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Abstract. The existence of edges is a huge challenge with regards to
determining lucky k-polynomials of simple connected graphs in general.
In this paper the lucky 3-polynomials of path and cycle graphs of or-
der, 3 < n < 8 are presented as the basis for the heuristic method to
determine the lucky k-polynomials for k-colorable graphs. The difficulty
of adjacency with graphs is illustrated through these elementary graph
structures . The results are also illustratively compared with the results
for null graphs (edgeless graphs). The paper could serve as a basis for
finding recurrence results through innovative methodology.

1 Introduction

For general notation and concepts in graphs see, [1, 2, 6]. It is assumed that the
reader is familiar with the concept of graph coloring. Recall that in a proper
coloring of G all edges are good i.e. uv & c(u) # c¢(v). For any proper coloring
¢@(G) of a graph G the addition of all good edges, if any, is called the chromatic
completion of G in respect of @ (G). The additional edges are called chromatic
completion edges. The set of such chromatic completion edges is denoted by,
E,(G). The resultant graph G is called a chromatic completion graph of G.
See [3] for an introduction to chromatic completion of a graph.
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The chromatic completion number of a graph G denoted by, ((G) is the
maximum number of good edges that can be added to G over all chromatic
colorings (x-colorings). Hence, ((G) = max{|E,(G)|: over all ¢, (G)}.

A x-coloring which yields ¢(G) is called a lucky x-coloring or simply, a lucky
coloring! and is denoted by, @ £(G). The resultant graph G is called a minimal
chromatic completion graph of G. It is trivially true that G C G;. Furthermore,
the graph induced by the set of completion edges, (Ey) is a subgraph of the
complement graph, G. See [4] for the notion of stability in respect of chromatic
completion.

A k-coloring of a graph G which yields max{|E,(G)|: overall k-colorings} is
called a lucky k-coloring.?

In an improper coloring an edge uv for which, c(u) = c(v) is called a bad
edge. See [5] for an introduction to defect colorings of graphs. It is observed
that the number of edges of G which are omitted from Ey is the minimum
number of bad edges in a bad chromatic completion of a graph G.

2 Lucky 3-polynomials of paths

A path graph (or simply, a path) denoted by, Py, is a graph on n > 1 vertices
say, V(Pn) = {v1,v2,V3,...,vn} and n edges namely, E(P,) = {viviy1 : 1 =
1,2,3,...,n—1}

Recall that for A distinct colors, A > x(G), the number of ways a graph G
can be assigned a proper coloring is given by the chromatic polynomial of G
and is denoted by, Pg(A,n). For A distinct colors, A > 3, the path P3 can be
assigned a proper 3-coloring in Pp, (A, n) = A(A—1)(A—2) ways. The aforesaid
is equal to the number of ways a perfect lucky 3-coloring can be assigned to
the path Pz in accordance with lucky’s theorem [3]. Since [3] has not been
published as yet we recall lucky’s theorem for perfect lucky k-coloring to be:

Theorem 1 [3] For a positive integer n > 2 and 2 < p < n let integers,

p—r T
1<a,a0a3...,0p-1,01,03,03...,a; <n—1 be such thatn = 3} ai+} q
i i
p—r—1 p—r p—T T
. /
then, the L-completion sum-product £ = max{ Z H aiay + Z l_[ aiaj +
i=1 k=i+1 i=1j=1
-1 r p—T T
[1 ajay} over all possible, n =} ai+ 3 aj.
=1 k=j+1 i=1 =1

'Note that for many graphs a lucky coloring is equivalent an equitable x-coloring.
2Note that for many graphs a lucky k-coloring is equivalent an equitable k-coloring.
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Note that lucky’s theorem is reliant on the notion of the {-completion sum-
product [3]. We recall the definition to be:

Definition 2 Let, t; = [}],1=1,2,3,...,({—7) andtj’ =[7hi=123,...,1.

b—r—1 {—r —r r =1
Cal, L= % T titk+ X JItity + 3 [ tty, the C-completion sum-
=1 k=it i=1j=1 =1 k=j+1

product of n.

