

DOI: 10.2478/ausm-2021-0017

Generalizations of Lindelöf spaces via hereditary classes

Ahmad Al-omari

Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan email: omarimutah1@vahoo.com

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 Japan

Kumamoto-ken 869-5142 Japar email: t.noiri@nifty.com

Abstract. In this paper by using hereditary classes [6], we define the notion of γ -Lindelöf modulo hereditary classes called $\gamma \mathcal{H}$ -Lindelöf and obtain several properties of $\gamma \mathcal{H}$ -Lindelöf spaces.

1 Introduction

Let (X,τ) be a topological space and $\mathcal{P}(X)$ the power set of X. In 1991, Ogata [13] introduced the notions of γ -operations and γ -open sets and investigated the associated topology τ_{γ} and weak separation axioms γ -T_i (i=0,1/2,1,2). In 2011, Noiri [10] defined an operation on an m-structure with property \mathcal{B} (the generalized topology in the sense of Lugojan [8]). The operation is defined as a function $\gamma: \mathfrak{m} \to \mathcal{P}(X)$ such that $U \subseteq \gamma(U)$ for each $U \in \mathfrak{m}$ and is called a γ -operation on \mathfrak{m} . Then, it terms out that the operation is an unified form of several operations (for example, semi- γ -operation [7], pre- γ -operation [4]) defined on the family of generalized open sets. Moreover, he obtained some characterizations of γ -compactness and suggested some generalizations of compact spaces by using recent modifications of open sets in a topological space.

2010 Mathematics Subject Classification: 4A05, 54A10

Key words and phrases: γ -operation, m-structure, m-open, γ -open, hereditary class, \mathcal{H} -Lindelöf, $\gamma \mathcal{H}$ -Lindelöf

In this paper by using hereditary classes [6], we define the notion of γ -Lindelöf modulo hereditary classes called $\gamma\mathcal{H}$ -Lindelöf and obtain several properties of $\gamma\mathcal{H}$ -Lindelöf spaces. Recently papers [1, 2, 3] have introduced some new classes of sets via hereditary classes.

2 Preliminaries

First we state the following: in [11], a minimal structure \mathfrak{m} is defined as follows: \mathfrak{m} is called a minima structure if $\emptyset, X \in \mathfrak{m}$. However, in this paper, we define as follows:

Definition 1 Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily \mathfrak{m} of $\mathcal{P}(X)$ is called a minimal structure (briefly \mathfrak{m} -structure) on X if \mathfrak{m} satisfies the following conditions:

- 1. \emptyset , $X \in \mathfrak{m}$.
- 2. The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure is called an m-space and denoted by (X, m). Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.

Definition 2 [9] Let X be a nonempty set and m an m-structure on X. For a subset A of X, the m-closure of A is defined as follows: $mcl(A) = \cap \{F : A \subseteq F, X \setminus F \in m\}$.

Lemma 1 [9] Let X be a nonempty set and m an m-structure on X. For the m-closure, the following properties hold, where A and B are subsets of X:

- 1. $A \subseteq mcl(A)$,
- 2. $mcl(\emptyset) = \emptyset$, mcl(X) = X,
- 3. If $A \subseteq B$, then $mcl(A) \subseteq mcl(B)$,
- $4. \operatorname{mcl}(\operatorname{mcl}(A)) = \operatorname{mcl}(A).$

Lemma 2 [14] Let (X, m) be an m-space and A a subset of X. Then $x \in mcl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Lemma 3 [15] Let (X, m) be an m-space and A a subset of X. Then, the following properties hold:

- 1. A is m-closed if and only if mcl(A) = A,
- 2. mcl(A) is m-closed.

Definition 3 [10] Let (X, m) be an m-space and γ an operation on m. A subset A of X is said to be γ -open if for each $x \in A$ there exists $U \in m$ such that $x \in U \subseteq \gamma(U) \subseteq A$. The complement of a γ -open set is said to be γ -closed. The family of all γ -open sets of (X, m) is denoted by $\gamma(X)$.

3 $\gamma \mathcal{H}$ -Lindelöf spaces

First, we recall the definition of a hereditary class used in the sequel. A subfamily \mathcal{H} of the power set $\mathcal{P}(X)$ is called a hereditary class on X [6] if it satisfies the following property: $A \in \mathcal{H}$ and $B \subseteq A$ implies $B \in \mathcal{H}$.

