

 Acta Universitatis Sapientiae

 Electrical and Mechanical Engineering, 6 (2014) 6877

68

Identifying Chains of Software Vulnerabilities:

A Passive Non-Intrusive Methodology

Béla GENGE, Călin ENĂCHESCU

Department of Informatics, Faculty of Sciences and Letters,

Petru Maior University of Tg. Mureş, Romania

e-mail: bela.genge@ing.upm.ro, ecalin@upm.ro

Manuscript received May 4, 2015; revised August 20, 2015.

Abstract: We present a novel methodology to identify chains of software

vulnerabilities in computer networks. Vulnerabilities constitute software bugs, which

may enable attackers to perform malicious operations. Attacks against systems,

however, embrace various software flaws on different machines interconnected by

networks. As a result, vulnerability chains may give the attacker the ability to

compromise a series of hosts, and to reach his goals. This paper shows that an attacker

may infer software vulnerabilities by leveraging passive network monitoring tools, and

may construct vulnerability chains in the attempt to penetrate security perimeters. We

present an approach to automatically build vulnerability chains based an automated

vulnerability reconstruction reports from National Vulnerability Database, and passive

network analysis tools such as PRADS. The approach is experimentally validated in a

laboratory test infrastructure.

Keywords: software vulnerability, vulnerability chain, network sniffer, National

Vulnerability Database.

1. Introduction

Vulnerabilities constitute software flaws that may enable attackers to run

random code sequences, to escalate privileges, and ultimately to take complete

control of underlying Operating Systems (OS). Therefore, extensive effort has

been invested in the description and rapid dissemination of software

vulnerabilities.

However, starting with their description, the wide dissemination of software

vulnerabilities faces several challenges. To begin with, vulnerability reports

need to be identically formulated across various institutions and databases.

Then, a structured format needs to be provided to enable automated processing

 Identifying Chains of Software Vulnerabilities: A Passive Non-Intrusive Methodology 69

and reasoning with various tools. To facilitate the sharing of vulnerability-

related information, the Common Vulnerabilities and Exposures (CVE) was

introduced in 1999 by the MITRE Corporation. One of the most well-

established vulnerability databases is the National Vulnerability Database

(NVD), and it builds on the information provided by CVE.

Besides individual vulnerabilities, security experts need to account for the

complexity of various cyber attacks embracing different vulnerabilities of

software running across different host. In this context, attackers may adopt

chains of software vulnerabilities, in which case exploits of vulnerabilities on

one particular host may give access to running a different set of exploits on

another set of hosts. Therefore, security experts need to be aware of possible

vulnerability chains in order to limit the attacker’s ability to reach critical assets.

In an attempt to address this challenge, this paper proposes a methodology to

build vulnerability chains based on passive assessment of network traffic. The

methodology embraces recent advancement in the field of passive network asset

discovery [1], and automated vulnerability reconstruction [2]. Subsequently, it

builds on the well-established field of attack trees [3], and their extension with

probabilistic computations as proposed in the work of Nai Fovino, et al. [4].

The methodology is experimentally evaluated in the context of a simplified

laboratory-scale scenario.

The remainder of this paper is organized as follows. Section 2 provides an

overview of related methodologies and it emphasizes the main novelty of the

technique proposed in this work. Then, Section 3 provides an overview of

vulnerability reports and of the tools employed in this work, which is followed

by a detailed description of the proposal. Next, Section 4 provides the results of

experiments conducted with the proposed method. Finally, the paper concludes

in Section 5.

2. Related work

In the field of vulnerability assessment we find various methodologies,

which may be categorized in two classes. In the first class we find approaches

from the field of active vulnerability assessment. Here we mention Nessus, an

“all-in-one” vulnerability assessment tool [11]. Nessus actively probes services

in order to test for known vulnerabilities and possible service configuration

weaknesses. It relies on plug-ins which are specifically written to test for the

presence of particular vulnerabilities. It generates a comprehensive report which

contains descriptions on discovered assets and vulnerabilities, but also

recommendations for improving system security. Next, we mention ZMap [12],

a network scanner that provides valuable information on discovered services to

vulnerability assessment tools.

