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Abstract. In this paper by using hereditary classes [6], we define the
notion of γ-Lindelöf modulo hereditary classes called γH-Lindelöf and
obtain several properties of γH-Lindelöf spaces.

1 Introduction

Let (X, τ) be a topological space and P(X) the power set of X. In 1991, Ogata
[13] introduced the notions of γ-operations and γ-open sets and investigated
the associated topology τγ and weak separation axioms γ-Ti (i = 0, 1/2, 1, 2).
In 2011, Noiri [10] defined an operation on an m-structure with property
B (the generalized topology in the sense of Lugojan [8]). The operation is
defined as a function γ : m→ P(X) such that U ⊆ γ(U) for each U ∈ m and
is called a γ-operation on m. Then, it terns out that the operation is an unified
form of several operations (for example, semi-γ-operation [7], pre-γ-operation
[4]) defined on the family of generalized open sets. Moreover, he obtained
some characterizations of γ-compactness and suggested some generalizations
of compact spaces by using recent modifications of open sets in a topological
space.
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In this paper by using hereditary classes [6], we define the notion of γ-
Lindelöf modulo hereditary classes called γH-Lindelöf and obtain several prop-
erties of γH-Lindelöf spaces. Recently papers [1, 2, 3] have introduced some
new classes of sets via hereditary classes.

2 Preliminaries

First we state the following: in [11], a minimal structurem is defined as follows:
m is called a minima structure if ∅, X ∈ m. However, in this paper, we define
as follows:

Definition 1 Let X be a nonempty set and P(X) the power set of X. A sub-
family m of P(X) is called a minimal structure (briefly m-structure) on X if
m satisfies the following conditions:

1. ∅, X ∈ m.

2. The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure is called an m-space and denoted by (X,m). Each
member of m is said to be m-open and the complement of an m-open set is
said to be m-closed.

Definition 2 [9] Let X be a nonempty set and m an m-structure on X. For
a subset A of X, the m-closure of A is defined as follows: mcl(A) = ∩{F : A ⊆
F, X \ F ∈ m}.

Lemma 1 [9] Let X be a nonempty set and m an m-structure on X. For the
m-closure, the following properties hold, where A and B are subsets of X:

1. A ⊆ mcl(A),

2. mcl(∅) = ∅, mcl(X) = X,

3. If A ⊆ B, then mcl(A) ⊆ mcl(B),

4. mcl(mcl(A)) = mcl(A).

Lemma 2 [14] Let (X,m) be an m-space and A a subset of X. Then x ∈
mcl(A) if and only if U ∩A 6= ∅ for every U ∈ m containing x.
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Lemma 3 [15] Let (X,m) be an m-space and A a subset of X. Then, the
following properties hold:

1. A is m-closed if and only if mcl(A) = A,

2. mcl(A) is m-closed.

Definition 3 [10] Let (X,m) be an m-space and γ an operation on m. A
subset A of X is said to be γ-open if for each x ∈ A there exists U ∈ m such
that x ∈ U ⊆ γ(U) ⊆ A. The complement of a γ-open set is said to be γ-closed.
The family of all γ-open sets of (X,m) is denoted by γ(X).

3 γH-Lindelöf spaces
First, we recall the definition of a hereditary class used in the sequel. A sub-
family H of the power set P(X) is called a hereditary class on X [6] if it
satisfies the following property: A ∈ H and B ⊆ A implies B ∈ H.

Definition 4 Let (X,m,H) be a hereditary m-space and γ an operation on
m, where H is a hereditary class on X. Then m-space (X,m) is said to be γH-
Lindelöf (resp. H-Lindelöf) if every cover {Uα : α ∈ ∆} of X by m-open sets,
there exists a countable subset ∆0 of ∆ such that X \ ∪{γ(Uα) : α ∈ ∆0} ∈ H
(resp. X \ ∪{Uα : α ∈ ∆0} ∈ H).

Theorem 1 Let (X,m,H) be a hereditary m-space and γ an operation on m,
where H is a hereditary class. Then the following properties are equivalent:

1. (X, γ(X)) is H-Lindelöf;

2. For every family {Fα : α ∈ ∆} of γ-closed sets such that ∩{Fα : α ∈ ∆0} /∈
H for every countable subfamily ∆0 of ∆, ∩{Fα : α ∈ ∆} 6= ∅.

