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Abstract. In this paper by using hereditary classes [6], we define the
notion of y-Lindel6f modulo hereditary classes called yH-Lindel6f and
obtain several properties of yH-Lindelof spaces.

1 Introduction

Let (X, T) be a topological space and P(X) the power set of X. In 1991, Ogata
[13] introduced the notions of y-operations and y-open sets and investigated
the associated topology T, and weak separation axioms y-T; (i =0,1/2,1,2).
In 2011, Noiri [10] defined an operation on an m-structure with property
B (the generalized topology in the sense of Lugojan [8]). The operation is
defined as a function vy : m — P(X) such that U C y(U) for each U € m and
is called a y-operation on m. Then, it terns out that the operation is an unified
form of several operations (for example, semi-y-operation [7], pre-y-operation
[4]) defined on the family of generalized open sets. Moreover, he obtained
some characterizations of y-compactness and suggested some generalizations
of compact spaces by using recent modifications of open sets in a topological
space.
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In this paper by using hereditary classes [6], we define the notion of y-
Lindel6f modulo hereditary classes called yH-Lindel6f and obtain several prop-
erties of yH-Lindelof spaces. Recently papers [1, 2, 3] have introduced some
new classes of sets via hereditary classes.

2 Preliminaries

First we state the following: in [11], a minimal structure m is defined as follows:
m is called a minima structure if ), X € m. However, in this paper, we define
as follows:

Definition 1 Let X be a nonempty set and P(X) the power set of X. A sub-
family m of P(X) is called a minimal structure (briefly m-structure) on X if
m satisfies the following conditions:

1. ), X e m.

2. The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure is called an m-space and denoted by (X, m). Each
member of m is said to be m-open and the complement of an m-open set is
said to be m-closed.

Definition 2 [9] Let X be a nonempty set and m an m-structure on X. For
a subset A of X, the m-closure of A is defined as follows: mcl(A) =N{F: A C
FEX\Fem}.

Lemma 1 [9] Let X be a nonempty set and m an m-structure on X. For the
m-closure, the following properties hold, where A and B are subsets of X:

1. A C mcl(A),
mel(0) =0, mel(X) = X,
If A C B, then mcl(A) C mcl(B),

e e

mcl(mcl(A)) = mcl(A).

Lemma 2 [14] Let (X,m) be an m-space and A a subset of X. Then x €
mcl(A) if and only if UNA # () for every U € m containing x.
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Lemma 3 [15] Let (X,m) be an m-space and A a subset of X. Then, the
following properties hold:

1. A is m-closed if and only if mcl(A) = A,

2. mcl(A) is m-closed.

Definition 3 [10] Let (X, m) be an m-space and 'y an operation on m. A
subset A of X is said to be y-open if for each x € A there exists U € m such
thatx € U C y(U) C A. The complement of ay-open set is said to be y-closed.
The family of all y-open sets of (X, m) is denoted by y(X).

3 vyH-Lindelof spaces

First, we recall the definition of a hereditary class used in the sequel. A sub-
family H of the power set P(X) is called a hereditary class on X [6] if it
satisfies the following property: A € ‘H and B C A implies B € H.

Definition 4 Let (X, m,H) be a hereditary m-space and y an operation on
m, where H is a hereditary class on X. Then m-space (X, m) is said to be yH-
Lindeldf (resp. H-Lindeldf) if every cover {Uy : o« € A} of X by m-open sets,
there exists a countable subset Ag of A such that X\ U{y(Uy) : @ € Ao} € H
(resp. X\ U{Uy: & € Ag} € H ).

Theorem 1 Let (X, m,H) be a hereditary m-space andy an operation on m,
where H is a hereditary class. Then the following properties are equivalent:

1. (X,v(X)) is H-Lindelof;

2. For every family {Fy : o« € A} of y-closed sets such that {Fy : & € Ao} ¢
H for every countable subfamily Ay of A, Fy : @ € A} # (.

