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Abstract. The existence of edges is a huge challenge with regards to
determining lucky k-polynomials of simple connected graphs in general.
In this paper the lucky 3-polynomials of path and cycle graphs of or-
der, 3 ≤ n ≤ 8 are presented as the basis for the heuristic method to
determine the lucky k-polynomials for k-colorable graphs. The difficulty
of adjacency with graphs is illustrated through these elementary graph
structures . The results are also illustratively compared with the results
for null graphs (edgeless graphs). The paper could serve as a basis for
finding recurrence results through innovative methodology.

1 Introduction

For general notation and concepts in graphs see, [1, 2, 6]. It is assumed that the
reader is familiar with the concept of graph coloring. Recall that in a proper
coloring of G all edges are good i.e. uv⇔ c(u) 6= c(v). For any proper coloring
ϕ(G) of a graph G the addition of all good edges, if any, is called the chromatic
completion of G in respect of ϕ(G). The additional edges are called chromatic
completion edges. The set of such chromatic completion edges is denoted by,
Eϕ(G). The resultant graph Gϕ is called a chromatic completion graph of G.
See [3] for an introduction to chromatic completion of a graph.
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The chromatic completion number of a graph G denoted by, ζ(G) is the
maximum number of good edges that can be added to G over all chromatic
colorings (χ-colorings). Hence, ζ(G) = max{|Eχ(G)| : over all ϕχ(G)}.

A χ-coloring which yields ζ(G) is called a lucky χ-coloring or simply, a lucky
coloring1 and is denoted by, ϕL(G). The resultant graph Gζ is called a minimal
chromatic completion graph of G. It is trivially true that G ⊆ Gζ. Furthermore,
the graph induced by the set of completion edges, 〈Eχ〉 is a subgraph of the
complement graph, G. See [4] for the notion of stability in respect of chromatic
completion.

A k-coloring of a graph G which yields max{|Eϕ(G)| : overall k-colorings} is
called a lucky k-coloring.2

In an improper coloring an edge uv for which, c(u) = c(v) is called a bad
edge. See [5] for an introduction to defect colorings of graphs. It is observed
that the number of edges of G which are omitted from Eχ is the minimum
number of bad edges in a bad chromatic completion of a graph G.

2 Lucky 3-polynomials of paths

A path graph (or simply, a path) denoted by, Pn, is a graph on n ≥ 1 vertices
say, V(Pn) = {v1, v2, v3, . . . , vn} and n edges namely, E(Pn) = {vivi+1 : i =
1, 2, 3, . . . , n− 1}.

Recall that for λ distinct colors, λ ≥ χ(G), the number of ways a graph G
can be assigned a proper coloring is given by the chromatic polynomial of G
and is denoted by, PG(λ, n). For λ distinct colors, λ ≥ 3, the path P3 can be
assigned a proper 3-coloring in PP3(λ, n) = λ(λ−1)(λ−2) ways. The aforesaid
is equal to the number of ways a perfect lucky 3-coloring can be assigned to
the path P3 in accordance with lucky’s theorem [3]. Since [3] has not been
published as yet we recall lucky’s theorem for perfect lucky k-coloring to be:

Theorem 1 [3] For a positive integer n ≥ 2 and 2 ≤ p ≤ n let integers,

1 ≤ a1, a2, a3, . . . , ap−r, a ′1, a ′2, a ′3, . . . , a ′r ≤ n−1 be such that n =
p−r∑
i=1

ai+
r∑
j=1

a ′j

then, the `-completion sum-product L = max{
p−r−1∑
i=1

p−r∏
k=i+1

aiak +
p−r∑
i=1

r∏
j=1

aia
′
j +

r−1∑
j=1

r∏
k=j+1

a ′ja
′
k} over all possible, n =

p−r∑
i=1

ai +
r∑
j=1

a ′j .

1Note that for many graphs a lucky coloring is equivalent an equitable χ-coloring.
2Note that for many graphs a lucky k-coloring is equivalent an equitable k-coloring.
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Note that lucky’s theorem is reliant on the notion of the `-completion sum-
product [3]. We recall the definition to be:

Definition 2 Let, ti = bn` c, i = 1, 2, 3, . . . , (`−r) and t
′
j = d

n
` e, j = 1, 2, 3, . . . , r.