Definition 4 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space and γ an operation on \mathfrak{m} , where \mathcal{H} is a hereditary class on X. Then \mathfrak{m} -space (X, \mathfrak{m}) is said to be $\gamma \mathcal{H}$ -Lindelöf (resp. \mathcal{H} -Lindelöf) if every cover $\{U_\alpha : \alpha \in \Delta\}$ of X by \mathfrak{m} -open sets, there exists a countable subset Δ_0 of Δ such that $X \setminus \bigcup \{\gamma(U_\alpha) : \alpha \in \Delta_0\} \in \mathcal{H}$ (resp. $X \setminus \bigcup \{U_\alpha : \alpha \in \Delta_0\} \in \mathcal{H}$).

Theorem 1 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space and γ an operation on \mathfrak{m} , where \mathcal{H} is a hereditary class. Then the following properties are equivalent:

- 1. $(X, \gamma(X))$ is \mathcal{H} -Lindelöf;
- 2. For every family $\{F_{\alpha} : \alpha \in \Delta\}$ of γ -closed sets such that $\cap \{F_{\alpha} : \alpha \in \Delta_0\} \notin \mathcal{H}$ for every countable subfamily Δ_0 of Δ , $\cap \{F_{\alpha} : \alpha \in \Delta\} \neq \emptyset$.
- **Proof.** (1) \Rightarrow (2): Let $(X, \gamma(X))$ be \mathcal{H} -Lindelöf. Suppose that $\cap \{F_{\alpha} : \alpha \in \Delta\} = \emptyset$, where F_{α} is γ -closed set. Then $X \setminus F_{\alpha}$ is γ -open for each $\alpha \in \Delta$ and $\bigcup_{\alpha \in \Delta} (X \setminus F_{\alpha}) = X \setminus \bigcap_{\alpha \in \Delta} (F_{\alpha}) = X$. By (1), there exists a countable subfamily Δ_0 of Δ such that $X \setminus \bigcup_{\alpha \in \Delta_0} (X \setminus F_{\alpha}) = \cap \{F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$. This is a contradiction.
- (2) \Rightarrow (1): Suppose that $(X, \gamma(X))$ is not \mathcal{H} -Lindelöf. There exists a cover $\{U_{\alpha}: \alpha \in \Delta\}$ of X by γ -open sets such that $X \setminus \cup \{U_{\alpha}: \alpha \in \Delta_0\} \notin \mathcal{H}$ for

every countable subset Δ_0 of Δ . Since $X \setminus U_{\alpha}$ is γ -closed for each $\alpha \in \Delta$ and $\cap \{(X \setminus U_{\alpha}) : \alpha \in \Delta_0\} \notin \mathcal{H}$ for every countable subset Δ_0 of Δ . By (2), we have $\cap \{(X \setminus U_{\alpha}) : \alpha \in \Delta\} \neq \emptyset$. Therefore, $X \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \neq \emptyset$. This is contrary that $\{U_{\alpha} : \alpha \in \Delta\}$ is a γ -open cover of X.

Lemma 4 [10] Let (X, m) be an m-space. For $\gamma(X)$, the following properties hold:

- 1. \emptyset , $X \in \gamma(X)$,
- 2. If $A_{\alpha} \in \gamma(X)$ for each $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} A_{\alpha} \in \gamma(X)$,
- $3. \gamma(X) \subseteq \mathfrak{m}.$

Definition 5 [10] An m-space (X, m) is said to be γ -regular if for each $x \in X$ and each $U \in m$ containing x, there exists $V \in m$ such that $x \in V \subseteq \gamma(V) \subseteq U$.

Lemma 5 [10] For an m-space (X, m), the following properties are equivalent:

- 1. $m = \gamma(X)$;
- 2. (X, m) is γ -regular;
- 3. For each $x \in X$ and each $U \in \mathfrak{m}$ containing x, there exists $W \in \gamma(X)$ such that $x \in W \subseteq \gamma(W) \subseteq U$.

Theorem 2 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space and γ an operation on \mathfrak{m} , where \mathcal{H} is a hereditary class. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold. If (X, \mathfrak{m}) is γ -regular, then the following properties are equivalent:

- 1. (X, m) is \mathcal{H} -Lindelöf;
- 2. (X, m) is $\gamma \mathcal{H}$ -Lindelöf;
- 3. $(X, \gamma(X))$ is \mathcal{H} -Lindelöf;
- 4. $(X, \gamma(X))$ is $\gamma \mathcal{H}$ -Lindelöf.