Proof. (1) = (2): Let (X,y(X)) be H-Lindelof. Suppose that N{Fy : « €
A} = (), where Fy is y-closed set. Then X \ Fy is y-open for each « € A and
Uaea(X\ Fo) = X\ Nxea(Fx) = X. By (1), there exists a countable subfamily
Ao of A such that X\ Ugea, (X \ Fo) = N{Fo : ot € Ag} € H. This is a contra-
diction.

(2) = (1): Suppose that (X,y(X)) is not H-Lindelof. There exists a cover
{Uy : @ € A} of X by y-open sets such that X\ W{Uy : & € Ao} ¢ H for
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every countable subset Ay of A. Since X \ Uy is y-closed for each o« € A and
N{(X\ Ugy) : &« € Ag} ¢ H for every countable subset Ay of A. By (2), we have
N{(X\ Uy) : @ € A} # (. Therefore, X \ U{Uq : & € A} # (). This is contrary
that {Uy : « € A} is a y-open cover of X.

]

Lemma 4 [10] Let (X, m) be an m-space. For y(X), the following properties
hold:

1. 0, X e y(X),
2. If Ay € Y(X) for each o € A, then UgepAq € Y(X),
3. v(X) Cm.

Definition 5 [10] An m-space (X, m) is said to be y-regular if for each x € X
and each U € m containing x, there exists V € m such thatx € V C y(V) C U.

Lemma 5 [10] For an m-space (X, m), the following properties are equiva-
lent:

1. m =vy(X);
2. (X,m) is y-regular;

3. For each x € X and each U € m containing x, there exists W € y(X)
such that x € W C y(W) C U.

Theorem 2 Let (X, m,H) be a hereditary m-space andy an operation on m,
where H is a hereditary class. The implications (1) = (2) = (3) = (4) hold.
If (X, m) is y-regular, then the following properties are equivalent:

1. (X, m) is H-Lindeldf;

2. (X,m) is YH-Lindeldf;
3. (X,v(X)) is H-Lindelof;
4. (X,v(X)) is YH-Lindeldf.

Proof. (1) = (2): Let (X, m) be H-Lindel6f. For any cover {Uy : @ € A} of X
by m-open sets, there exists a countable subset Ay of A such that X\ U{y(U«x) :
o€ Ag} € X\ WU : & € Ap} € H. Therefore, (X, m) is yH-Lindelof.
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(2) = (3): Let (X,m) be yH-Lindelof and {Uy : o« € A} a cover of X by
v-open sets. For each x € X there exists a(x) € A such that x € Ug(y). Since
Uy (x) is y-open, there exists V() € m such that x € V) € v(Vyx)) € Uy
Since the family {Vyy) : x € X} is a cover of X by m-open sets and (X, m) is
YH-Lindel6f, there exists a countable number of points, say, x1,Xx2,X3,--- € X
such that X\ U2,y (Vy(x)) € H and hence X \ U2y Uy (y,) € H. This shows that
(X,v(X)) is H-Lindeldf.

(3) = (4): By Lemma 4, y(X) is an m-structure and it follows that the
same argument as (1) = (2) that (X,y(X)) is yH-Lindelof.

(4) = (1): Suppose that (X, m) is y-regular. Let (X,y(X)) be yH-Lindelof.
Let {Uy : o € A} be any cover of X by m-open sets. For each x € X, there
exists o(x) € A such that x € Ugy(y). Since (X,m) is y-regular, by Lemma
5 there exists Vy(x) € Y(X) such that x € V) € v(Vgr) € Uyx)- Since
{Va) : x € X} is a cover of X by y-open sets and (X,y(X)) is yH-Lindelof,

there exist a countable number of points, say, Xxj,X2,%3,--- € X such that
XA\ UZ1Y(Vixy)) € H; and hence X\ U2 Uy(y,) € H. This shows that (X, m)
is ‘H-Lindelof. O

Definition 6 Let (X, m,H) be a hereditary m-space. A subset A of X is said
to be YH-Lindelof relative to X if for every cover {Uy : & € A} of A by m-open
sets of X, there exists a countable subset Ay of A such that A\ U{y(Uy) : & €
Ao} eH.

Theorem 3 Let (X,m,H) be a hereditary m-space. If A is y-closed and B
18 YH-Lindeldf relative to X, then A N B is yH-Lindeldf relative to X.