70 B. Genge, C. Enăchescu

In the field of passive network asset discovery we can find several tools such

as p0f [13] and PRADS [1], which rely on user-specified signatures to

distinguish between specific products and version numbers. These tools

generate a list of discovered assets from network traffic capture files.

Finally, we mention the work of Cheminod, et al. [10], which mostly relates

to ours. In their work, Cheminod, et al. extended the structure of CVE reports

with entries on vulnerability causes and effects in the attempt to build an

automated reasoning framework on vulnerability chains. However, the approach

requires the modification of each new CVE from other open databases, i.e.,

NVD. Therefore, we believe that the methodology proposed in this work

represents a significant improvement since it leverages open and available CVE

reports to build probabilistic vulnerability chains.

3. Proposed methodology

A. Overview of vulnerability reports

As mentioned above, vulnerability reports provide a description of software

flaws. Each item in CVE is identified by the year and the order they were

included in the database. For example, the recently reported software

vulnerability identified by CVE-2015-0699 refers to Cisco Unified

Communications Manager’s Interactive Voice Response (IVR) component, and

the ability of an attacker to launch an SQL injection attack, which may in turn

permit the execution of arbitrary SQL statements. The CVE was added to the

database in 2015, and was given sequence number 0699.

One of the most well-established vulnerability databases, the National

Vulnerability Database (NVD), builds on the information provided by CVE.

NVD is often viewed as the “ground truth” for software vulnerability

assessment [5]. At the heart of every CVE entry lies the Common Platform

Enumeration (CPE), “a standardized method of describing and identifying

classes of applications, operating systems, and hardware devices present among

an enterprise’s computing assets” [6]. CPE names provide information on

software vendor, name, version, language, edition, etc.

Each CVE contains various entries among which we mention a summary of

the vulnerability, a list of CPEs to which the vulnerability applies, and a scoring

on its severity and exploitability. Vulnerability scores are given in the Common

Vulnerability Scoring System (CVSS) format. CVSS scores range from 0 to 10,

0 being the lowest (low severity), and 10 being the highest (highest severity)

vulnerability score that can be assigned to a specific CVE entry.

 Identifying Chains of Software Vulnerabilities: A Passive Non-Intrusive Methodology 71

B. Overview of automated vulnerability reconstruction tool: ShoVAT

The vulnerability chain reconstruction methodology proposed in this work

embraces the advanced features exposed by ShoVAT, as described in our

previous work [2]. ShoVAT stands for Shodan-based vulnerability assessment

tool, and it aims at automatically identifying vulnerabilities in Internet-facing

services. ShoVAT uses Shodan search engine [7, 8] to discover services and

service-specific data, e.g., service banners. Conversely, this work builds on data

extracted from network traffic and on ShoVAT’s ability to automatically

identify software.

Besides service-specific data, ShoVAT employs NVD as a source of CVE

reports. CVEs are downloaded once per-day, as they are regularly updated in

NVD, and are used to reconstruct an in-memory representation of the

relationship between CPEs and CVEs. The memory-resident model is based on

bipartite-hypergraphs, where each CPE may be associated to several CVEs, and

each CVE may be associated to several CPEs. Besides these, efficient hash

functions are implemented in order to provide efficient access to various data

structures.

Finally, ShoVAT’s output is a comprehensive report detailing the discovered

hosts, services, CPEs and vulnerabilities.

Figure 1: Architecture and components in the proposed methodology.

C. Proposed approach

The proposed methodology for vulnerability chain construction leverages

various tools and well-established methodologies (see Fig. 1). The network

asset discovery is provided by the Passive real-time asset detection system

72 B. Genge, C. Enăchescu

(PRADS) [1]. Next, the data discovered by PRADS is processed by ShoVAT

[2] in the attempt to identify software vulnerabilities. Its output constitutes a list

of hosts, services, and CVE reports.