Proof. (1) \Rightarrow (2): Let (X, \mathfrak{m}) be \mathcal{H} -Lindelöf. For any cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X by \mathfrak{m} -open sets, there exists a countable subset Δ_0 of Δ such that $X \setminus \bigcup \{\gamma(U\alpha) : \alpha \in \Delta_0\} \subseteq X \setminus \bigcup \{U\alpha : \alpha \in \Delta_0\} \in \mathcal{H}$. Therefore, (X, \mathfrak{m}) is $\gamma \mathcal{H}$ -Lindelöf.

- (2) \Rightarrow (3): Let (X, m) be $\gamma \mathcal{H}$ -Lindelöf and $\{U_{\alpha} : \alpha \in \Delta\}$ a cover of X by γ -open sets. For each $x \in X$ there exists $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Since $U_{\alpha(x)}$ is γ -open, there exists $V_{\alpha(x)} \in m$ such that $x \in V_{\alpha(x)} \subseteq \gamma(V_{\alpha(x)}) \subseteq U_{\alpha(x)}$. Since the family $\{V_{\alpha(x)} : x \in X\}$ is a cover of X by m-open sets and (X, m) is $\gamma \mathcal{H}$ -Lindelöf, there exists a countable number of points, say, $x_1, x_2, x_3, \dots \in X$ such that $X \setminus \bigcup_{i=1}^{\infty} \gamma(V_{\alpha(x_i)}) \in \mathcal{H}$ and hence $X \setminus \bigcup_{i=1}^{\infty} U_{\alpha(x_i)} \in \mathcal{H}$. This shows that $(X, \gamma(X))$ is \mathcal{H} -Lindelöf.
- (3) \Rightarrow (4): By Lemma 4, $\gamma(X)$ is an m-structure and it follows that the same argument as (1) \Rightarrow (2) that $(X, \gamma(X))$ is $\gamma \mathcal{H}$ -Lindelöf.
- $(4)\Rightarrow (1)$: Suppose that (X,m) is γ -regular. Let $(X,\gamma(X))$ be $\gamma\mathcal{H}$ -Lindelöf. Let $\{U_{\alpha}:\alpha\in\Delta\}$ be any cover of X by m-open sets. For each $x\in X$, there exists $\alpha(x)\in\Delta$ such that $x\in U_{\alpha(x)}$. Since (X,m) is γ -regular, by Lemma 5 there exists $V_{\alpha(x)}\in\gamma(X)$ such that $x\in V_{\alpha(x)}\subseteq\gamma(V_{\alpha(x)})\subseteq U_{\alpha(x)}$. Since $\{V_{\alpha(x)}:x\in X\}$ is a cover of X by γ -open sets and $(X,\gamma(X))$ is $\gamma\mathcal{H}$ -Lindelöf, there exist a countable number of points, say, $x_1,x_2,x_3,\dots\in X$ such that $X\setminus \bigcup_{i=1}^{\infty}\gamma(V_{\alpha(x_i)})\in\mathcal{H}$; and hence $X\setminus \bigcup_{i=1}^{\infty}U_{\alpha(x_i)}\in\mathcal{H}$. This shows that (X,m) is \mathcal{H} -Lindelöf.

Definition 6 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. A subset A of X is said to be $\gamma \mathcal{H}$ -Lindelöf relative to X if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A by \mathfrak{m} -open sets of X, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup \{\gamma(U_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$.

Theorem 3 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. If A is γ -closed and B is $\gamma \mathcal{H}$ -Lindelöf relative to X, then $A \cap B$ is $\gamma \mathcal{H}$ -Lindelöf relative to X.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a cover of $A \cap B$ by m-open subsets of X. Then $\{V_{\alpha}: \alpha \in \Delta\} \cup \{X \setminus A\}$ is a cover of B by m-open sets. Since $X \setminus A$ is γ -open, for each $x \in X \setminus A$, there exists an m-open set V_x such that $x \in V_x \subseteq \gamma(V_x) \subseteq X \setminus A$. Thus $\{V_{\alpha}: \alpha \in \Delta\} \cup \{V_x: x \in X \setminus A\}$ is a cover of B by m-open sets of X. Since B is $\gamma \mathcal{H}$ -Lindelöf relative to X, there exist a countable subset Δ_0 of Δ and a countable points, says $x_1, x_2, \dots \in X \setminus A$ such that $B \subseteq [(\cup_{\alpha \in \Delta_0} \gamma(V_{\alpha})) \cup (\cup_{i=1}^{\infty} \gamma(V_{x_i}))] \cup H_0 \in \mathcal{H}$, where $H_0 \in \mathcal{H}$. Hence $A \cap B \subseteq [(\cup_{\alpha \in \Delta_0} \gamma(V_{\alpha}) \cap A) \cup (\cup_{i=1}^{\infty} \gamma(V_{x_i}) \cap A)] \cup (A \cap H_0) \subseteq \cup_{\alpha \in \Delta_0} \gamma(V_{\alpha}) \cup H_0$. Therefore, $A \cap B \setminus (\cup_{\alpha \in \Delta_0} \gamma(V_{\alpha})) \subseteq H_0 \in \mathcal{H}$. Hence $A \cap B$ is $\gamma \mathcal{H}$ -Lindelöf relative to X.

