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Abstract. We prove sharp versions of several inequalities dealing with
univalent functions. We use differential subordination theory and Her-
glotz representations in our proofs.

1 Introduction

Let U={z e C: !z‘ < 1} be the unit disk in the complex plane. Let A, be the
class of analytic functions of the form

f(z) =z + ane1z2™ + anapz™2 4 -

which are defined in the unit disk U, and let A; = A. Evidently A, C Ax.
The subclass of A, consisting of functions f for which the domain f(U) is
starlike with respect to 0, is denoted by S*. It is well-known that f € $* &
Rez]f(, S) >0, z € U. A function f € A for which the domain f(U) is convex, is
called convex function. The class of convex functions is denoted by K. We have

feK&e Re(1+2f”(2)) >0, z € U. Let u € [0,1). If for some function f € A we

'(z)

f/ f// f/
have Rezfé)z) >, z € U, Re(] +Zf,(£j)) >, z € U, arng(g) <ui, zel,
then we say that the function f is starlike of order u, convex of order u, and
strongly starlike of order p, respectively. We introduce the notations:

zF'(z)\"

Flz) )’

VIAy;fl(z) = ( (1)
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WA v; fl(z) =y 7(z) <ZF/(Z)) ;

F'(z) \ Flz)

where
Flz) =1 —=Nf(z) +Azf'(z), z€ U, yeC* A€ [0,1], f€ A,.
The authors proved in a recent paper [3] the following results:

Theorem 1 If0< B <1, fe A, then
s
IWINY;fl(z)| < B, z€ U, = |arg VIA, v; fl(2)| < EB’ zeU.
Theorem 2 IfM>1, ze U, neN, fe A,, then
. nM .
Re{W\, v;fl(z)} < o € U= [VINy;fl(z)] <M, zeU.

Theorem 3 [f0<u<1,zeUneN,feA,, then

Re{WI\v;fl(z)} > An(n), z€ U= ReVA,vy;fl(z) >u, z€ T,

where N ‘ :
WEU’ ’Lf v E [O, z]
Alp) = "t
B if ve [3,1).

The goal of this paper is to prove the sharp version of Theorem 1 and also the
sharp version of Theorem 2 and Theorem 3 in case of n = 1. To do this we
need some preliminary results which will be exposed in the following section.

2 Preliminaries

Lemma 1 [2, p.24] Let f and g be two analytic functions in U such that
f(0) = g(0), and g is univalent. If f £ g then there are two points, zo € U and
(o € 0U, and a real number m € [1,00) such that:

1. f(zo) = g(do), 2. zof'(z0) = m&og’ (o).

Lemma 2 [1, p.27] If p is an analytic function in U, with p(0) = 1 and
Rep(z) > 0, z € U, then there is a probability measure v on the interval
0,27, such that f(z) = [ 12 dv(t).

T JO0 1—ze it
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Lemma 3 If x € [1,2), then the following inequality holds: ‘(1 +2z)*— 1‘ <
2—1, zeU.

Proof. According to the maximum modulus principle for analytic functions,
we have to prove the inequality only in case if z = e, 8 € [—m, n]. The
inequality |(1 + elf)x — l‘ <2%—1, 0¢€[-mmn], «e[l,2)is equivalent to

20T (1 — cos®™ %) —1 —|—cos°‘gcos(x7e >0, 0e[—mmnl, acll2). (3)

Let f: [—m, 1] — R be the function defined by f(8) = 2%~! (1 — cos®® g) -1+

i Lact1)0
cos* 9 cos . We have: f/(0) = accos® ! §sin § |22 cos* § — %Smsiné
Let « € (1,2), and 6 € [0, o(z—f]) be two fixed real numbers. We define the
. (x+1)8
functions g1,92: (0,0 = R by g1(x) = (2cos§)", ga(x) = =3

Sin =
It is simple to prove that g; is a convex and g; is a concave funcztion. Thus
the graphs of the two functions have at most two common points . Since
g1(0) = g2(0) and g1(1) = g2(1), it follows that the two graphs have exactly
two common points, and gz(x) > gi(x), x € (0,1), and g;(x) > g2(x), x €
(1, «f. Thus we have gi(x) > g2(«) in case of € (1,2), and 0 € [O,of—L).
The inequality gi(a) > ga(a) holds in case of « € (1,2) and 0 € [Ocz—jr‘],ﬁ]
too, because in this case we have: gj(x) > 0 > gz(«). This means that the
inequality g7 (o) > g2(a) holds for « € (1,2) and 0 € [0, 7. It is easily seen that

the inequality gi(«) > g2() can be extended to « € (1,2) and 0 € [—7m, 7.

. (ad1)0
Consequently, 247! cos"‘% — %Sm, z >0, V) ae(1,2), (V)Oe[—mm;
Slnj
f'(0) <0, 6 € (—m,0) and f'(0) >0, 0 € (0,7).

Thus it follows that minge|_rf(0) = f(0) = 0, and the inequality (3) is
proved. ]

3 Main result

The following theorem is the sharp version of Theorem 1.

Theorem 4 If0< B <1, fe A then we have:

‘W[?\,y;ﬂ(z){ <B,zelU= }argV[A,y;ﬂ(z)‘ < B, zelU.
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Proof. Let p(z) = VIA,v;fl(z). We have Zggg‘) = WIA,v;fl(z), and conse-

z € U. This inequality is equivalent to

quently ! Zg (/S)

z <h(z) =Pz, ze U. (4)

We prove the subordination p(z) < q(z) = eP*, z € U. If this subordination
does not hold, then according to Lemma 1, there are two points zo € U,
(o € 90U and a real number m € [1, 00), such that p(zo) = q({p), and zop’(z0) =

moq(Go). Thus 2ELE) — m“‘}gf =mh(Co) ¢ h(U).
This contradicts (4) and the contradiction implies p(z) < q(z), z € U. The
proved subordination implies ‘ argp(z)} < max,cplarg(eP?)} =B, z €U, and

the proof is done. O

We present in the followings the sharp version of Theorem 2 and Theorem
3in case of n=1.