Call, L =
`−r−1∑
i=1

`−r∏
k=i+1

titk +
`−r∑
i=1

r∏
j=1

tit
′
j +

r−1∑
j=1

r∏
k=j+1

t ′jt
′
k, the `-completion sum-

product of n.

Also, because of the simplicity of the graph structure of paths no figure illustra-
tions are deemed necessary for clarity. It is assumed that the reader can easily
verify the vertex set partitions obtained. For path P3 the lucky 3-polynomial
is expressed as, LP3(λ, 3) = λ(λ− 1)(λ− 2). Note that the lucky 3-polynomial
corresponds to coloring the vertex set partition, {{v1}, {v2}, {v3}}.

Consider the path P4. By the definition of a path a particular convention
is implicit i.e. to obtain Pn from Pn−1 we necessarily extend from vn−1 to
vn with the edge vn−1vn. Hence, it is not permissible to insert the vertex
v4 into an existing edge of P3. The permissible lucky partitions for a lucky
3-coloring are, {{v1, v4}, {v2}, {v3}}, {{v1}, {v2, v4}, {v3}}, {{v1, v3}, {v2}, {v4}}. Hence,
LP4(λ, 3) = 3λ(λ − 1)(λ − 2). Progressing to path P5 the permissible lucky
partitions for a lucky 3-coloring are found to be,

{{v1, v4}, {v2, v5}, {v3}}, {{v1, v4}, {v2}, {v3, v5}}, {{v1, v5}, {v2, v4}, {v3}},
{{v1}, {v2, v4}, {v3, v5}}, {{v1, v3}, {v2, v5}, {v4}}, {{v1, v3}, {v2, v4}, {v5}}.

Hence, LP5(λ, 3) = 6λ(λ− 1)(λ− 2).

Progressing to path P6 the permissible lucky partitions for a lucky 3-coloring
are found to be,

{{v1, v4}, {v2, v5}, {v3, v6}}, {{v1, v4}, {v2, v6}, {v3, v5}}, {{v1, v5}, {v2, v4}, {v3, v6}},
{{v1, v6}, {v2, v4}, {v3, v5}}, {{v1, v3}, {v2, v5}, {v4, v6}}.

Therefore, LP6(λ, 3) = 5λ(λ− 1)(λ− 2). Note that LP6(λ, 3) < LP5(λ, 3).

Progressing to path P7 the permissible lucky partitions for a lucky 3-coloring
are found to be,

{{v1, v4, v7}, {v2, v5}, {v3, v6}}, {{v1, v4}, {v2, v5, v7}, {v3, v6}},
{{v1, v4, v7}, {v2, v6}, {v3, v5}}, {{v1, v4}, {v2, v6}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4}, {v3, v6}}, {{v1, v5}, {v2, v4, v7}, {v3, v6}},



Heuristic lucky k-polynomial 209

{{v1, v6}, {v2, v4, v7}, {v3, v5}}, {{v1, v6}, {v2, v4}, {v3, v5, v7}},
{{v1, v3, v7}, {v2, v5}, {v4, v6}}, {{v1, v3}, {v2, v5, v7}, {v4, v6}},
{{v1, v4, v6}, {v2, v5}, {v3, v7}}, {{v1, v4, v6}, {v2, v7}, {v3, v5}},
{{v1, v5}, {v2, v4, v6}, {v3, v7}}, {{v1, v3, v6}, {v2, v4}, {v5, v7}},
{{v1, v3, v5}, {v2, v7}, {v4, v6}}, {{v1, v3, v6}, {v2, v5}, {v4, v7}}.

Therefore, LP7(λ, 3) = 16λ(λ− 1)(λ− 2).