Corollary 1 If a hereditary \mathfrak{m} -space $(X, \mathfrak{m}, \mathcal{H})$ is $\gamma \mathcal{H}$ -Lindelöf space, then every γ -closed subset of X is $\gamma \mathcal{H}$ -Lindelöf relative to X.

Proof. The proof is obvious by Theorem 3.

Lemma 6 [12] For a hereditary \mathfrak{m} -space $(X, \mathfrak{m}, \mathcal{H})$, the following properties hold:

- 1. \mathfrak{m}_H^* is an \mathfrak{m} -structure on X such that \mathfrak{m}_H^* has property \mathcal{B} and $\mathfrak{m} \subseteq \mathfrak{m}_H^*$.
- 2. $\beta(\mathfrak{m},\mathcal{H}) = \{U \setminus H : U \in \mathfrak{m}, H \in \mathcal{H}\}$ is a basis for \mathfrak{m}_H^* . such that $\mathfrak{m} \subseteq \beta(\mathfrak{m},\mathcal{H})$.

Theorem 4 Let (X, m, \mathcal{H}) be a hereditary m-space. Then the following properties hold:

- 1. If $(X, \mathfrak{m}_H^*, \mathcal{H})$ is \mathcal{H} -Lindelöf, then $(X, \mathfrak{m}, \mathcal{H})$ is \mathcal{H} -Lindelöf.
- 2. If $(X, \mathfrak{m}, \mathcal{H})$ is \mathcal{H} -Lindelöf and \mathcal{H} is closed under countable union, then $(X, \mathfrak{m}_H^*, \mathcal{H})$ is \mathcal{H} -Lindelöf.

Proof. (1): The proof follows directly from the fact that every \mathfrak{m} -closed set is \mathfrak{m}_H^* -closed.

(2): Suppose that \mathcal{H} is closed under countable union and X is \mathcal{H} -Lindelöf. Let $\{U_{\alpha}: \alpha \in \Delta\}$ be an m_{H}^{*} -open cover of X, then for each $x \in X$, $x \in U_{\alpha(x)}$ for some $\alpha(x) \in \Delta$. By Lemma 6 there exist $V_{\alpha(x)} \in \mathfrak{m}$ and $H_{\alpha(x)} \in \mathcal{H}$ such that $x \in V_{\alpha(x)} \setminus H_{\alpha(x)} \subseteq U_{\alpha(x)}$. Since $\{V_{\alpha(x)}: \alpha(x) \in \Delta\}$ is an \mathfrak{m} -open cover of X, there exists a countable subset Δ_0 of Δ such that $X \setminus \cup \{V_{\alpha(x)}: \alpha(x) \in \Delta_0\} = H \in \mathcal{H}$. Since \mathcal{H} is closed under countable union, then $\cup \{H_{\alpha(x)}: \alpha(x) \in \Delta_0\} \in \mathcal{H}$. Hence, $H \cup \left[\cup \{H_{\alpha(x)}: \alpha(x) \in \Delta_0\}\right] \in \mathcal{H}$. Observe that $X \setminus \cup \{U_{\alpha}: \alpha \in \Delta_0\} \subseteq H \cup \left[\cup \{H_{\alpha(x)}: \alpha(x) \in \Delta_0\}\right] \in \mathcal{H}$. By the heredity property of \mathcal{H} we have $X \setminus \cup \{U_{\alpha}: \alpha \in \Delta_0\} \in \mathcal{H}$ and therefore, $(X, \mathfrak{m}_H^*, \mathcal{H})$ is \mathcal{H} -Lindelöf. \square

4 Strongly \mathcal{H} -Lindelöf spaces

Definition 7 A subset A of a hereditary \mathfrak{m} -space $(X, \mathfrak{m}, \mathcal{H})$ is said to be:

1. Strongly \mathcal{H} -Lindelöf relative to X if for every family $\{V_{\alpha}: \alpha \in \Delta\}$ of \mathfrak{m} -open sets such that $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha} \in \mathcal{H}$. If A = X, then $(X, \mathfrak{m}, \mathcal{H})$ is said to be Strongly \mathcal{H} -Lindelöf.