Proof. (1) ⇒ (2): Let (X, γ(X)) be H-Lindelöf. Suppose that ∩{Fα : α ∈
∆} = ∅, where Fα is γ-closed set. Then X \ Fα is γ-open for each α ∈ ∆ and
∪α∈∆(X \ Fα) = X \ ∩α∈∆(Fα) = X. By (1), there exists a countable subfamily
∆0 of ∆ such that X \ ∪α∈∆0

(X \ Fα) = ∩{Fα : α ∈ ∆0} ∈ H. This is a contra-
diction.
(2) ⇒ (1): Suppose that (X, γ(X)) is not H-Lindelöf. There exists a cover
{Uα : α ∈ ∆} of X by γ-open sets such that X \ ∪{Uα : α ∈ ∆0} /∈ H for
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every countable subset ∆0 of ∆. Since X \ Uα is γ-closed for each α ∈ ∆ and
∩{(X \Uα) : α ∈ ∆0} /∈ H for every countable subset ∆0 of ∆. By (2), we have
∩{(X \ Uα) : α ∈ ∆} 6= ∅. Therefore, X \ ∪{Uα : α ∈ ∆} 6= ∅. This is contrary
that {Uα : α ∈ ∆} is a γ-open cover of X.

�

Lemma 4 [10] Let (X,m) be an m-space. For γ(X), the following properties
hold:

1. ∅, X ∈ γ(X),

2. If Aα ∈ γ(X) for each α ∈ Λ, then ∪α∈ΛAα ∈ γ(X),

3. γ(X) ⊆ m.

Definition 5 [10] An m-space (X,m) is said to be γ-regular if for each x ∈ X
and each U ∈ m containing x, there exists V ∈ m such that x ∈ V ⊆ γ(V) ⊆ U.

Lemma 5 [10] For an m-space (X,m), the following properties are equiva-
lent:

1. m = γ(X);

2. (X,m) is γ-regular;

3. For each x ∈ X and each U ∈ m containing x, there exists W ∈ γ(X)
such that x ∈W ⊆ γ(W) ⊆ U.

Theorem 2 Let (X,m,H) be a hereditary m-space and γ an operation on m,
where H is a hereditary class. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold.
If (X,m) is γ-regular, then the following properties are equivalent:

1. (X,m) is H-Lindelöf;

2. (X,m) is γH-Lindelöf;

3. (X, γ(X)) is H-Lindelöf;

4. (X, γ(X)) is γH-Lindelöf.

Proof. (1) ⇒ (2): Let (X,m) be H-Lindelöf. For any cover {Uα : α ∈ ∆} of X
by m-open sets, there exists a countable subset ∆0 of ∆ such that X\∪{γ(Uα) :
α ∈ ∆0} ⊆ X \ ∪{Uα : α ∈ ∆0} ∈ H. Therefore, (X,m) is γH-Lindelöf.
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(2) ⇒ (3): Let (X,m) be γH-Lindelöf and {Uα : α ∈ ∆} a cover of X by
γ-open sets. For each x ∈ X there exists α(x) ∈ ∆ such that x ∈ Uα(x). Since
Uα(x) is γ-open, there exists Vα(x) ∈ m such that x ∈ Vα(x) ⊆ γ(Vα(x)) ⊆ Uα(x).
Since the family {Vα(x) : x ∈ X} is a cover of X by m-open sets and (X,m) is
γH-Lindelöf, there exists a countable number of points, say, x1, x2, x3, · · · ∈ X
such that X \ ∪∞i=1γ(Vα(xi)) ∈ H and hence X \ ∪∞i=1Uα(xi) ∈ H. This shows that
(X, γ(X)) is H-Lindelöf.

(3) ⇒ (4): By Lemma 4, γ(X) is an m-structure and it follows that the
same argument as (1) ⇒ (2) that (X, γ(X)) is γH-Lindelöf.

(4) ⇒ (1): Suppose that (X,m) is γ-regular. Let (X, γ(X)) be γH-Lindelöf.
Let {Uα : α ∈ ∆} be any cover of X by m-open sets. For each x ∈ X, there
exists α(x) ∈ ∆ such that x ∈ Uα(x). Since (X,m) is γ-regular, by Lemma
5 there exists Vα(x) ∈ γ(X) such that x ∈ Vα(x) ⊆ γ(Vα(x)) ⊆ Uα(x). Since
{Vα(x) : x ∈ X} is a cover of X by γ-open sets and (X, γ(X)) is γH-Lindelöf,
there exist a countable number of points, say, x1, x2, x3, · · · ∈ X such that
X \ ∪∞i=1γ(Vα(xi)) ∈ H; and hence X \ ∪∞i=1Uα(xi) ∈ H. This shows that (X,m)
is H-Lindelöf. �

Definition 6 Let (X,m,H) be a hereditary m-space. A subset A of X is said
to be γH-Lindelöf relative to X if for every cover {Uα : α ∈ ∆} of A by m-open
sets of X, there exists a countable subset ∆0 of ∆ such that A \ ∪{γ(Uα) : α ∈
∆0} ∈ H.

