is
proved. �

3 Main result

The following theorem is the sharp version of Theorem 1.

Theorem 4 If 0 < β ≤ 1, f ∈ A then we have:

∣

∣W[λ, γ; f](z)
∣

∣ < β, z ∈ U ⇒
∣

∣ argV [λ, γ; f](z)
∣

∣ < β, z ∈ U.
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Proof. Let p(z) = V[λ, γ; f](z). We have zp ′(z)
p(z)

= W[λ, γ; f](z), and conse-

quently
∣

∣

zp ′(z)
p(z)

∣

∣ < β, z ∈ U. This inequality is equivalent to

zp ′(z)

p(z)
≺ h(z) = βz, z ∈ U. (4)

We prove the subordination p(z) ≺ q(z) = eβz, z ∈ U. If this subordination
does not hold, then according to Lemma 1, there are two points z0 ∈ U,

ζ0 ∈ ∂U and a real numberm ∈ [1,∞), such that p(z0) = q(ζ0), and z0p
′(z0) =

mζ0q(ζ0). Thus
z0p

′(z0)
p(z0)

= m
ζ0q

′(ζ0)
q(ζ0)

= mh(ζ0) /∈ h(U).

This contradicts (4) and the contradiction implies p(z) ≺ q(z), z ∈ U. The
proved subordination implies

∣

∣ arg p(z)
∣

∣ ≤ maxz∈U{arg(e
βz)} = β, z ∈ U, and

the proof is done. �

We present in the followings the sharp version of Theorem 2 and Theorem
3 in case of n = 1.

Theorem 5 If M ≥ 1, z ∈ U, , f ∈ A, then

Re{W[λ, γ; f](z)} <
M

1+M
, z ∈ U ⇒

∣

∣V[λ, γ; f](z)
∣

∣ < 2
2M
M+1 − 1, z ∈ U.

Proof. The condition of the theorem can be rewritten in the following way

Re

{
1 − M+1

M W[λ, γ; f](z)

}
> 0, z ∈ U. The Herglotz formula implies that

there is a probability measure ν on [0, 2π] such that 1 − M+1
M W[λ, γ; f](z) =

∫2π
0

1+ze−it

1−ze−itdν(t). This is equivalent to W [λ, γ; f](z) = − M
M+1

∫2π
0

2ze−it

1−ze−itdν(t).

On the other hand, if we denote 1 + p(z) = V [λ, γ; f](z), we get zp ′(z)
1+p(z)

=

W[λ, γ; f](z) and p ′(z)
1+p(z)

= − M
M+1

∫2π
0

2e−it

1−ze−itdν(t). This implies

log(1+ p(z)) =
2M

M+ 1

∫ 2π

0

log (1− ze−it)dν(t).

It is easily seen that g(z) = log(1+z) ∈ K. Thus it follows
∫2π
0

log (1− ze−it)dν(t) ∈

g(U), ∀ z ∈ U, and this leads to the subordination
∫2π
0

log (1− ze−it)dν(t) ≺

g(z), z ∈ U. Consequently we have p(z) ≺ exp
{

2M
M+1 log(1 + z)

}
− 1 =

(1+ z)
2M
M+1 − 1, z ∈ U. This subordination implies

∣

∣p(z)
∣

∣ ≤ max
z∈U

∣

∣(1+ z)
2M
M+1 − 1

∣

∣, z ∈ U.
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Now from Lemma 3 we obtain the inequality
∣

∣p(z)
∣

∣ ≤ 2
2M
M+1 − 1, z ∈ U. This

inequality is equivalent to
∣

∣V[λ, γ; f](z)
∣

∣ ≤ 2
2M
M+1 − 1, z ∈ U. It is easy to show

that if M ≥ 1, then 2
2M
M+1 − 1 ≤ M, so the proved result is an improvement

of Theorem 2 in case n = 1. Moreover the proof shows that this is the best
possible result in this particular case. �

Theorem 6 Let 0 ≤ µ < 1, z ∈ U, f ∈ A. Then:

Re{W[λ, γ; f](z)} > ∆(µ), z ∈ U ⇒ ReV[λ, γ; f](z) > 22∆(µ), z ∈ U,

where

∆(µ) =

{
µ

2(µ−1)
, if µ ∈ [0, 12 ]

µ−1
2µ , if µ ∈ [ 12 , 1).