Also, because of the simplicity of the graph structure of paths no figure illustra-
tions are deemed necessary for clarity. It is assumed that the reader can easily
verify the vertex set partitions obtained. For path P3 the lucky 3-polynomial
is expressed as, Lp,(A,3) = A(A—1)(A —2). Note that the lucky 3-polynomial
corresponds to coloring the vertex set partition, {{vi},{v2}, {v3}}.

Consider the path P4. By the definition of a path a particular convention
is implicit i.e. to obtain P, from P,,_; we necessarily extend from v, to
vn with the edge v,_1vn. Hence, it is not permissible to insert the vertex
v4 into an existing edge of P3. The permissible lucky partitions for a lucky
3-coloring are, {{vi, va}h, {vah, {va}}, {vi},{v2, vah, {va}}, {{v1, 3}, {va}, {va}}. Hence,
Lp,(A,3) = 3MA — T1)(A — 2). Progressing to path Ps5 the permissible lucky
partitions for a lucky 3-coloring are found to be,

{{V1 ) V4}) {\)2) VS}) {\)3}}, {{\)1 ) V4}) {VZ}) {V3> VS}}7 {{V1 ) VS}) {VZ) V4}) {V3}}7

ik {vay vah {va, vsit, {viy vah {va, vsh {valh, {{vi, vzl {va, vat, {vs .
Hence, Lp, (A, 3) = 6A(A — 1)(A —2).

Progressing to path Pg the permissible lucky partitions for a lucky 3-coloring
are found to be,

{{vi, vahy {v2, vsh {v3, velt, {{vi, valy {va, vty {v3, st {{vi, vshy {v2, valy {v3, vel},
{{vi, Vel (v, valy {v3, Vst {{vi, vl {v2, Vs, {va, Vel

Therefore, Lp (A,3) = 5A(A —1)(A — 2). Note that Lp,(A,3) < Lp,(A,3).

Progressing to path P7 the permissible lucky partitions for a lucky 3-coloring
are found to be,

{tv1,va, 7} {v2, vs} {v3, Vet {{viy vaty {v2, vs, v7}, {v3, Vel
{{v1, va, vz 1 {v2, vehy {v3, Vs i}, {{vi, valy {v2, ve}, {v3, Vs, v71},
{{V1 y V5, V7}, {VZ) V4}) {V3) V6}}’ {{V1 ) VS}) {VZ) Vg, V7}) {VS) V6}}7
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{tvi, Vel {va, va, vzt {v3, vsih, {{v1, vely {va, valy {v3, vs, V71T,
{{\)] y V3, \)7}, {VZ) VS}) {V4) VG}}7 {{\)] ) VS}) {VZ) Vs, V7}, {V4) VG}}a
{{v1,va, v}y {v2, vsh {v3, v7 1}, {{v1, va, vel, {va, v7} {3, vsl},
{{V] ) VS}) {VZ) Vg, VG}) {Vg, V7}}7 {{V1 y V3, V6}) {VZ) V4}) {V5) V7}},
{{V] y V3, VS}) {VZ) v7}) {V4) V6}}’ {{V1 y V3, V6}> {VZ) VS}) {\)4, V7}}'

Therefore, Lp,(A,3) = 16A(A —1)(A —2).