Proof. Let {Vy : @ € A} be a cover of A N B by m-open subsets of X. Then
{Vqo : ¢ € AJU{X\ A} is a cover of B by m-open sets. Since X \ A is -
open, for each x € X'\ A, there exists an m-open set V, such that x € V, C
Y(Vi) € X\ A. Thus {Vi : «x € AJU{Vy : x € X\ A} is a cover of B by m-
open sets of X. Since B is yH-Lindelof relative to X, there exist a countable
subset Ag of A and a countable points, says x1,x2,--- € X\ A such that
B C [(Uxea,Y(Va)) U (U2 v(Vi )] U Hy € H, where Hy € H. Hence A N
B C [(Uxea Y(Va) NA) U (U2 y(Vx,) NA)JU (AN Hp) € Ugea,Y (V) U Ho.
Therefore, A N B \ (Uxea,Y(Va)) € Ho € H. Hence A N B is yH-Lindelof
relative to X. 0

Corollary 1 If a hereditary m-space (X,m,H) is YH-Lindeldf space, then
every y-closed subset of X is YH-Lindeldf relative to X.
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Proof. The proof is obvious by Theorem 3. O

Lemma 6 [12] For a hereditary m-space (X, m,H), the following properties
hold:

1. my, is an m-structure on X such that my, has property B and m C my,.

2. B(m,H) ={U\H:U e mH € H} is a basis for mj,. such that m C
B(m, H).

Theorem 4 Let (X, m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X,mf, H) is H-Lindeldf, then (X, m,H) is H-Lindeldf.

2. If (X,m,H) is H-Lindelof and H is closed under countable union, then
(X, mj, H) is H-Lindeldf.

Proof. (1): The proof follows directly from the fact that every m-closed set
is my;-closed.

(2): Suppose that H is closed under countable union and X is H-Lindel6f.
Let {Uy : @ € A} be an mjj-open cover of X, then for each x € X, x € Uy for
some «(x) € A. By Lemma 6 there exist V() € m and Hy(y) € H such that
X € Vix) \Hux) € Ug(y)- Since {Vy(x) @ @(x) € A}is an m-open cover of X, there
exists a countable subset Ag of A such that X\ U{Vyy) : (x) € Ao} = H € H.
Since H is closed under countable union, then U{Hyx) : a(x) € A} € H.
Hence, HU [U{H(X(X) ta(x) € AO}} € H. Observe that X\ U{Uy : & € Ag} C HU
[U{H(X(X) tax) € Ao}] € H. By the heredity property of H we have X\ U{U :
o € Ao} € H and therefore, (X, my;, H) is H-Lindelof. O

4 Strongly H-Lindelof spaces
Definition 7 A subset A of a hereditary m-space (X, m,H) is said to be:

1. Strongly H-Lindeldf relative to X if for every family {Vo : « € A} of
me-open sets such that A\ UgeaVs € H, there exists a countable subset
Ao of A such that A\ Ugep,Va € H. If A =X, then (X, m,H) is said to
be Strongly H-Lindelof.
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2. Strongly YH-Lindelof relative to X if for every family {Vy : o« € A} of
m-open sets such that A\ UxeaVa € H, there exists a countable subset
Ao of A such that A\ Ugen,Y(Va) € H. If A =X, then (X, m,H) is said
to be Strongly yH-Lindeldf.

Theorem 5 Let (X, m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X, my,, H) is Strongly H-Lindeldf, then (X, m,H) is Strongly H-Lindeldf.

2. If (X,m,H) is Strongly H-Lindeldf and H is closed under countable
union, then (X, my, H) is Strongly H-Lindeldf.

Theorem 6 Let (X, m,H) be a hereditary m-space. Then the following prop-
erties are equivalent:

1. (X,m,H) is Strongly H-Lindeldf;

2. If {Fo: ¢ € A} is a family of m-closed sets such that "{Fy : 0 € A} € H,
then there exists a countable subfamily Ay of A such that {Fy : & €
Ao} e H.