2. Strongly $\gamma \mathcal{H}$ -Lindelöf relative to X if for every family $\{V_{\alpha}: \alpha \in \Delta\}$ of \mathfrak{m} -open sets such that $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$, there exists a countable subset Δ_0 of Δ such that $A \setminus \bigcup_{\alpha \in \Delta_0} \gamma(V_{\alpha}) \in \mathcal{H}$. If A = X, then $(X, \mathfrak{m}, \mathcal{H})$ is said to be Strongly $\gamma \mathcal{H}$ -Lindelöf.

Theorem 5 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. Then the following properties hold:

- 1. If $(X, \mathfrak{m}_H^*, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf, then $(X, \mathfrak{m}, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf.
- 2. If $(X, \mathfrak{m}, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf and \mathcal{H} is closed under countable union, then $(X, \mathfrak{m}_H^*, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf.

Theorem 6 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. Then the following properties are equivalent:

- 1. (X, m, \mathcal{H}) is Strongly \mathcal{H} -Lindelöf;
- 2. If $\{F_{\alpha} : \alpha \in \Delta\}$ is a family of m-closed sets such that $\cap \{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$, then there exists a countable subfamily Δ_0 of Δ such that $\cap \{F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$.

Proof. Suppose that $(X, \mathfrak{m}, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf. Let $\{F_{\alpha} : \alpha \in \Delta\}$ be a family of \mathfrak{m} -closed sets such that $\cap \{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Then $\{X \setminus F_{\alpha} : \alpha \in \Delta\}$ is a family of \mathfrak{m} -open sets of X. Let $H = \cap \{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$. Let $X \setminus H = X \setminus \cap \{F_{\alpha} : \alpha \in \Delta\} = \cup \{X \setminus F_{\alpha} : \alpha \in \Delta\}$. Since $(X, \mathfrak{m}, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf, there exists a countable Δ_0 of Δ such that $X \setminus \cup \{X \setminus F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$. This implies that $\cap \{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$.

Conversely, let $\{V_{\alpha}: \alpha \in \Delta\}$ be any family of m-open sets of X such that $X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Then $\{X \setminus V_{\alpha}: \alpha \in \Delta\}$ is a family of m-closed sets of X. By assumption we have $\cap \{X \setminus V_{\alpha}: \alpha \in \Delta\} \in \mathcal{H}$ and there exists a countable subset Δ_0 of Δ such that $\cap \{X \setminus V_{\alpha}: \alpha \in \Delta_0\} \in \mathcal{H}$. This implies that $X \setminus \bigcup \{V_{\alpha}: \alpha \in \Delta_0\} \in \mathcal{H}$. This shows that (X, m, \mathcal{H}) is Strongly \mathcal{H} -Lindelöf.

Definition 8 A subset A of a hereditary m-space (X, m, \mathcal{H}) is said to be $m\mathcal{H}_g$ -closed if for every $U \in m$ with $A \setminus U \in \mathcal{H}$, $mcl(A) \subseteq U$.

Proposition 1 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. If $(X, \mathfrak{m}, \mathcal{H})$ is Strongly \mathcal{H} -Lindelöf and $A \subseteq X$ is $\mathfrak{m}\mathcal{H}_g$ -closed, then A is Strongly \mathcal{H} -Lindelöf relative to X.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a family of m-open subsets of X such that $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Since A is $\mathfrak{m}\mathcal{H}_g$ -closed, $\mathfrak{mcl}(A) \subseteq \bigcup_{\alpha \in \Delta} V_{\alpha}$. Then $(X \setminus \mathfrak{mcl}(A)) \cup [\bigcup_{\alpha \in \Delta} V_{\alpha}]$ is an m-open cover of X and so $X \setminus [(X \setminus \mathfrak{mcl}(A)) \cup [\bigcup_{\alpha \in \Delta} V_{\alpha}]] \in \mathcal{H}$. Since X is Strongly \mathcal{H} -Lindelöf, there exists a countable subset Δ_0 of Δ such that $X \setminus [(X \setminus \mathfrak{mcl}(A)) \cup [\bigcup_{\alpha \in \Delta_0} V_{\alpha}]] \in \mathcal{H}$. $X \setminus [(X \setminus \mathfrak{mcl}(A)) \cup [\bigcup_{\alpha \in \Delta_0} V_{\alpha}]] = \mathfrak{mcl}(A) \cap (X \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha}) \supseteq A \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha}$. Therefore, $A \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha} \in \mathcal{H}$. Thus, A is Strongly \mathcal{H} -Lindelöf relative to X.