For path Pg the permissible lucky partitions for a lucky 3-coloring are found
to be,

{v1,va,v7},{v2, v5, vs},{v3, ve}}, {{v1,va, v7},{v2, vs},{v3, Ve, vs}},
{{\)] y Vi VS}» {VZ) V5, \)7}, {V3) \)6}}7 {{V] )V4}) {Vz, V5, \)7}, {V?n V6, \)8}}7
{{v1,va, vl {v2,ve, vat {v3, vsi}, {{v1, vay v7h {v2, ve}, {vs, vs, vsl},
{{V] y Vi, V8}> {VZ» Vé}) {Vg, V5, \)7}}, {{V] )V4}) {VZ) V6, VS}» {V3> V5, V7}}7
{{v1,v5, vl {v2, va, vah {v3, velt, {{v1, vs, v7h {v2, va}, {vs, ve, vs}},
{{v1,vs, v8h,{v2, va, v7},{v3, ve}}, {{v1, vs},{v2, va, v7},{v3, Ve, vs}},
{{Vl y V6 VS}) {VZ) V4, V7}) {V3) \)5}}, {{V1 >V6}> {VZ) V4, \)7}, {V3) Vs, VS}}v
{{v1,ve, vahy {v2, va}y {vs, vs, vz}, {{v1, vely {v2, va, vs}, {vs, vs, v7 3},
{{V1 y V3 V7}, {VZ> V5, VS}) {V4) V6}}7 {{V1 y V3 \)7}, {VZ) VS}) {V4> V6, V8}}7
{v1,v3,v7h{v2, va, e}, {vs, vs}}, {{v1, V3, vs},{v2, V5, v7},{va, ve}},
{{\)] ) V3}) {VZ) V5, \)7}, {V4, V6, \)8}}7 {{\)] y Vi \)6}) {VZ) V5, Vg}, {V3) \)7}}7
{{v1,va,veh, {v2, v7},{v3, v5, vs}}, {{v1, V5, v8},{v2, V4, ve}, {v3, v7}},
{{\)] y Vi, V6}» {VZ) \)7}, {VS) V5, \)8}}7 {{V] y V3 v6}) {VZ» V4, VS}) {VS) \)7}},
{{V1 y V3, VS}) {VZ) V7}, {V4) V6, VS}}v {{V1 y V3, VG}) {VZ) V5, Vg}, {V4, V7}}7
{{v1,va,veh {v2, 5, v7},{v3, vs}}, {{v1, va, ve}, {v2, vs},{v3, V5, v7}},
{{V] y V5 \)7}, {VZ) V4, V6}) {V.’n \)g}}, {{V1 y V3, VS}) {V2> V4, V7}) {VG) Vg}},
{{v1,v3,v6h {v2,va, v7},{vs, vs}}, {{v1, va, ve}, {v2, v}, {v3, V5, v7}},
{{V1 y V3, vé}) {VZ) V5, V7}) {V4) Vg}}, {{V1 y Vi v6}) {VZ) Vs, V7}) {V3) VS}}v
{{V1 y V5, V7}) {VZ) V4, V6}, {V.’n VS}}a {{V1 y V5 V7}) {VZ) V4, V6}, {V.’n v8}}a
{{V1 y V3 vé}) {VZ> V4, V7}) {V5) VS}}v {{V1 y V3 VS}) {VZ) Va, V7}) {V6) V8}}7
{{V] y V3, V6}> {v2> V5, V7}) {V4) VS}}~

Therefore, Lp,(A,3) = 41AA —1)(A — 2).

A cycle graph (or simply, a cycle) denoted by, Cy, is a graph on n > 1
vertices say, V(Cn) = {v1,Vv2,V3,...,vn} and n edges namely, E(Cy,) = {vivii1 :
i=123,...,n—1}U{vyvi}. The graph structural difference between P,
and C, is the edge vnvi. It implies that to obtain the corresponding lucky
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3-polynomial, the permissible lucky partitions for V(C;,,) are those obtained
after eliminating those lucky partitions of V(P,) with vertex subsets which
have both vq, v, as elements. The next results follows easily without further
proof.

Corollary 3 (i) Lc,(A,3) =AA—=T)(A—2),
(ii) Le, (M 3) = A —1)(A —2),

fiii) £, (A, 3) = SAA— ) (A —2),

(iv) Lcg(A,3) =4AA—T)(A —2),

(v) L, (A,3) =13MA—=T)(A—2),

(vi) Lcg(A,3) =34NA—T)(A —2).