Proof. Suppose that (X, m,#H) is Strongly H-Lindeldf. Let {Fy : « € A} be a
family of m-closed sets such that N{Fy : « € A} € H. Then {X\ Fy : x € A}
is a family of m-open sets of X. Let H = N{Fy : @« € A} € H. Let X\ H =
X\ N{Fy:ax e A} =U{X\ Fy: a € A}. Since (X, m,H) is Strongly H-Lindelof,
there exists a countable Ay of A such that X \ U{X \ Fy : & € Ag} € H. This
implies that N{Fy: x € A} € H.

Conversely, let {Vy : o« € A} be any family of m-open sets of X such that
X\ UgeaVy € H. Then {X\ V4 : & € A} is a family of m-closed sets of X. By
assumption we have N{X\ V4 : @« € A} € H and there exists a countable subset
Ao of A such that N{X\ Vy : & € Ao} € H. This implies that X \ U{V, : & €
Ao} € H. This shows that (X, m,H) is Strongly H-Lindelof.

O

Definition 8 A subset A of a hereditary m-space (X, m,H) is said to be mH4-
closed if for every U € m with A\ U € H, mcl(A) C U.

Proposition 1 Let (X, m,H) be a hereditary m-space. If (X, m,H) is Strongly
H-Lindelof and A C X is mHg-closed, then A is Strongly H-Lindelof relative
to X.
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Proof. Let {V, : & € A} be a family of m-open subsets of X such that A \
UxeaVa € H. Since A is mH4-closed, mcl(A) C UgeaVa. Then (X\mcl(A))U
[Uxea Vol is an m-open cover of X and so X\ [(X\ mcl(A)) U [UgeaVall € H.
Since X is Strongly H-Lindeldf, there exists a countable subset Ay of A such
that X \ [(X\ mcl(A)) U [UeagVell € H. X\ [(X\ mCL(A)) U [Unea Vel =
mcl(A) N (X\ Uxea, Vo) 2 A\ Uxea, V. Therefore, A\ Uxeca, Vo € H. Thus,
A is Strongly H-Lindelof relative to X. O

Theorem 7 Let (X, m,H) be a hereditary m-space. Let A be an mHy-closed
set such that A C B C mcl(A). Then A is Strongly H-Lindeldf elative to X if
and only if B is Strongly H-Lindeldf relative to X.

Proof.

Suppose that A is Strongly H-Lindelof elative to X and {Vy : & € A} is a
family of m-open sets of X such that B\UyecaVy € H. By the heredity property,
A\ UgeaVa € H and A is Strongly H-Lindel6f elative to X and hence there
exists a countable subset Ay of A such that A \ Uyea,Va € H. Since A is
mHg-closed, mcl(A) € Uxea, Vo and so mel(A) \ Uxea, Vo € H. This implies
that B \ Uxea, Va € H.

Conversely, suppose that B is Strongly H-Lindeldf elative to X and {Vy : & €
A} is a family of m-open subsets of X such that A\ UgcaVy € H. Given that A
is mHg-closed, mcl(A) \ UyeaVa =0 € H and this implies B C UyeaVx € H.
Since B is Strongly H-Lindeldf elative to X, there exists a countable subset Ay
of A such that B \ Uyea,Va € H. Hence A \ Ugep, Vo € H. O

5 (v,d)-continuous functions

Definition 9 Let (X, m) and (Y,n) be minimal spaces and y (resp. 8) be an
operation on m (resp. n). Then a function f: (X;m) — (Y,n) is said to be
(v, 8)-continuous if for each x € X and each V € n containing f(x), there
ezists U € m containing x such that f(y(U)) C §(V).

Lemma 7 Let f: X =Y be a function.
1. If H is a hereditary class on X, then f(H) is a hereditary class on'Y.
2. If H is a hereditary class on Y, then £~V (H) is a hereditary class on X.

Proof. (1): This is due to Lemma 3.8 of [5].
(2): Let A C f7'(H), where H € H. Then f(A) C f(f"'(H)) C H. Hence
f(A) € H and A C f1(f(A)) € f1(H) and hence A € 1 (H). O
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Theorem 8 Let (X,m) and (Y,n) be minimal spaces and y (resp. §) be an
operation on m (resp. 1) and H be a hereditary class on X. If (X, m,H) is
YH-Lindeldf and f: (X, m,H) — (Y,n) is a (y,d)-continuous surjection, then
(Y,n,f(H)) is 6f(H)-Lindelof.

