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Abstract. Let G be a group with identity e and let R be a G-graded ring.
In this paper, we introduce and study the concept of gr-n-ideals of R.
We obtain many results concerning gr-n-ideals. Some characterizations
of gr-n-ideals and their homogeneous components are given.

1 Introduction and preliminaries

Throughout this article, rings are assumed to be commutative with 1 6= 0. Let
R be a ring, I be a proper ideal of R. By

√
I, we mean the radical of I which

is {r ∈ R : rn ∈ I for some positive integer n}. In particular,
√
0 is the set of

nilpotent elements in R. Recall from [11] that a proper ideal I of R is said to
be an n-ideal if whenever a, b ∈ R and ab ∈ I with a /∈

√
0 implies b ∈ I. For

a ∈ R, we define Ann(a) = {r ∈ R : ra = 0}.
The scope of this paper is devoted to the theory of graded commutative

rings. One use of rings with gradings is in describing certain topics in algebraic
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geometry. Here, in particular, we are dealing with gr-n-ideals in a G-graded
commutative ring.

First, we recall some basic properties of graded rings which will be used in
the sequel. We refer to [6]-[8] for these basic properties and more information
on graded rings.

Let G be a group with identity e. A ring R is called graded (or more precisely,
G-graded ) if there exists a family of subgroups {Rg} of R such that R = ⊕g∈GRg
(as abelian groups) indexed by the elements g ∈ G, and RgRh ⊆ Rgh for all
g, h ∈ G. The summands Rg are called homogeneous components and elements
of these summands are called homogeneous elements. If a ∈ R, then a can be
written uniquely a =

∑
g∈G ag where ag is the component of a in Rg. Also,

we write h(R) = ∪g∈GRg. Let R = ⊕
g∈G
Rg be a G-graded ring. An ideal I of R is

said to be a graded ideal if I = ⊕g∈G(I ∩ Rg) := ⊕g∈GIg. An ideal of a graded
ring need not be graded.

If I is a graded ideal of R, then the quotient ring R/I is a G-graded ring.
Indeed, R/I = ⊕

g∈G
(R/I)g where (R/I)g = {x+ I : x ∈ Rg}. A G-graded ring R is

called a graded integral domain ( gr-integral domain) if whenever rg, sh ∈ h(R)
with rgsh = 0, then either rg = 0 or sh = 0.

The graded radical of a graded ideal I, denoted by Gr(I), is the set of all
x =

∑
g∈G xg ∈ R such that for each g ∈ G there exists ng ∈ N with x

ng
g ∈ I.

Note that, if r is a homogeneous element, then r ∈ Gr(I) if and only if rn ∈ I
for some n ∈ N, (see [10].)

Let R be a G-graded ring. A graded ideal I of R is said to be a graded prime
(gr-prime) if I 6= R; and whenever rg, sh ∈ h(R) with rgsh ∈ I, then either
rg ∈ I or sh ∈ I, (see [10].)

The concepts of graded primary ideals and graded weakly primary ideals
of a graded ring have been introduced in [9] and [5], respectively. Let I be
a proper graded ideal of a graded ring R. Then I is called a graded primary
(gr-primary) (resp. graded weakly primary) ideal if whenever rg, sh ∈ h(R)
and rgsh ∈ I (resp. 0 6= rgsh ∈ I), then either rg ∈ I or sh ∈ Gr(I).

Graded 2-absorbing and graded weakly 2-absorbing ideals of a commutative
graded rings have been introduced in [2]. According to that paper, I is said
to be a graded 2-absorbing (resp. graded weakly 2-absorbing) ideal of R if
whenever rg, sh, ti ∈ h(R) with rgshti ∈ I (resp. 0 6= rgshti ∈ I), then rgsh ∈ I
or rgti ∈ I or shti ∈ I.

Then the graded 2-absorbing primary and graded weakly 2-absorbing pri-
mary ideals defined and studied in [4]. A graded ideal I is said to be a graded
2-absorbing primary (resp. graded weakly 2-absorbing primary) ideal of R if
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whenever rg, sh, ti ∈ h(R) with rgshti ∈ I (resp. 0 6= rgshti ∈ I), then rgsh ∈ I
or rgti ∈ Gr(I) or shti ∈ Gr(I).