For path P8 the permissible lucky partitions for a lucky 3-coloring are found
to be,

{{v1, v4, v7}, {v2, v5, v8}, {v3, v6}}, {{v1, v4, v7}, {v2, v5}, {v3, v6, v8}},
{{v1, v4, v8}, {v2, v5, v7}, {v3, v6}}, {{v1, v4}, {v2, v5, v7}, {v3, v6, v8}},
{{v1, v4, v7}, {v2, v6, v8}, {v3, v5}}, {{v1, v4, v7}, {v2, v6}, {v3, v5, v8}},
{{v1, v4, v8}, {v2, v6}, {v3, v5, v7}}, {{v1, v4}, {v2, v6, v8}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4, v8}, {v3, v6}}, {{v1, v5, v7}, {v2, v4}, {v3, v6, v8}},
{{v1, v5, v8}, {v2, v4, v7}, {v3, v6}}, {{v1, v5}, {v2, v4, v7}, {v3, v6, v8}},
{{v1, v6, v8}, {v2, v4, v7}, {v3, v5}}, {{v1, v6}, {v2, v4, v7}, {v3, v5, v8}},
{{v1, v6, v8}, {v2, v4}, {v3, v5, v7}}, {{v1, v6}, {v2, v4, v8}, {v3, v5, v7}},
{{v1, v3, v7}, {v2, v5, v8}, {v4, v6}}, {{v1, v3, v7}, {v2, v5}, {v4, v6, v8}},
{{v1, v3, v7}, {v2, v4, v6}, {v5, v8}}, {{v1, v3, v8}, {v2, v5, v7}, {v4, v6}},
{{v1, v3}, {v2, v5, v7}, {v4, v6, v8}}, {{v1, v4, v6}, {v2, v5, v8}, {v3, v7}},
{{v1, v4, v6}, {v2, v7}, {v3, v5, v8}}, {{v1, v5, v8}, {v2, v4, v6}, {v3, v7}},
{{v1, v4, v6}, {v2, v7}, {v3, v5, v8}}, {{v1, v3, v6}, {v2, v4, v8}, {v5, v7}},
{{v1, v3, v5}, {v2, v7}, {v4, v6, v8}}, {{v1, v3, v6}, {v2, v5, v8}, {v4, v7}},
{{v1, v4, v6}, {v2, v5, v7}, {v3, v8}}, {{v1, v4, v6}, {v2, v8}, {v3, v5, v7}},
{{v1, v5, v7}, {v2, v4, v6}, {v3, v8}}, {{v1, v3, v5}, {v2, v4, v7}, {v6, v8}},
{{v1, v3, v6}, {v2, v4, v7}, {v5, v8}}, {{v1, v4, v6}, {v2, v8}, {v3, v5, v7}},
{{v1, v3, v6}, {v2, v5, v7}, {v4, v8}}, {{v1, v4, v6}, {v2, v5, v7}, {v3, v8}},
{{v1, v5, v7}, {v2, v4, v6}, {v3, v8}}, {{v1, v5, v7}, {v2, v4, v6}, {v3, v8}},
{{v1, v3, v6}, {v2, v4, v7}, {v5, v8}}, {{v1, v3, v5}, {v2, v4, v7}, {v6, v8}},
{{v1, v3, v6}, {v2, v5, v7}, {v4, v8}}.

Therefore, LP8(λ, 3) = 41λ(λ− 1)(λ− 2).

A cycle graph (or simply, a cycle) denoted by, Cn, is a graph on n ≥ 1

vertices say, V(Cn) = {v1, v2, v3, . . . , vn} and n edges namely, E(Cn) = {vivi+1 :
i = 1, 2, 3, . . . , n − 1} ∪ {vnv1}. The graph structural difference between Pn
and Cn is the edge vnv1. It implies that to obtain the corresponding lucky



210 J. Kok

3-polynomial, the permissible lucky partitions for V(Cn) are those obtained
after eliminating those lucky partitions of V(Pn) with vertex subsets which
have both v1, vn as elements. The next results follows easily without further
proof.

Corollary 3 (i) LC3
(λ, 3) = λ(λ− 1)(λ− 2),

(ii) LC4
(λ, 3) = 2λ(λ− 1)(λ− 2),

(iii) LC5
(λ, 3) = 5λ(λ− 1)(λ− 2),

(iv) LC6
(λ, 3) = 4λ(λ− 1)(λ− 2),

(v) LC7
(λ, 3) = 13λ(λ− 1)(λ− 2),

(vi) LC8
(λ, 3) = 34λ(λ− 1)(λ− 2).