Theorem 3 Let (X,m,H) be a hereditary m-space. If A is γ-closed and B
is γH-Lindelöf relative to X, then A ∩ B is γH-Lindelöf relative to X.

Proof. Let {Vα : α ∈ ∆} be a cover of A ∩ B by m-open subsets of X. Then
{Vα : α ∈ ∆} ∪ {X \ A} is a cover of B by m-open sets. Since X \ A is γ-
open, for each x ∈ X \ A, there exists an m-open set Vx such that x ∈ Vx ⊆
γ(Vx) ⊆ X \ A. Thus {Vα : α ∈ ∆} ∪ {Vx : x ∈ X \ A} is a cover of B by m-
open sets of X. Since B is γH-Lindelöf relative to X, there exist a countable
subset ∆0 of ∆ and a countable points, says x1, x2, · · · ∈ X \ A such that
B ⊆ [(∪α∈∆0

γ(Vα)) ∪ (∪∞i=1γ(Vxi))] ∪ H0 ∈ H, where H0 ∈ H. Hence A ∩
B ⊆ [(∪α∈∆0

γ(Vα) ∩A) ∪ (∪∞i=1γ(Vxi) ∩A)] ∪ (A ∩ H0) ⊆ ∪α∈∆0
γ(Vα) ∪ H0.

Therefore, A ∩ B \ (∪α∈∆0
γ(Vα)) ⊆ H0 ∈ H. Hence A ∩ B is γH-Lindelöf

relative to X. �

Corollary 1 If a hereditary m-space (X,m,H) is γH-Lindelöf space, then
every γ-closed subset of X is γH-Lindelöf relative to X.
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Proof. The proof is obvious by Theorem 3. �

Lemma 6 [12] For a hereditary m-space (X,m,H), the following properties
hold:

1. m∗H is an m-structure on X such that m∗H has property B and m ⊆ m∗H.

2. β(m,H) = {U \ H : U ∈ m,H ∈ H} is a basis for m∗H. such that m ⊆
β(m,H).

Theorem 4 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X,m∗H,H) is H-Lindelöf, then (X,m,H) is H-Lindelöf.

2. If (X,m,H) is H-Lindelöf and H is closed under countable union, then
(X,m∗H,H) is H-Lindelöf.

Proof. (1): The proof follows directly from the fact that every m-closed set
is m∗H-closed.

(2): Suppose that H is closed under countable union and X is H-Lindelöf.
Let {Uα : α ∈ ∆} be an m∗H-open cover of X, then for each x ∈ X, x ∈ Uα(x) for
some α(x) ∈ ∆. By Lemma 6 there exist Vα(x) ∈ m and Hα(x) ∈ H such that
x ∈ Vα(x)\Hα(x) ⊆ Uα(x). Since {Vα(x) : α(x) ∈ ∆} is anm-open cover of X, there
exists a countable subset ∆0 of ∆ such that X \ ∪{Vα(x) : α(x) ∈ ∆0} = H ∈ H.
Since H is closed under countable union, then ∪{Hα(x) : α(x) ∈ ∆0} ∈ H.
Hence, H∪

[
∪{Hα(x) : α(x) ∈ ∆0}

]
∈ H. Observe that X\∪{Uα : α ∈ ∆0} ⊆ H∪[

∪{Hα(x) : α(x) ∈ ∆0}
]
∈ H. By the heredity property of H we have X \∪{Uα :

α ∈ ∆0} ∈ H and therefore, (X,m∗H,H) is H-Lindelöf. �

4 Strongly H-Lindelöf spaces

Definition 7 A subset A of a hereditary m-space (X,m,H) is said to be:

1. Strongly H-Lindelöf relative to X if for every family {Vα : α ∈ ∆} of
m-open sets such that A \ ∪α∈∆Vα ∈ H, there exists a countable subset
∆0 of ∆ such that A \∪α∈∆0

Vα ∈ H. If A = X, then (X,m,H) is said to
be Strongly H-Lindelöf.
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2. Strongly γH-Lindelöf relative to X if for every family {Vα : α ∈ ∆} of
m-open sets such that A \ ∪α∈∆Vα ∈ H, there exists a countable subset
∆0 of ∆ such that A \∪α∈∆0

γ(Vα) ∈ H. If A = X, then (X,m,H) is said
to be Strongly γH-Lindelöf.