Recently, R. Abu-Dawwas and M. Bataineh in [1] introduced and studied
the concepts of graded r-ideals of a commutative graded rings. A proper graded
ideal I of R is said to be a graded r-ideal (gr–r-ideal) of R if whenever rg, sh ∈
h(R) such that rgsh ∈ I and Ann(a) = {0}, then sh ∈ I.

In this paper, we introduce the concept of graded n-ideals (gr-n-ideals) and
investigate the basic properties and facts concerning gr-n-ideals.

2 Results

Definition 1 Let R be a G-graded ring. A proper graded ideal I of R is called
a graded n-ideal of R if whenever rg, sh ∈ h(R) with rgsh ∈ I and rg /∈ Gr(0),
then rg ∈ I. In short, we call it a gr-n-ideal.

Example 1 (i) Suppose that (R,M) is a graded local ring with unique graded
prime ideal. Then every graded ideal is a gr-n-ideal.

(ii) In any graded integral domain D, the graded zero ideal is a gr-n-ideal.

(iii) Any graded ring R need not have a gr-n-ideal. For instance, let G = Z2,
R = Z6 be a G-graded ring with R0 = Z6 and R1 = {0}. Then R has not
any gr-n-ideal.

Lemma 1 Let R be a G-graded ring and I be a graded ideal of R. If I is a
gr-n-ideal of R, then I ⊆ Gr(0).

Proof. Assume that I is a gr-n-ideal and I * Gr(0). Then there exists rg ∈
h(R) ∩ I such that rg /∈ Gr(0). Since rg1 = rg ∈ I and I is a gr-n-ideal, we get
1 ∈ I, so I = R, a contradiction. Hence I ⊆ Gr(0). �

Theorem 1 Let R be a G-graded ring and I be a gr-prime ideal of R. Then I
is a gr-n-ideal of R if and only if I = Gr(0).

Proof. Assume that I is a gr-prime ideal of R. It is easy to see Gr(0) ⊆
Gr(I) = I. If I is a gr-n-ideal of R, by Lemma 1, we have I ⊆ Gr(0) and so
I = Gr(0). For the converse, assume that I = Gr(0). Let rg, sh ∈ h(R) such
that rgsh ∈ I and rg /∈ Gr(0). Since I is a gr-prime ideal and rg /∈ Gr(0) = I,
we get sh ∈ I. �
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Corollary 1 Let R be a G-graded ring. Then Gr(0) is a gr-n-ideal of R if and
only if it is a gr-prime ideal of R.

Proof. Assume that Gr(0) is a gr-n-ideal of R. Let rg, sh ∈ h(R) such that
rgsh ∈ Gr(0) and rg /∈ Gr(0).Then sh ∈ Gr(0) as Gr(0) is a gr-n-ideal of
R. Hence Gr(0) is a gr-prime ideal of R. Conversely, Assume that Gr(0) is a
gr-prime ideal of R, by Theorem 1, we conclude that Gr(0) is a gr-n-ideal
of R. �

The following theorem give us a characterization of gr-n-ideal of a graded
rings.

Theorem 2 Let R be a graded ring and I be a proper graded ideal of R. Then
the following statements are equivalent:

(i) I is a gr-n-ideal of R.

(ii) I = (I :R rg) for every rg ∈ h(R) −Gr(0).

(iii) For every graded ideals J and K of R such that JK ⊆ I and J ∩ (h(R) −
Gr(0)) 6= ∅ implies K ⊆ I.

Proof. (i) ⇒ (ii) Assume that I is a gr-n-ideal of R. Let rg ∈ h(R) − Gr(0).
Clearly, I ⊆ (I :R rg). Now, Let s =

∑
h∈G sh ∈ (I :R rg). This yields that

rgsh ∈ I for each h ∈ G. Since I is a gr-n-ideal of R and rg ∈ h(R) − Gr(0),
we have sh ∈ I for each h ∈ G and so s ∈ I. This implies that (I :R rg) ⊆ I.
Therefore, I = (I :R rg).

(ii) ⇒ (iii) Assume that JK ⊆ I with J ∩ (h(R) − Gr(0)) 6= ∅ for graded
ideals J and K of R. Then there exists rg ∈ J ∩ h(R) such that rg /∈ Gr(0).
Hence rgK ⊆ I, it follows that K ⊆ (I :R rg). By our assumption, we obtain
K ⊆ (I :R rg) = I.