Recall that a null graph, 91, of order n is simply an edgeless graph with ver-
tex set, {vi : 1 <1 < n}. Constructing a path is considered to be the simplest
way to add edges to a null graph to obtain a connected simple graph with
minimum maximum degree, minimum number of edges and the property of
symmetry. However, to find either a closed or recurrence relation between the
lucky k-polynomials of null graphs and paths and cycles remains open. The
table below depicts the lucky 3-polynomials for the three families of graphs
for order 3 to 8.

n mna Pn Cn

3 AMA=T)(A=2) AA—=T)(A—=2) AA—=T)(A—2)
4| 6AA—1)(A—2) IAMA-—DA=2) | 2AA—=1)(A—=2)
5 ISAA—=T1)(A—=2) | 6AA—-T)(A—=2) | SAA—-T)(A—2)
6| ISAA—=T)(A—=2) | BAA—=1)(A=2) | 4aAA—=1)(A—=2)
71 5IAMA—=T)(A=2) | TGAA—=1)(A—=2) | 1IBAA—T1)(A —2)
8 | IOOAA—T(A—=2) | 4TAA=T1)(A=2) | 4AA—-T1)(A—2)

Table 1.

We recall from [3] that a graph G is perfect lucky k-colorable if and only if the
graph is k-colorable in accordance with lucky’s theorem hence, in accordance
with the lucky partition form,

{{[}]-element}, {|  ]-element}, ..., {| ¥ |-element},

(k—r)—subsets

{I% [-element},{[} |-element}, ..., {[ ¥ ]-element}}.

(r>0)—subsets

First we present a lemma.
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Lemma 4 If G of order n and A(G) #=n — 1 is perfect lucky k-colorable and
H is a graph obtained from, G with one pendant vertex vni1 added to any
vi € V(G), then H is perfect lucky k-colorable.

Proof. Consider any graph G of order n and A(G) # n — 1 which is perfect
lucky k-colorable. It implies that the G permits a proper k-coloring on the
vertex set partitions of the lucky partition form,

{{[}]-element}, {| # ]-element}, ..., {| ¥ |-element},

(k—r)—subsets
{[%]-element},{[ ¥ ]-element}, ..., {[{ [-element}}.

(r>0)—subsets

Let graph H be, graph G with one pendant vertex v, added to any v; € V(G).
Assume without loss of generality that in H the pendant vertex v,.1 is adja-
cent to vertex vj.

Case 1: Assume 1 > 0. Because A(G) # n — 1, there exists at least one vertex
partition which contains a vertex subset say, X such that, [X| = [{] such that
vj € X and there exists at least one vertex subset say, Y such that, [Y| = [¥].
Therefore, with regards to a lucky partition form for V(H), the vertex subset
Y U{vni1} is permissible. It means that, the lucky partition form,

{ L"—‘kHJ -element}, { LnTHJ -element}, . .., { LLI]J -element},
(k—r—T1)—subsets
{ [“zl |-element}, { [“—IW -element}, . .., { [“—IW -element}},

(r+1>0)—subsets

yielding a vertex partition having the vertex subset YU{v,,1} is a permissible
to assign a perfect lucky k-coloring to graph H.

Case 2: Assume v = 0. By similar reasoning to that, found in Case 1 the result
follows conclusively. O

Theorem 5 Let G of order n = k(t+1)—1,t > 1 with A(G) Zn—1 be
a stmple connected graph. Let G permit a perfect lucky k-coloring. Let H be

the graph, G with one pendant vertex viy1) added to any vi € V(G). Then,
LuA k) < Lo(A k).

Proof. Clearly the perfect lucky colorings are assigned to vertex partitions in
accordance to the lucky partition form,
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{{[]-element}, {|  |-element}, ..., {| ¥ |-element]},

{[%]-element}, { ] —(;l;%zs;;t:}, .oy {[ ¥ ]-element}}.