Theorem 7 Let $(X, \mathfrak{m}, \mathcal{H})$ be a hereditary \mathfrak{m} -space. Let A be an $\mathfrak{m}\mathcal{H}_g$ -closed set such that $A \subseteq B \subseteq \mathfrak{mcl}(A)$. Then A is Strongly \mathcal{H} -Lindelöf elative to X if and only if B is Strongly \mathcal{H} -Lindelöf relative to X.

Proof.

Suppose that A is Strongly \mathcal{H} -Lindelöf elative to X and $\{V_\alpha:\alpha\in\Delta\}$ is a family of m-open sets of X such that $B\setminus \cup_{\alpha\in\Delta}V_\alpha\in\mathcal{H}$. By the heredity property, $A\setminus \cup_{\alpha\in\Delta}V_\alpha\in\mathcal{H}$ and A is Strongly \mathcal{H} -Lindelöf elative to X and hence there exists a countable subset Δ_0 of Δ such that $A\setminus \cup_{\alpha\in\Delta_0}V_\alpha\in\mathcal{H}$. Since A is $\mathfrak{m}\mathcal{H}_g$ -closed, $\mathfrak{mcl}(A)\subseteq \cup_{\alpha\in\Delta_0}V_\alpha$ and so $\mathfrak{mcl}(A)\setminus \cup_{\alpha\in\Delta_0}V_\alpha\in\mathcal{H}$. This implies that $B\setminus \cup_{\alpha\in\Delta_0}V_\alpha\in\mathcal{H}$.

Conversely, suppose that B is Strongly \mathcal{H} -Lindelöf elative to X and $\{V_{\alpha}: \alpha \in \Delta\}$ is a family of m-open subsets of X such that $A \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Given that A is $\mathfrak{m}\mathcal{H}_g$ -closed, $\mathfrak{mcl}(A) \setminus \bigcup_{\alpha \in \Delta} V_{\alpha} = \emptyset \in \mathcal{H}$ and this implies $B \subseteq \bigcup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{H}$. Since B is Strongly \mathcal{H} -Lindelöf elative to X, there exists a countable subset Δ_0 of Δ such that $B \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha} \in \mathcal{H}$. Hence $A \setminus \bigcup_{\alpha \in \Delta_0} V_{\alpha} \in \mathcal{H}$.

5 (γ, δ) -continuous functions

Definition 9 Let (X, m) and (Y, n) be minimal spaces and γ (resp. δ) be an operation on m (resp. n). Then a function $f: (X, m) \to (Y, n)$ is said to be (γ, δ) -continuous if for each $x \in X$ and each $V \in n$ containing f(x), there exists $U \in m$ containing x such that $f(\gamma(U)) \subseteq \delta(V)$.

Lemma 7 Let $f: X \to Y$ be a function.

- 1. If $\mathcal H$ is a hereditary class on X, then $f(\mathcal H)$ is a hereditary class on Y.
- 2. If \mathcal{H} is a hereditary class on Y, then $f^{-1}(\mathcal{H})$ is a hereditary class on X.

Proof. (1): This is due to Lemma 3.8 of [5].

(2): Let $A \subseteq f^{-1}(H)$, where $H \in \mathcal{H}$. Then $f(A) \subseteq f(f^{-1}(H)) \subseteq H$. Hence $f(A) \in \mathcal{H}$ and $A \subseteq f^{-1}(f(A)) \in f^{-1}(\mathcal{H})$ and hence $A \in f^{-1}(\mathcal{H})$.