(iii) ⇒ (i) Let rg, sh ∈ h(R) such that rgsh ∈ I and rg /∈ Gr(0). Let J = rgR
and K = shR be two graded ideals of R generated by rg and sh, respectively.
Then JK ⊆ I. By our assumption, we obtain, K ⊆ I and so sh ∈ I. Thus I is a
gr-n-ideal of R. �

Theorem 3 Let R be a G-graded ring and {Iα}α∈Λ be a non empty set of
gr-n-ideals of R. Then ∩i∈∆Ii is gr-n-ideal of R.

Proof. Clearly, ∩α∈ΛIα is a graded ideal of R. Let rg, sh ∈ h(R) such that
rgsh ∈ ∩α∈ΛIα and rg /∈ Gr(0). Then rgsh ∈ Iα for every α ∈ Λ. Since Iα is a
gr-n-ideal of R, we have sh ∈ Iα for every α ∈ Λ thus sh ∈ ∩α∈ΛIα. �
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Theorem 4 Let R be a G-graded ring and I be a graded ideal of R. If I is a
gr-n-ideal of R, then I is a gr-r-ideal of R.

Proof. Assume that I is a gr-n-ideal of R. Let rg, sh ∈ h(R) such that rgsh ∈ I
and ann(rg) = 0. Since ann(rg) = 0, rg /∈ Gr(0). Then sh ∈ I as I is a
gr-n-ideal. Thus I is a gr-r-ideal of R. �

Remark 1 It is easy to see that every graded nilpotent element is also a graded
zero divisor. So graded zero divisors and graded nilpotent elements are equal
in case < 0 > is a graded primary ideal of R. Thus the gr-n-ideals and gr-r-
ideals are equivalent in any graded commutative ring whose graded zero ideal
is graded primary.

Recall that a G-graded ring R is called a G-graded reduced ring if r2 = 0

implies r = 0 for any r ∈ h(R); i.e. Gr(0) = 0.

Theorem 5 Let R be a G-graded ring. Then the following hold:

(i) Any G-graded reduced ring R, which is not graded integral domain, has
no gr-n-ideal.

(ii) If R is a G-graded reduced ring, then R is a graded integral domain if and
only if 0 is a gr-n-ideal.

Proof. (i) Let R be a G-graded reduced ring such that R is not graded integral
domain. Assume that there exists a gr-n-ideal I of R. Since R is a G-graded
reduced ring, Gr(0) = 0. By Lemma 1, we get, I ⊆ Gr(0) = 0 and so Gr(0) =
0 = I. Since Gr(0) = 0 is not gr-prime ideal of R, by Corollary 1, we get
I = Gr(0) is not a gr-n-ideal, a contradiction.
(ii) Assume that R is a G-graded reduced ring. If R is a graded integral

domain, then Gr(0) = 0 is a gr-prime ideal, and hence by Corollary 1, 0 =
Gr(0) is a gr-n-ideal of R. For the converse if 0 is a gr-n-ideal of R, then by
part (i) R is a graded integral domain. �

Theorem 6 Let R be a G-graded ring, I be a gr-n-ideal of R and tg ∈ h(R)−I.
Then (I :R tg) is a gr-n-ideal of R.

Proof. By [9, Proposition 1.13], (I :R tg) is a graded ideal. Since tg /∈ I,
(I :R tg) 6= R. Now, let rh, sλ ∈ h(R) such that rhsλ ∈ (I :R tg) and rh /∈
Gr((I :R tg)). Then rhsλ tg ∈ I. Since I is a gr-n-ideal of R and rh /∈ Gr(0), we
get sλ tg ∈ I. This yields that sλ ∈ (I :R tg). Therefore, (I :R tg) is a gr-n-ideal
of R. �
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Theorem 7 Let R be G-graded ring and I be a graded ideal of R. If I is a
maximal gr-n-ideal of R, then I = Gr(0).

Proof. Assume that I is a maximal gr-n-ideal of R. Let rg, sh ∈ h(R) such
that rgsh ∈ I and rg /∈ I. Since I is a gr-n-ideal and rg /∈ I, by Theorem 6, we
have (I :R rg) is a gr-n-ideal. Thus sh ∈ (I :R rg) = I by maximality of I. This
yields that I is a gr-prime ideal of R. By Theorem 1, we get I = Gr(0). �

Lemma 2 Let R be a G-graded ring and {Ii : i ∈ Λ} be a directed collection of
gr-n-ideals of R. Then I = ∪i∈ΛIi is a gr-n-ideal of R.