The proposed methodology unfolds several significant steps. At first, it takes

a description of the network topology, given as a list of hosts (IP addresses),

services (port numbers), and physical connections. This particular entry file also

contains logical connections between services, that is, traffic flows between

various software and hosts. An obvious enhancement to this data collection

methodology could be the adoption of automated network topology discovery

mechanisms. However, while such approaches might reduce the time needed to

discover the network, their provisioning at various network locations is not

trivial. Subsequently, several issues might rise along the way. In this respect,

the time dimension of the network discovery phase is a significant aspect, since

specific software and inadvertently, communication protocols, might be

executed at various points in time.

It is noteworthy that the methodology described in this paper also embraces

automated asset discovery methodologies. These are implemented with the help

of PRADS, which provides a list of software and OS descriptions for each asset.

An example output of PRADS is the following:

10.0.0.100,0,80,6,CLIENT,[http:Mozilla/5.0 (Windows

NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0],

1,1404207546

In the example above PRADS identified a Firefox Web browser client,

version 30.0. The detection is based on patterns described in PRAD’s input

files. Therefore, the accuracy of the detection depends on various factors, and it

is a significant element, which influences the accuracy of results of the

proposed methodology as well. An example in this sense is PRAD’s ability to

detect specific OS. The detection leverages the structure of network packets,

specific bits, and so on. However, in many cases the procedure may produce

false results due to the lack of sufficient information to accurately distinguish

specific OS versions [9]. An example in this sense is the following output, as

produced by PRADS:

10.0.2.121,0,49251,6,SYN,[8192:127:1:48:M1460,N,N,S:.

:Windows:2000 SP2+, XP SP1+ (seldom 98):link:

ethernet/modem],1,1404207849

According to this example, PRADS states that the OS version might be

Microsoft Windows 200 SP2+, yet it may also be Microsoft Windows XP

SP1+, and in rare occasions Microsoft Windows 98. Therefore, such output

 Identifying Chains of Software Vulnerabilities: A Passive Non-Intrusive Methodology 73

poses significant challenges even in the hand of experienced security experts.

Nevertheless, it should be noted that since PRADS is a passive network asset

discovery tool, it is limited to such outputs, and a more accurate result may be

only achieved by leveraging active detection methodologies.

In the next phase, PRAD’s output is processed by ShoVAT’s automated

vulnerability identification modules. Since ShoVAT was intended to process

data from Shodan, we extended ShoVAT with a new module written in the

Python language in order to process PRAD’s output. ShoVAT takes PRAD’s

output and reconstructs CPE names based on asset names and version numbers.

Then, it extracts all known CVEs for all matching CPEs. As an example in this

sense, for the previous example on Firefox ShoVAT identifies the following

CPE:

cpe:/a:mozilla:firefox:30.0

Then, ShoVAT searches for known CVE and gives 52 matches. This yields a

number of 52 known vulnerabilities that are associated to Mozilla Firefox

version 30.0.

Based on these aspects, in the next phase the methodology at hand builds a

graph-based representation of nodes, vulnerabilities, and vulnerability scores.

The most significant issue with the construction of such graphs, however, is the

actual exploitability of vulnerabilities. That is, for each CVE we need to

establish if an attacker may exploit the vulnerability, and what are the

consequences of the exploited vulnerability.

Unfortunately CVEs do not formalize these concepts, and they are

summarized in an intuitive, natural language-based form. In fact, related

research on building vulnerability chains [10] extended the structure of CVE

with entries that specifically identify the possible exploits. However, the

developed methodology is not accessible to the public, and it entails the

extension of each CVE with such specific entries. Therefore, the adoption of the

methodology as proposed in [10] may not be feasible in real systems due to the

high maintenance requirements for keeping a separate and up-to-date database

of extended CVEs. This is also easily understandable since at the moment the

entire NVD contains more than 100 thousand CVEs, and their expansion with

exploitability-specific information would be highly unreasonable.

Based on these facts, in this work we adopt the numerical scoring available

in CVE as a measure of vulnerability exploitability. As already stated, CVEs

include a set of CVSS values, among which we also find various sub-scores

such as exploitability and impact. Since these have already been assigned by

security experts, we adopt these numbers in the proposed methodology. More

specifically, since their values are in the range from 1 to 10, we use them in the

74 B. Genge, C. Enăchescu

form of probability assignments. In other words, the exploitability sub-score

will represent the probability of successful exploitation (after division by 10),

denoted by PEXP, while the impact sub-score will represent the probability of

escalating privileges (after division by 10), denoted by PIMP. As a result, the

probability of successful escalation of privileges by means of software

vulnerability exploitation is computed as PSE = PEXP •PIMP.