Theorem 8 Let (X, \mathfrak{m}) and (Y, \mathfrak{n}) be minimal spaces and γ (resp. δ) be an operation on \mathfrak{m} (resp. \mathfrak{n}) and \mathcal{H} be a hereditary class on X. If $(X, \mathfrak{m}, \mathcal{H})$ is $\gamma \mathcal{H}$ -Lindelöf and $f: (X, \mathfrak{m}, \mathcal{H}) \to (Y, \mathfrak{n})$ is a (γ, δ) -continuous surjection, then $(Y, \mathfrak{n}, f(\mathcal{H}))$ is $\delta f(\mathcal{H})$ -Lindelöf.

Proof. Let $\{V_\alpha:\alpha\in\Delta\}$ be any cover of Y by n-open sets. For each $x\in X$, there exists $\alpha(x)\in\Delta$ such that $f(x)\in V_{\alpha(x)}$. Since f is (γ,δ) -continuous, there exists $U_{\alpha(x)}\in m$ containing x such that $f(\gamma(U_{\alpha(x)}))\subseteq\delta(V_{\alpha(x)})$. Since $\{U_{\alpha(x)}:x\in X\}$ is a cover of X by m-open sets and (X,m,\mathcal{H}) is $\gamma\mathcal{H}$ -Lindelöf, there exist a countable points $x_1,x_2,x_3,\dots\in X$ such that $X\setminus\bigcup_{i=1}^\infty\gamma(U_{\alpha(x_i)})=H_0$, where $H_0\in\mathcal{H}$. Therefore, we have $Y\subseteq f(\bigcup_{i=1}^\infty\gamma(U_{\alpha(x_i)}))\cup f(H_0)\subseteq\bigcup_{i=1}^\infty\delta(V_{\alpha(x_i)})\cup f(H_0)$. Hence $(Y,n,f(\mathcal{H}))$ is $\delta f(\mathcal{H})$ -Lindelöf.

Definition 10 [11] A function $f:(X,m) \to (Y,n)$ is said to be M-closed if for each m-closed set F of X, f(F) is n-closed in Y.

Theorem 9 Let $f:(X,m) \to (Y,n,\mathcal{H})$ be an M-closed surjective function. If for every $y \in Y$, $f^{-1}(y)$ is Strongly $f^{-1}(\mathcal{H})$ -Lindelöf in X, then $f^{-1}(A)$ is Strongly $f^{-1}(\mathcal{H})$ -Lindelöf relative to X whenever A is Strongly \mathcal{H} -Lindelöf relative to Y and $A \setminus U \in \mathcal{H}$ for every $U \in n$.

Proof. Let $\{V_\alpha:\alpha\in\Delta\}$ be a family of m-open subsets of X such that $f^{-1}(A)\setminus\cup\{V_\alpha:\alpha\in\Delta\}$ $\in f^{-1}(\mathcal{H})$. For each $y\in A$ there exists a countable subset $\Delta_0(y)$ of Δ such that $f^{-1}(y)\setminus\cup\{V_\alpha:\alpha\in\Delta_0(y)\}\in f^{-1}(\mathcal{H})$. Let $V_y=\cup\{V_\alpha:\alpha\in\Delta_0(y)\}$. Each V_y is an m-open set in (X,m) and $f^{-1}(y)\setminus V_y\in f^{-1}(\mathcal{H})$.

Now each set $f(X-V_y)$ is n-closed in Y and hence, $U(y)=Y-f(X-V_y)$ is n-open in Y. Note that $f^{-1}(U(y))\subseteq V_y$. Thus, $\{U(y):y\in A\}$ is a family of n-open subsets of Y such that $A\setminus \cup \{U(y):y\in A\}\in \mathcal{H}$. Since A is Strongly \mathcal{H} -Lindelöf relative to Y, there exists a countable subset $\{U(y_i):i\in \mathbb{N}\}$ such that $A\setminus \cup \{U(y_i):i\in \mathbb{N}\}\in \mathcal{H}$ and hence $f^{-1}[A\setminus \cup \{U(y_i):i\in \mathbb{N}\}]=f^{-1}(A)\setminus \cup \{f^{-1}(U(y_i)):i\in \mathbb{N}\}\in f^{-1}(\mathcal{H})$. Since $f^{-1}(A)\setminus \cup \{V_{y_i}:i\in \mathbb{N}\}\subseteq f^{-1}(A)\setminus \cup \{f^{-1}(U(y_i)):i\in \mathbb{N}\}$, then $f^{-1}(A)\setminus \cup \{V_{y_i}:i\in \mathbb{N}\}=f^{-1}(A)\setminus \cup \{V_{\alpha}:\alpha\in \Delta_0(y_i),i\in \mathbb{N}\}\in f^{-1}(\mathcal{H})$. Hence, $f^{-1}(A)$ is Strongly $f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

A subset K of an m-space is said to be m-compact [14] if every cover of K by m-open sets of X has a finite subcover.