Proof. Suppose that rgsh ∈ I and rg /∈ Gr(0) for some rg, sh ∈ h(R). Hence
rgsh ∈ Ik for some k ∈ Λ. Since Ik is a gr-n-ideal of R, we conclude that
sh ∈ Ik ⊆ ∪i∈ΛIi = I. Thus I is a gr-n-ideal. �

Theorem 8 Let R be a G-graded ring. Then the following statements are
equivalent:

(i) Gr(0) is a gr-prime ideal of R.

(ii) There exists a gr-n-ideal of R.

Proof. (i) ⇒ (ii) It is clear by Corollary 1.
(ii) ⇒ (i) First we show that R has a maximal gr-n-ideal. Let D be the set

of all gr-n-ideals of R. Then by our assumption, D 6= ∅. Since D is a poset
by the set inclusion, take a chain I1 ⊆ I2 ⊆ · · · in D. We conclude that the
upper bound of this chain is I = ∪∞i=1Ii by Lemma 2. Then D has a maximal
element which is a maximal gr-n-ideal. Thus that ideal is Gr(0) by Corollary
1 and Theorem 7. �

In view of Lemma 1 and Theorem 8, we have the following result.

Theorem 9 Let R be a G-graded ring and I a graded ideal of R such that
I ⊆ Gr(0).

(i) I is a gr-n-ideal if and only if I is a gr-primary ideal.

(ii) If I is a gr-n-ideal, then I is a graded weakly primary (so graded weakly
2-absorbing primary) and graded 2-absorbing primary ideal.

(iii) If Gr(0) is gr-prime, then I is a graded weakly 2-absorbing primary ideal
if and only if I is a graded 2-absorbing primary ideal of R.
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(iv) If R has at least one gr-n-ideal, then I is a graded weakly 2-absorbing
primary ideal if and only if I is a graded 2-absorbing primary ideal of R.

Proof. Straightforward. �

Theorem 10 Let R be a G-graded ring. Then R is a graded integral domain
if and only if 0 is the only gr-n-ideal of R.

Proof. Let R be a graded integral domain. Assume that I is a nonzero gr-n-
ideal of R. Then we have I ⊆ Gr(0) = 0 by Lemma 1, a contradiction. Hence 0
is a gr-n-ideal by Example 1 (ii). Conversely, if 0 is the only gr-n-ideal, we get
Gr(0) is a gr-prime ideal and also a gr-n-ideal by Corollary 1 and Theorem
8. Hence Gr(0) = 0 is a gr-prime ideal. Thus R is a graded integral domain. �

Theorem 11 Let R be a G-graded ring and J be a graded ideal of R with
J ∩ (h(R) −Gr(0)) 6= ∅. Then the following statements hold:

(i) If I1 and I2 are gr-n-ideals of R such that I1J = I2J, then I1 = I2.

(ii) If IJ is a gr-n-ideal of R, then IJ = I.

Proof.
(i) Suppose that I1J = I2J. Since I2J ⊆ I1, J ∩ (h(R) − Gr(0)) 6= ∅, and I1 is

a gr-n-ideal, by Theorem 2, we conclude that I2 ⊆ I1. Similarly, since I2 is a
gr-n-ideal, we have the inverse inclusion.

(ii) It is clear from (i). �

For G-graded rings R and R′, a G-graded ring homomorphism f : R → R′ is
a ring homomorphism such that f(Rg) ⊆ R′g for every g ∈ G.

The following result studies the behavior of gr-n-ideals under graded homo-
morphism.

Theorem 12 Let R1 and R2 be two G-graded rings and f : R1 → R2 a graded
ring homomorphism. Then the following statements hold:

(i) If f is a graded epimorphism and I1 is a gr-n-ideal of R1 containing kerf,
then f(I1) is a gr-n-ideal of R2.

(ii) If f is a graded monomorphism and I2 is a gr-n-ideal of R2, then f−1(I2)
is a gr-n-ideal of R1.
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Proof. (i) Suppose that rgsh ∈ f(I1) and rg /∈ Gr(0R2) for some rg, sh ∈
h(R2). Since f is onto, f(xg) = rg, f(yh) = sh for some xg, yh ∈ h(R1).
Hence f(xgyh) ∈ f(I1) implies that xgyh ∈ I1 as Kerf ⊆ I1. It is clear that
xg /∈ Gr(0R1). Since I1 is a gr-n-ideal of R1, we conclude that yh ∈ I1; and so
sh = f(yh) ∈ f(I1). Thus f(I1) is a gr-n-ideal of R2.