Theorem 5 I[fM > 1, ze U,, fe A, then

ReWI, v; fl(2)} < ,zeU= |[VIAy;fl(z)] < 297 —1, z€ UL

M
1+M
Proof. The condition of the theorem can be rewritten in the following way

Re{1 — MT“WD\,y; f](z)} > 0, z € U. The Herglotz formula implies that

there is a probability measure v on [0,27] such that 1 — %WD\, Y; f](z) =

2 it 2 —it
o }Ze,lt dv(t). This is equivalent to W(A,v;fl(z) = —MLH " ]22166 <dv(t).

On the other hand, if we denote 1 + p(z) = VIA,v;fl(z), we get p(z)

_ 1+P(Z) -
WIA,v; fl(z) and ﬁrp )) = _MMH éﬂ ]Eez;:t dv(t). This implies

log(1+p(z)) = ZMJM log (1 —ze ™) dv(t).
M+1 ),

It is easily seen that g(z) = log(1+z) € K. Thus it follows f(z)ﬂ log (1 —ze M)dv(t) €

g(U), Vze€ U, and this leads to the subordination fén log (1 —ze M)dv(t) <

g(z), z € U. Consequently we have p(z) < exp{%logﬂ + Z)} -1 =

(1+ z)f\%l1 — 1, z € U. This subordination implies

Ip(z)| < max|(1 +z)M7M—1‘, z e U.
zeU
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Now from Lemma 3 we obtain the inequality ’p(z)| < M 1, ze€U. This
inequality is equivalent to ’V[?\,y; f](z)} < 2MET 1, z € U. It is easy to show

2M
that if M > 1, then 2M+7 — 1 < M, so the proved result is an improvement
of Theorem 2 in case n = 1. Moreover the proof shows that this is the best
possible result in this particular case. O

Theorem 6 Let 0 <u<1,z€U, fe A Then:
ReWI\,v;fl(z)} > A(w), ze U= ReV\y;fl(z) > 222, 2 e T,

where

1 )

2( LL,])) ifue [0>%]
H;Ha ifHG [2)1

Proof. We rewrite the condition Re{WI[A,v;fl(z)} > A(u), z € U in the
following form: Re%{w > 0, z € U. We use the Herglotz formula

again and we get:

. 27t —i
Al) — WA, y; fl(2) :J 1+ze ‘dv(t))

A(p) 0o 1—ze®

where v is a probability measure on [0, 271]. If we denote p(z) = VIA,v;fl(z)

then: Zg('g) = WA, v; fl(z) and *;’((;)) = —Ay) [T 2 av(b).

This leads to: p(z) = exp {ZA(u) éﬂ log(1 — ze_“)dv(t)}.
Since g(z) = log(1 + z) € K, it follows the inclusion: f(z)ﬂ log(1 —ze M)dv(t) €
g(U), z € U, and this implies the subordination:

én log (1 —ze ")dv(t) < g(z), z € U. Thus we obtain: p(z) < q(z) = (1 +
2)?AW |z € U, and consequently: Rep(z) > Re(1 +z)?2M | z € U. According
to the definition of A(u), we have —2A(pn) € (0,1). This implies q € K. The
equivalency f(z) € R & z € R, and the fact that the domain q(U) is convex
and symmetric with respect to the real axis, imply the inequality: Req(z) >
min{q(—1), q(1)} = 222, z € T. Thus it follows:

Rep(z) > 2% 2 cT.

It is easily seen that 2220 > 1 for every 0 < p < 1, and 222 is the biggest
value, for which the inequality

ReVIAv;fl(z) > 222MW 2T
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holds. According to the minimum principle, inside the unit disk we have the
strict inequality: ReVA,y; fl(z) > 2240 2z e U. O

By choosing suitable values of the parameters, we obtain sharp results con-
cerning starlikeness. Theorem 4 implies in case of y =1, A = 0 the following
result:

Corollary 1 If 3 € (0,1], f € A, then:

‘1 +Z<f”(z) f'(z) zf'(z)

f(z)

f'(z)  f(z)

arg

>‘<[3, zelU=

<s.

The result is sharp, the extremal function is: f(z) = zexp (fg eﬁf:] dt).

If we take y =1, M = a+ 1, A =0 then Theorem 2 implies:
Corollary 2 If x € [0,1), f € A, then:
"(z)  f'(z) —1
R — U
e[z<f’(z) f(z) < x+2’ zel=
and the result is sharp. The extremal function is:

20042
f(z) = zexp(fgwdt). Since 2555 —1 < 1, it follows that f is a
starlike function.

zf'(z)
f(z)

2+2
a3 — 1, z € U,

—l’<2

Finally, for y = A =1 Theorem 6 implies:

Corollary 3 If u e [0,1), f € A, then:

zf"(z)

24
2] ) >2 W, zeU.

(zf'(2))"  (zf'(2))’
Re{z[(sz(z))/ T ) ]} > Al =1 = Re(l+

The result is sharp. The extremal function is:

o= Lo ([ 1 )

0
Since 2220 > 1w e [0,1), it follows that f is a convex function of order w.
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