Proof. Let {Vy : « € A} be any cover of Y by n-open sets. For each x € X, there
exists a(x) € A such that f(x) € V(). Since f is (v, 6)-continuous, there exists
U, (x) € m containing x such that f(y(Uy(x))) € 8(Vy(x)). Since {Uy(y 1 x € X}
is a cover of X by m-open sets and (X, m,#) is yH-Lindeldf, there exist a
countable points x7,%2,%3,--- € X such that X\ UZ2;y(Uy(x,)) = Ho , where
Ho € H. Therefore, we have Y C (U y(Ug,))) U f(Ho) € UZ6(Vy(x,)) U

f(Ho). Hence (Y,n,f(#)) is 6f(H)-Lindelof. O

Definition 10 [11] A function f: (X,m) — (Y,n) is said to be M-closed if
for each m-closed set F of X, f(F) is n-closed in Y.

Theorem 9 Let f: (X,m) — (Y,n,H) be an M-closed surjective function.
If for every y € Y, £ (y) is Strongly £~ (H)-Lindelof in X, then f~1(A) is
Strongly 1 (H)-Lindeldf relative to X whenever A is Strongly H-Lindeldf rel-
ative to Y and A\ U € H for every U € n.

Proof. Let {V, : @ € A} be a family of m-open subsets of X such that f~1(A)\
WVy: ot € A} € f71(H). For each y € A there exists a countable subset Ag(y)
of A such that f1(y) \ U{Vx : & € Ag(y)} € f1(H). Let Vy = U{Vy: x €
Ao(y)}. Each Vy is an m-open set in (X, m) and f1(y) \Vy € 1 (H).

Now each set f(X —Vy) is n-closed in Y and hence, U(y) =Y — f(X = Vy)
is n-open in Y. Note that f~'(U(y)) C Vy. Thus, {U(y) : y € A} is a family of
n-open subsets of Y such that A\ U{U(y) : y € A} € H. Since A is Strongly
H-Lindelof relative to Y, there exists a countable subset {U(y;) : i € N} such
that A\ U{U(y;) : i € N} € H and hence f71[A\ U{U(y;) : 1 € N}J] = f1(A)\
Uf T (U(yy)) : i € N} € £1(H). Since f1(A)\ UV, : 1 € N} C f1(A)\
UF T (UW(yi)) 1 1 € N}, then FHA)\U{Vy, 1€ N} = fFHA)\UVy: a €
Ao(yi),1i € N} € f71(H). Hence, f~'(A) is Strongly f~' (#)-Lindelsf relative to
X. O

A subset K of an m-space is said to be m-compact [14] if every cover of K
by m-open sets of X has a finite subcover.

Theorem 10 Let f: (X,m) — (Y,n,H) be an M-closed surjective function.
If for every y €Y, £7(y) is m-compact in X, then f71(A) is £~ (H)-Lindeldf
relative to X whenever A is H-Lindeldf relative to Y.
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Proof. Let {Vy : & € A} be a cover of f'(A) by m-open sets of X. For
each y € A there exists a finite subset Ag(y) of A such that f~'(y) C U{V, :
o € Ao(y)). Let Vy = U{Vy 1 a € Ag(y)}. Each Vy is an m-open set in
(X,m) and f'(y) C Vy. Since f is M-closed, by Theorem 3.1 of [11] there
exists an n-open set Uy containing y such that 1 (Uy) € V4. The collection
{Uy : y € A} is a cover of A by n-open sets of Y. Hence, there exists a
countable subcollection {Uy) : 1 € N} such that A\ U{Uy;) @1 € N} € H.
Then 71 (A\ U{Uyq) 11 € N} = 1 A)\UF ! (Uy) 1€ N} € £71(H). Since
fHANUVy ) 1€ NFC FHAN\UF (Uyg) 11 € N}, then £ (A)\ UV
ieN}e f1(H). Thus, £ '(A) is fT(H)-Lindelof relative to X. O
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