Recall that a null graph, Nn of order n is simply an edgeless graph with ver-
tex set, {vi : 1 ≤ i ≤ n}. Constructing a path is considered to be the simplest
way to add edges to a null graph to obtain a connected simple graph with
minimum maximum degree, minimum number of edges and the property of
symmetry. However, to find either a closed or recurrence relation between the
lucky k-polynomials of null graphs and paths and cycles remains open. The
table below depicts the lucky 3-polynomials for the three families of graphs
for order 3 to 8.

n Nn, Pn Cn
3 λ(λ− 1)(λ− 2) λ(λ− 1)(λ− 2) λ(λ− 1)(λ− 2)

4 6λ(λ− 1)(λ− 2) 3λ(λ− 1)(λ− 2) 2λ(λ− 1)(λ− 2)

5 15λ(λ− 1)(λ− 2) 6λ(λ− 1)(λ− 2) 5λ(λ− 1)(λ− 2)

6 15λ(λ− 1)(λ− 2) 5λ(λ− 1)(λ− 2) 4λ(λ− 1)(λ− 2)

7 51λ(λ− 1)(λ− 2) 16λ(λ− 1)(λ− 2) 13λ(λ− 1)(λ− 2)

8 109λ(λ− 1)(λ− 2) 41λ(λ− 1)(λ− 2) 34λ(λ− 1)(λ− 2)
Table 1.

We recall from [3] that a graphG is perfect lucky k-colorable if and only if the
graph is k-colorable in accordance with lucky’s theorem hence, in accordance
with the lucky partition form,

{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
(k−r)−subsets

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(r≥0)−subsets

}.

First we present a lemma.
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Lemma 4 If G of order n and ∆(G) 6= n− 1 is perfect lucky k-colorable and
H is a graph obtained from, G with one pendant vertex vn+1 added to any
vi ∈ V(G), then H is perfect lucky k-colorable.

Proof. Consider any graph G of order n and ∆(G) 6= n − 1 which is perfect
lucky k-colorable. It implies that the G permits a proper k-coloring on the
vertex set partitions of the lucky partition form,

{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
(k−r)−subsets

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(r≥0)−subsets

}.

Let graphH be, graphG with one pendant vertex vn+1 added to any vi ∈ V(G).
Assume without loss of generality that in H the pendant vertex vn+1 is adja-
cent to vertex vj.
Case 1: Assume r > 0. Because ∆(G) 6= n− 1, there exists at least one vertex
partition which contains a vertex subset say, X such that, |X| = dnk e such that
vj ∈ X and there exists at least one vertex subset say, Y such that, |Y| = bnk c.
Therefore, with regards to a lucky partition form for V(H), the vertex subset
Y ∪ {vn+1} is permissible. It means that, the lucky partition form,

{{bn+1k c-element}, {bn+1k c-element}, . . . , {bn+1k c-element}︸ ︷︷ ︸
(k−r−1)−subsets

,

{dn+1k e-element}, {dn+1k e-element}, . . . , {dn+1k e-element}︸ ︷︷ ︸
(r+1≥0)−subsets

},

yielding a vertex partition having the vertex subset Y ∪ {vn+1} is a permissible
to assign a perfect lucky k-coloring to graph H.
Case 2: Assume r = 0. By similar reasoning to that, found in Case 1 the result
follows conclusively. �

Theorem 5 Let G of order n = k(t + 1) − 1, t ≥ 1 with ∆(G) 6= n − 1 be
a simple connected graph. Let G permit a perfect lucky k-coloring. Let H be
the graph, G with one pendant vertex vt(k+1) added to any vi ∈ V(G). Then,
LH(λ, k) < LG(λ, k).

Proof. Clearly the perfect lucky colorings are assigned to vertex partitions in
accordance to the lucky partition form,
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{{bnk c-element}, {bnk c-element}, . . . , {bnk c-element}︸ ︷︷ ︸
1−subset

,

{dnk e-element}, {dnk e-element}, . . . , {dnk e-element}︸ ︷︷ ︸
(k−1)−subsets

}.