(ii) Suppose that rgsh ∈ f−1(I2) and rg /∈ Gr(0R1) for some rg, sh ∈ h(R1).
Since kerf = {0}, we have f(rg) /∈ Gr(0R2). Since f(rgsh ) = f(rg)f(sh ) ∈ I2 and
I2 is a gr-n-ideal of R2, we conclude that f(sh ) ∈ I2. It means sh ∈ f−1(I2),
we are done. �

Corollary 2 Let I1 and I2 be two graded ideals of a G-graded ring R with
I1 ⊆ I2. Then the following statements hold:

(i) If I2 is a gr-n-ideal of R, then I2/I1 is a gr-n-ideal of R/I1.

(ii) If I2/I1 is a gr-n-ideal of R/I1 and I1 ⊆ Gr(0), then I2 is a gr-n-ideal of
R.

(iii) If I2/I1 is a gr-n-ideal of R/I1 and I1 is a gr-n-ideal of R, then I2 is a
gr-n-ideal of R.

Proof. (i) Considering the natural graded epimorphism Π : R → R/I1, the
result is clear by Theorem 12.

(ii) Suppose that rgsh ∈ I2 and rg /∈ Gr(0) for some rg, sh ∈ h(R). Hence
(rg + I1)(sh + I1) = rgsh + I1 ∈ I2/I1 and rg /∈ Gr(0R/I1). It implies that
sh + I2 ∈ I1/I2. Thus sh ∈ I1, we are done.

(iii) Let I2/I1 be a gr-n-ideal of R/I1 and I1 a gr-n-ideal of R. Assume that
I2 is not gr-n-ideal. Then I1 * Gr(0) by (ii). From Lemma 1, we conclude that
I1 is not a gr-n-ideal, a contradiction. Thus I2 is a gr-n-ideal of R. �

Corollary 3 Let R be a G-graded ring, I be a gr-n-ideal of R and S a subring
of R with S * I. Then I ∩ S is a gr-n-ideal of S.

Proof. Consider the injection i : S → R. Then i is a graded homomorphism.
Since I is a gr-n-ideal of R, i−1(I) = I ∩ S is a gr-n-ideal of S by Theorem 12
(ii). �

Let R be a G-graded ring and S ⊆ h(R) a multiplicatively closed subset of
R. Then graded ring of fractions is denoted by S−1R which defined by S−1R =
⊕g∈G(S−1R)g where (S−1R)g = {as : a ∈ R, s ∈ S, g = (deg s)−1(dega)}.
A homogeneous element rg ∈ h(R) is said to be gr-regular if ann(rg) = 0.



26 K. Al-Zoubi, F. Al-Turman, E. Y. Celikel

Observe that the set of all gr-regular elements of R is a multiplicatively closed
subset of R.

The following result studies the behaviour of gr-n-ideal under localization.

Theorem 13 Let R be a G-graded ring, S ⊆ h(R) a multiplicatively closed
subset of R. Then the following statements hold:

(i) If I is a gr-n-ideal of R, then S−1I is a gr-n-ideal of S−1R.

(ii) Let S be the set of all gr-regular elements of R. If J is a gr-n-ideal of
S−1R, then Jc is a gr-n-ideal of R.

Proof. (i) Suppose that a
s
b
t ∈ S−1I with a

s /∈ Gr(0S−1R) for some a
s ,
b
t ∈

h(S−1R). Hence there exists u ∈ h(S) such that uab ∈ I. Clearly, we have
a /∈ Gr(0). It implies that ub ∈ I; so b

t =
ub
ut ∈ S

−1I. Thus S−1I is a gr-n-ideal
of S−1R.

(ii) Suppose that a, b ∈ h(R) with ab ∈ Jc and b /∈ Jc. Then b
1 /∈ J. Since

J is a gr-n-ideal, we have a
1 ∈ Gr(0S−1R). Hence uak = 0 for some u ∈ S and

k ≥ 1. Since u is gr-regular, ak = 0; i.e. a ∈ Gr(0). Thus Jc is a gr-n-ideal
of R. �

Definition 2 Let S be a nonempty subset of a G-graded ring R with h(R) −
Gr(0) ⊆ S ⊆ h(R). Then we call S gr-n-multiplicatively closed subset of R if
whenever rg ∈ h(R) −Gr(0) and sh ∈ S, then rgsh ∈ S.