(k—T1)—subsets

Assume without loss of generality that in H the pendant vertex v, 11 is adjacent
to vertex vj. Since, A(G) # n — 1, there exist at least two permissible vertex
partitions. If we relax adjacency (allow a bad edge) then vertex v,i; can
only be added to all the {| { |-element}, {[ ¥ |-element}, ..., {| { |-element} vertex
subsets, over all permissible vertex partitions. For this relaxed case, L1 (A, k) =
L (A, k). Else, Lemma 2 above ensures a perfect lucky coloring and L (A, k) <
Lc(A k). O
Theorem 3 above explains the observation that, Lp,(A,3) < Lp (A, 3).

2.1 Heuristic method to determine lucky k-polynomials.

It is observed from Table 1 that Lc, (A,3) < Lp, (A, 3), 4 < n < 8. The next
theorem follows from this observation.

Theorem 6 Let graph G be k-colourable and let H=G —e, e € E(G). Then,
ﬁHO\, k) > Eg(7\, k).

Proof. Because G is k-colourable it follows trivially that H is k-colourable.
The lucky partitions of V(H) serves as a basis to determine the permissible
lucky partitions of V(G) because the only graph structural difference between
G and H is the edge e. Hence, with regards to G the lucky partitions of
V(H) which have vertex subsets which have the end-points of e as elements
must be eliminated. Since, at least one such lucky partition exists, the result
Lu(A k) > Lg(A, k) follows immediately. O

Let G be a graph of order n. Note that loops in G, if any, are irrelevant and
may be deleted. For application of the heuristic method G is considered to be
free of loops. Assume G is k-colourable.

Heuristic method:
Step 1: Since the null graph 91, is k-colourable, let the set Py = {lucky parti-
tions of V(M,)}. Let E(G) ={e;: 1 <1< ¢(G)}. Also let j =0.
Step 2: Let 1 = j + 1. Let B; = Pi_1\{lucky partitions of ;1 which have
vertex subsets which have the endpoints of e; as elements}.
Step 3: If i = ¢(G) then go to Step 4. Else, let j =1 and go to Step 2.
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Step 4: Let Lg(A, k) = [Beg)AA—=T)(A—=2) -+ (A—k+ 1) and exit.

Claim 2.5. The heuristic method converges and yields a unique and correct
result.

Motivation. Since G is finite it implies that ¢(G) is finite. Hence, the iter-

ative looping between Step 2 and Step 3 will reach go to Step 4 after £(G)
iterations.
Furthermore, the lucky partitions of V(G) are finite and due to the combinato-
rial properties of the lucky partitions all vertex subsets which have endpoints
of an edge as elements are unique and finite in number. Therefore, the elim-
ination of the corresponding lucky partitions yields a unique result. Finally,
it is obvious that after exhaustive iterations, i = 1,2,3,...,¢e(G), the unique
maximum number i.e. [P¢(g)l, of lucky partitions remain to ensure a proper
lucky k-colouring of G.

3 Conclusion

No step function or recurrence formula is known to determine Lp,  (A,3) and
Lc, (A 3), n > 9. Finding recurrence formula to determine lucky numbers
where-after, finding a combinatorial formula to determine the number of lucky
partitions which have vertex subsets without the endpoints of edges are needed
to resolve these open questions.

For perfect lucky 3-colorings of paths and cycles the lucky 3-polynomial’s
coefficient decreases by 1 when Pyi_1 (or Cyi_1), t > 2 extends to Py (or to
Cxt)- It is clear from Theorem 3 that for sufficiently large n and for k > 4 the
decrease values will be greater than 1. Finding the decreases is considered a
worthy avenue for research.

It is deemed worthy to have an algorithm coded to obtain the Lucky par-
titions of V(M) in respect of a given lucky k-colouring. Such is needed to
advance research.
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