Then, from the host’s point of view, which encapsulates various software

and vulnerabilities, the probability of privilege escalation includes all software

and vulnerabilities found on that particular host. More specifically, the privilege

escalation for a host i is defined according to [4] as PHi = 1 – Prodk(1 – PSEik),

where Prodk computes the product of k successful privilege escalation

probabilities for host i. The chain probability between two hosts is computed as

PHi •PHj.

Finally, given the above equations, we can calculate the probability for an

attacker to successfully reach his target. For this purpose we use well-known

graph-based algorithms, which maximize/minimize the cost of a specific path in

the graph.

Figure 2: Experimentation setting.

4. Experimental results

The experimentation assessment assumes a simplified topology (see Fig. 2)

consisting of two networks, i.e., Network A and Network B. Network A hosts

two nodes: S1, running HTTP server A and SSH client, and S2, running a VPN

client to Network B and SSH server. Network B hosts another two nodes: S3,

running VPN server, and S4, running HTTP server B.

 Identifying Chains of Software Vulnerabilities: A Passive Non-Intrusive Methodology 75

The attacker is located outside of the two networks. Both networks are

protected by firewall, however, certain services are allowed through. As such,

the attack is permitted to access HTTP server A on S1, and VPN client in

Network A can connect to VPN server in Network B. In the case of the two

HTTP servers we use Apache Web server version 2.4.4.

Based on this scenario we use PRADS to identify network assets on both

networks and we feed this data to ShoVAT. Finally, we use the proposed

methodology to build the vulnerability chain.

With the data discovered by PRADS, ShoVAT reconstructs the following

CPEs associated to HTTP server A:

cpe:/a:apache:http_server:2.4.4

cpe:/a:apache:apache_http_server:2.4.4

Based on these CPEs ShoVAT then identifies several vulnerabilities. For the

sake of the example at hand we select one particular example in order to

illustrate the application of the proposed approach. More specifically, we select

CVE-2013-2249, a vulnerability from 2013 affecting all Apache HTTP servers

before version 2.4.5.

According to NVD, the aforementioned vulnerability is associated to

mod_session_dbd.c in the mod_session_dbd module, which may

allow an attacker in certain cases to run various attack vectors. The vulnerability

has a CVSS score of 7.5, therefore, a high score. The impact sub-score is of 6.4,

while the exploitability is of 10. Therefore, an attacker might exploit the

vulnerability with a probability of 1, yet, the probability of successful escalation

of privileges, is of 0.64.

As a result, a remotely located attacker, outside the perimeters of Network A,

may successfully exploit the vulnerability with the probability of 0.64. Then,

the attacker can open an SSH connection to S2, from where it gains access to

S3. This entails, however, that the VPN configuration between S2 and S3 does

not require further verification of credentials.

Once the attacker reaches this point, i.e., S3, it can adopt the same

vulnerability in Apache HTTP server to escalate privileges on S4 with a

probability of 0.64. As a result, given the two cascading, i.e., series,

probabilities, we compute that the probability for an attacker to reach S4

remotely is of 0.640.64 = 0.4096. Therefore, the attacker might have almost

50% of chances to reach his goals from outside Network A.

Based on these results, we consider that the proposed approach represent a

powerful instrument in the identification of highly critical vulnerability chains.

As such, the methodology may be adopted by security specialists in order to

reduce the attacker’s probability of success. In the scenario at hand, for

76 B. Genge, C. Enăchescu

instance, by assuming that HTTP Server A has only non-critical vulnerabilities,

with a probability of successful escalation of privileges of 0.15, the overall

success probability for the entire vulnerability chain decreases to 0.096.

Therefore, once the vulnerabilities have been identified, the methodology

provides the ability to conduct what-if calculations, which can also aid network

designers to identify possible solutions and security improvements.