Proof. We rewrite the condition Re{W [λ, γ; f](z)} > ∆(µ), z ∈ U in the

following form: Re
∆(µ)−W [λ,γ;f](z)

∆(µ)
> 0, z ∈ U. We use the Herglotz formula

again and we get:

∆(µ) −W [λ, γ; f](z)

∆(µ)
=

∫ 2π

0

1+ ze−it

1− ze−it
dν(t),

where ν is a probability measure on [0, 2π]. If we denote p(z) = V [λ, γ; f](z)

then: zp ′(z)
p(z)

= W[λ, γ; f](z) and p ′(z)
p(z)

= −∆(µ)
∫2π
0

2e−it

1−ze−itdν(t).

This leads to: p(z) = exp
{
2∆(µ)

∫2π
0

log(1− ze−it)dν(t)
}
.

Since g(z) = log(1+ z) ∈ K, it follows the inclusion:
∫2π
0

log(1− ze−it)dν(t) ∈

g(U), z ∈ U, and this implies the subordination:∫2π
0

log (1− ze−it)dν(t) ≺ g(z), z ∈ U. Thus we obtain: p(z) ≺ q(z) = (1 +

z)2∆(µ), z ∈ U, and consequently: Rep(z) ≥ Re(1+ z)2∆(µ), z ∈ U. According
to the definition of ∆(µ), we have −2∆(µ) ∈ (0, 1). This implies q ∈ K. The
equivalency f(z) ∈ R ⇔ z ∈ R, and the fact that the domain q(U) is convex
and symmetric with respect to the real axis, imply the inequality: Req(z) ≥

min{q(−1), q(1)} = 22∆(µ), z ∈ U. Thus it follows:

Rep(z) ≥ 22∆(µ), z ∈ U.

It is easily seen that 22∆(µ) ≥ µ, for every 0 ≤ µ < 1, and 22∆(µ) is the biggest
value, for which the inequality

ReV[λ, γ; f](z) ≥ 22∆(µ), z ∈ U
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holds. According to the minimum principle, inside the unit disk we have the
strict inequality: ReV [λ, γ; f](z) > 22∆(µ), z ∈ U. �

By choosing suitable values of the parameters, we obtain sharp results con-
cerning starlikeness. Theorem 4 implies in case of γ = 1, λ = 0 the following
result:

Corollary 1 If β ∈ (0, 1], f ∈ A, then:

∣

∣

∣

∣

1+ z

(

f ′′(z)

f ′(z)
−

f ′(z)

f(z)

)∣

∣

∣

∣

< β, z ∈ U ⇒
∣

∣

∣

∣

arg
zf ′(z)

f(z)

∣

∣

∣

∣

< β.

The result is sharp, the extremal function is: f(z) = z exp
( ∫z

0
eβt−1

t dt
)

.

If we take γ = 1, M = α+ 1, λ = 0 then Theorem 2 implies:

Corollary 2 If α ∈ [0, 1), f ∈ A, then:

Re

[

z

(

f ′′(z)

f ′(z)
−

f ′(z)

f(z)

)]

<
−1

α+ 2
, z ∈ U ⇒

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

< 2
2α+2
α+3 − 1, z ∈ U,

and the result is sharp. The extremal function is:

f(z) = z exp
( ∫z

0
(1+t)

2α+2
α+3 −1
t dt

)

. Since 2
2α+2
α+3 − 1 < 1, it follows that f is a

starlike function.

Finally, for γ = λ = 1 Theorem 6 implies:

Corollary 3 If µ ∈ [0, 1), f ∈ A, then:

Re

{
z

[

(zf ′(z)) ′′

(zf ′(z)) ′
−

(zf ′(z)) ′

zf ′(z)

]}
> ∆(µ) − 1 ⇒ Re

(

1+
zf ′′(z)

f ′(z)

)

> 22∆(µ), z ∈ U.

The result is sharp. The extremal function is:

f(z) =

∫ z

0

exp

(∫ v

0

(1+ t)2∆(µ) − 1

t
dt

)

dv.

Since 22∆(µ) > µ, µ ∈ [0, 1), it follows that f is a convex function of order µ.
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