Assume without loss of generality that inH the pendant vertex vn+1 is adjacent
to vertex vj. Since, ∆(G) 6= n − 1, there exist at least two permissible vertex
partitions. If we relax adjacency (allow a bad edge) then vertex vn+1 can
only be added to all the {bnk c-element}, {bnk c-element}, . . . , {bnk c-element} vertex
subsets, over all permissible vertex partitions. For this relaxed case, LH(λ, k) =
LG(λ, k). Else, Lemma 2 above ensures a perfect lucky coloring and LH(λ, k) <
LG(λ, k). �

Theorem 3 above explains the observation that, LP6(λ, 3) < LP5(λ, 3).

2.1 Heuristic method to determine lucky k-polynomials.

It is observed from Table 1 that LCn(λ, 3) < LPn(λ, 3), 4 ≤ n ≤ 8. The next
theorem follows from this observation.

Theorem 6 Let graph G be k-colourable and let H = G− e, e ∈ E(G). Then,
LH(λ, k) > LG(λ, k).

Proof. Because G is k-colourable it follows trivially that H is k-colourable.
The lucky partitions of V(H) serves as a basis to determine the permissible
lucky partitions of V(G) because the only graph structural difference between
G and H is the edge e. Hence, with regards to G the lucky partitions of
V(H) which have vertex subsets which have the end-points of e as elements
must be eliminated. Since, at least one such lucky partition exists, the result
LH(λ, k) > LG(λ, k) follows immediately. �

Let G be a graph of order n. Note that loops in G, if any, are irrelevant and
may be deleted. For application of the heuristic method G is considered to be
free of loops. Assume G is k-colourable.

Heuristic method:
Step 1: Since the null graph Nn is k-colourable, let the set P0 = {lucky parti-
tions of V(Nn)}. Let E(G) = {ei : 1 ≤ i ≤ ε(G)}. Also let j = 0.
Step 2: Let i = j + 1. Let Pi = Pi−1\{lucky partitions of Pi−1 which have
vertex subsets which have the endpoints of ei as elements}.
Step 3: If i = ε(G) then go to Step 4. Else, let j = i and go to Step 2.
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Step 4: Let LG(λ, k) = |Pε(G)|λ(λ− 1)(λ− 2) · · · (λ− k+ 1) and exit.

Claim 2.5. The heuristic method converges and yields a unique and correct
result.

Motivation. Since G is finite it implies that ε(G) is finite. Hence, the iter-
ative looping between Step 2 and Step 3 will reach go to Step 4 after ε(G)
iterations.
Furthermore, the lucky partitions of V(G) are finite and due to the combinato-
rial properties of the lucky partitions all vertex subsets which have endpoints
of an edge as elements are unique and finite in number. Therefore, the elim-
ination of the corresponding lucky partitions yields a unique result. Finally,
it is obvious that after exhaustive iterations, i = 1, 2, 3, . . . , ε(G), the unique
maximum number i.e. |Pε(G)|, of lucky partitions remain to ensure a proper
lucky k-colouring of G.

3 Conclusion

No step function or recurrence formula is known to determine LPn(λ, 3) and
LCn(λ, 3), n ≥ 9. Finding recurrence formula to determine lucky numbers
where-after, finding a combinatorial formula to determine the number of lucky
partitions which have vertex subsets without the endpoints of edges are needed
to resolve these open questions.

For perfect lucky 3-colorings of paths and cycles the lucky 3-polynomial’s
coefficient decreases by 1 when Pkt−1 (or Ckt−1), t ≥ 2 extends to Pkt (or to
Ckt). It is clear from Theorem 3 that for sufficiently large n and for k ≥ 4 the
decrease values will be greater than 1. Finding the decreases is considered a
worthy avenue for research.

It is deemed worthy to have an algorithm coded to obtain the Lucky par-
titions of V(Nn) in respect of a given lucky k-colouring. Such is needed to
advance research.
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