5. Conclusion

We presented a methodology to construct software vulnerability chains. The

approach builds on passive network asset discovery tools such as PRADS [1]

and non-intrusive automated vulnerability identification features exposed by

ShoVAT [2]. The output of these tools is processed in the attempt to construct a

graph representation of network, hosts, software, and vulnerabilities. The work

also proposes metrics to quantify in a probabilistic framework the successful

exploitation of vulnerabilities. In this respect we adopt the impact and

exploitability sub-scores as provided by CVSS. The applicability of the

proposed approach is demonstrated in a laboratory-scale test scenario. Future

research will focus on additional tests and measurements in various scenarios.

Acknowledgements

The research presented in this paper was supported by the European Social

Fund under the responsibility of the Managing Authority for the Sectoral

Operational Programme for Human Resources Development, as part of the

grant POSDRU/159/1.5/S/133652.

References

[1] Fjellskal, E., “Passive real-time asset detection system (PRADS),” 2009, [Online; available

at: http://gamelinux.github.io/prads/].

[2] Genge, B., Enachescu, C., “ShoVAT: Shodan-based vulnerability assessment tool for

Internet-facing services,” Security and communication networks, Wiley, 2015 (In Press),

[Online; available at: http://www.ibs.ro/~bela/Papers/SCN2015.pdf].

[3] Schneier, B., “Attack trees,” Dr. Dobbs journal, vol. 24, no. 12, pp. 21–29, 1999.

[4] Nai Fovino, I., Masera, M., and De Cian, A., “Integrating cyber attacks within fault trees”,

Rel. Eng. & Sys. Safety, vol. 94, no. 9, pp. 1394-1402, 2009.

[5] Nannen, V., “The Edit History of the National Vulnerability Database,” Master’s Thesis,

ETH Zurich, Switzerland 2012.

[6] Cheikes, B., Waltermire, D., and Scarfone, K., “Common platform enumeration: Naming

specification version,” Technical Report NIST Inter-agency Report 7695, NIST August

2011.

[7] Matterly, J., “Shodan,” 2015, [Online; available at: http://www.shodanhq.com].

 Identifying Chains of Software Vulnerabilities: A Passive Non-Intrusive Methodology 77

[8] Bodenheim, R., Butts, J., Dunlap, S., and Mullins, B., “Evaluation of the ability of the

Shodan search engine to identify Internet-facing industrial control devices”, International

Journal of Critical Infrastructure Protection, vol. 7, no. 2, pp. 114-123, 2014.

[9] Richardson, D.W., Gribble, S.D., Kohno, T., “The limits of automatic OS fingerprint

generation”, in Proc. of the 3rd ACM Workshop on Artificial Intelligence and Security,

AISec ’10, ACM: New York, NY, USA, 2010.

[10] Cheminod, M., Bertolotti, I.C., Durante, L., Maggi, P., Pozza, D., Sisto, R., and Valenzano,

A., “Detecting Chains of Vulnerabilities in Industrial Networks”, IEEE Transactions on

Industrial Informatics, vol. 5, no. 2, pp. 181-193, 2009.

[11] Rogers, R., “Nessus Network Auditing”, Syngress publishing, 2008.

[12] Durumeric, Z.,Wustrow, E., and Halderman, J.A., “Zmap: Fast Internet-wide scanning and

its security applications”, in Proc. of the 22Nd USENIX Conference on Security, SEC’13,

USENIX Association: Berkeley, CA, USA, pp. 605–620, 2013.

[13] Zalewski, M., “p0f v3: Passive fingerprinter”, 2012, [Online; available at: http://lcamtuf.

coredump.cx/p0f3/.

	Cimlap Electr_2014
	Contents_2014
	1_Bako_Development_Acta_EMENG_2014
	2_Takacs_Open_Acta_EMENG_2014
	3_Polgar_Vertical_Acta_EMENG_2014
	4_Gosztolya_Estimating_Acta_EMENG_2014
	5_Szaszak_Analyzing_Acta_EMENG_2014
	6_Genge_Identifying_Acta_EMENG_2014