Theorem 14 Let I be a graded ideal of a G-graded ring R. Then the following
statements are equivalent:

(i) I is a gr-n-ideal of R.

(ii) h(R) − I is a gr-n-multiplicatively closed subset of R.

Proof. (i) ⇒ (ii) Let I be a gr-n-ideal of R. Suppose that rg ∈ h(R) − Gr(0)
and sh ∈ h(R) − I. Since rg /∈ Gr(0), sh /∈ I, and I is a gr-n-ideal of R, we
conclude that rgsh /∈ I. Therefore rgsh ∈ h(R) − I. Since I is a gr-n-ideal of R,
we have I ⊆ Gr(0) by Lemma 1. Then h(R) −Gr(0) ⊆ h(R) − I.

(ii) ⇒ (i) Suppose that rg, sh ∈ h(R) with rgsh ∈ I and rg /∈ Gr(0). If
sh ∈ h(R) − I, then from our assumption (ii), we have rgsh ∈ h(R) − I, a
contradiction. Thus sh ∈ I which means that I is a gr-n-ideal of R. �

Theorem 15 Let I be a graded ideal of a G-graded ring R and S a gr-n-
multiplicatively closed subset of R with I∩S = ∅. Then there exists a gr-n-ideal
K of R such that I ⊆ K and K ∩ S = ∅.
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Proof. Let D = {J : J is a graded ideal of R with I ⊆ J and J∩ S = ∅}. Observe
thatD 6= ∅ as I ∈ D. Suppose J1 ⊆ J2 ⊆ · · · is a chain inD. Then ∪∞i=1Ji is a gr-
n-ideal of R by Lemma 2. Since I ⊆ ∪∞i=1Ji and (∪∞i=1Ji)∩S = ∪∞i=1(Ji ∩S) = ∅,
we get ∪∞i=1Ji is the upper bound of this chain. From Zorn’s Lemma, there is
a maximal element K of D. We show that this maximal element K is a gr-n-
ideal of R. Suppose that rgsh ∈ K and sh /∈ K for some rg, sh ∈ h(R). Then
K ( (K :R rg). Since K is maximal, it implies that (K :R rg) ∩ S 6= ∅. Hence
there is an element tλ ∈ (K :R rg) ∩ S. Then rgtλ ∈ K. If rg ∈ Gr(0), then we
are done. So assume that rg /∈ Gr(0). Since S is gr-n-multiplicatively closed,
we conclude that rgtλ ∈ S. Thus rgtλ ∈ S ∩ K, a contradiction. Therefore K is
a gr-n-ideal of R. �
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graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48 (3) (2019),
724–731.

[3] K. Al-Zoubi, F. Qarqaz, An intersection condition for graded prime ideals,
Boll Unione Mat. Ital., 11 (4) (2018), 483–488.

[4] K. Al-Zoubi, N. Sharafat, On graded 2-absorbing primary and graded
weakly 2-absorbing primary ideals, J. Korean Math. Soc., 54 (2) (2017),
675–684.

[5] S. E. Atani, On graded weakly primary ideals, Quasigroups Related Sys-
tems, 13 (2) (2005), 185–191.

[6] C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules,
Lecture notes in mathematics 758, Berlin-New York: Springer-Verlag,
1982.

[7] C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, Mathematical
Library 28, North Holand, Amsterdam, 1982.

[8] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, LNM
1836. Berlin-Heidelberg: Springer-Verlag, 2004.



28 K. Al-Zoubi, F. Al-Turman, E. Y. Celikel

[9] M. Refai, K. Al-Zoubi, On graded primary ideals, Turkish J. Math., 28
(3) (2004), 217–229.

[10] M. Refai, M. Hailat, S. Obiedat, Graded Radicals and Graded Prime
Spectra, Far East Journal of Mathematical Sciences, part I (2000), 59–
73.

[11] U. Tekir, S. Koc, K. H. Oral, n-ideals of Commutative Rings, Filomat,
31 (10) (2017), 2933–2941.

Received: October 18, 2018