Theorem 10 Let $f: (X, m) \to (Y, n, \mathcal{H})$ be an M-closed surjective function. If for every $y \in Y$, $f^{-1}(y)$ is m-compact in X, then $f^{-1}(A)$ is $f^{-1}(\mathcal{H})$ -Lindelöf relative to X whenever A is \mathcal{H} -Lindelöf relative to Y.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be a cover of $f^{-1}(A)$ by m-open sets of X. For each $y \in A$ there exists a finite subset $\Delta_0(y)$ of Δ such that $f^{-1}(y) \subseteq \cup \{V_{\alpha}: \alpha \in \Delta_0(y)\}$. Let $V_y = \cup \{V_{\alpha}: \alpha \in \Delta_0(y)\}$. Each V_y is an m-open set in (X, m) and $f^{-1}(y) \subseteq V_y$. Since f is M-closed, by Theorem 3.1 of [11] there exists an n-open set U_y containing y such that $f^{-1}(U_y) \subseteq V_y$. The collection $\{U_y: y \in A\}$ is a cover of A by n-open sets of Y. Hence, there exists a countable subcollection $\{U_{y(i)}: i \in \mathbb{N}\}$ such that $A \setminus \cup \{U_{y(i)}: i \in \mathbb{N}\} \in \mathcal{H}$. Then $f^{-1}(A \setminus \cup \{U_{y(i)}: i \in \mathbb{N}\}) = f^{-1}(A) \setminus \cup \{f^{-1}(U_{y(i)}): i \in \mathbb{N}\} \in f^{-1}(\mathcal{H})$. Since $f^{-1}(A) \setminus \cup \{V_{y(i)}: i \in \mathbb{N}\} \subseteq f^{-1}(A) \setminus \cup \{f^{-1}(U_{y(i)}): i \in \mathbb{N}\}$, then $f^{-1}(A) \setminus \cup \{V_{y(i)}: i \in \mathbb{N}\} \subseteq f^{-1}(A)$. Thus, $f^{-1}(A)$ is $f^{-1}(\mathcal{H})$ -Lindelöf relative to X.

References

- [1] A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, *Mathematica*, **58** (81), No 1-2, (2016), 3–13.
- [2] A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, *Mathematica*, **61** (84), No 2, (2019), 101–110.
- [3] A. Al-Omari and T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali, 98 No. 2 (2020), A4 [11 pages].
- [4] T. V. An, D. X. Cuong and H. Maki, On operation-preopen sets in topological spaces, *Sci. Math. Japon.*, **68** (2008), 11–30.
- [5] C. Carpintero, E. Rosas, M. Salas-Brown and J. Sanabria, μ-Compactness with respect to a hereditary class, *Bol. Soc. Paran. Mat.* (3s), 34(2) (2016), 231–236.
- [6] Á. Császár, Modification of generalized topologies via hereditary classes, *Acta Math. Hungar.*, 115 (1-2) (2007), 29–35.
- [7] G. Sai Sundara Krishnan, M. Ganster and K. Balachandran, Operation approaches on semi-open sets and applications, *Kochi J. Math.*, 2 (2007), 21–33.
- [8] S. Lugojan, Generalized topology, Stud. Cerc. Mat., 34 (1982), 348–360.
- [9] H. Maki, K. C. Rao and A. Nagoor Gani, On generalization semi-open and preopen sets, *Pure Appl. Math.*, **49** (2011), 17–29.

- [10] T. Noiri, A unified theory for generalizations of compact spaces, Ann. Univ. Sci. Budapest., **54** (2011), 79–96.
- [11] T. Noiri and V. Popa, A unified theory of closed functions, Bull. Math. Soc. Sci. Math. Roumanie, 49(97)(4) (2006), 371–382.
- [12] T. Noiri and V. Popa, Generalizations of closed sets in minimal spaces with hereditary classes, Ann. Univ. Sci. Budapest., 61 (2018), 69-83.
- [13] H. Ogata, Operations on topological spaces and associated topology, Math. Japan., 36 (1991), 175–184.
- [14] V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 18(23) (2000), 31–41.
- [15] V. Popa and T. Noiri, On weakly (τ, m)-continuous functions, Rend. Circ. Mat. Palermo (2), 51 (2002), 295–316.