Theorem 5 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties hold:

1. If (X,m∗H,H) is Strongly H-Lindelöf, then (X,m,H) is Strongly H-Lindelöf.

2. If (X,m,H) is Strongly H-Lindelöf and H is closed under countable
union, then (X,m∗H,H) is Strongly H-Lindelöf.

Theorem 6 Let (X,m,H) be a hereditary m-space. Then the following prop-
erties are equivalent:

1. (X,m,H) is Strongly H-Lindelöf;

2. If {Fα : α ∈ ∆} is a family of m-closed sets such that ∩{Fα : α ∈ ∆} ∈ H,
then there exists a countable subfamily ∆0 of ∆ such that ∩{Fα : α ∈
∆0} ∈ H.

Proof. Suppose that (X,m,H) is Strongly H-Lindelöf. Let {Fα : α ∈ ∆} be a
family of m-closed sets such that ∩{Fα : α ∈ ∆} ∈ H. Then {X \ Fα : α ∈ ∆}
is a family of m-open sets of X. Let H = ∩{Fα : α ∈ ∆} ∈ H. Let X \ H =
X \ ∩{Fα : α ∈ ∆} = ∪{X \ Fα : α ∈ ∆}. Since (X,m,H) is Strongly H-Lindelöf,
there exists a countable ∆0 of ∆ such that X \ ∪{X \ Fα : α ∈ ∆0} ∈ H. This
implies that ∩{Fα : α ∈ ∆} ∈ H.

Conversely, let {Vα : α ∈ ∆} be any family of m-open sets of X such that
X \ ∪α∈∆Vα ∈ H. Then {X \ Vα : α ∈ ∆} is a family of m-closed sets of X. By
assumption we have ∩{X\Vα : α ∈ ∆} ∈ H and there exists a countable subset
∆0 of ∆ such that ∩{X \ Vα : α ∈ ∆0} ∈ H. This implies that X \ ∪{Vα : α ∈
∆0} ∈ H. This shows that (X,m,H) is Strongly H-Lindelöf.

�

Definition 8 A subset A of a hereditary m-space (X,m,H) is said to be mHg-
closed if for every U ∈ m with A \U ∈ H, mcl(A) ⊆ U.

Proposition 1 Let (X,m,H) be a hereditary m-space. If (X,m,H) is Strongly
H-Lindelöf and A ⊆ X is mHg-closed, then A is Strongly H-Lindelöf relative
to X.



288 A. Al-omari, T. Noiri

Proof. Let {Vα : α ∈ ∆} be a family of m-open subsets of X such that A \

∪α∈∆Vα ∈ H. Since A is mHg-closed, mcl(A) ⊆ ∪α∈∆Vα. Then (X\mcl(A))∪
[∪α∈∆Vα] is an m-open cover of X and so X \ [(X \mcl(A)) ∪ [∪α∈∆Vα]] ∈ H.
Since X is Strongly H-Lindelöf, there exists a countable subset ∆0 of ∆ such
that X \ [(X \mcl(A)) ∪ [∪α∈∆0

Vα]] ∈ H. X \ [(X \mcl(A)) ∪ [∪α∈∆0
Vα]] =

mcl(A) ∩ (X \ ∪α∈∆0
Vα) ⊇ A \ ∪α∈∆0

Vα. Therefore, A \ ∪α∈∆0
Vα ∈ H. Thus,

A is Strongly H-Lindelöf relative to X. �

Theorem 7 Let (X,m,H) be a hereditary m-space. Let A be an mHg-closed
set such that A ⊆ B ⊆ mcl(A). Then A is Strongly H-Lindelöf elative to X if
and only if B is Strongly H-Lindelöf relative to X.

Proof.
Suppose that A is Strongly H-Lindelöf elative to X and {Vα : α ∈ ∆} is a

family ofm-open sets of X such that B\∪α∈∆Vα ∈ H. By the heredity property,
A \ ∪α∈∆Vα ∈ H and A is Strongly H-Lindelöf elative to X and hence there
exists a countable subset ∆0 of ∆ such that A \ ∪α∈∆0

Vα ∈ H. Since A is
mHg-closed, mcl(A) ⊆ ∪α∈∆0

Vα and so mcl(A) \ ∪α∈∆0
Vα ∈ H. This implies

that B \ ∪α∈∆0
Vα ∈ H.

Conversely, suppose that B is Strongly H-Lindelöf elative to X and {Vα : α ∈
∆} is a family of m-open subsets of X such that A\∪α∈∆Vα ∈ H. Given that A
is mHg-closed, mcl(A) \ ∪α∈∆Vα = ∅ ∈ H and this implies B ⊆ ∪α∈∆Vα ∈ H.
Since B is Strongly H-Lindelöf elative to X, there exists a countable subset ∆0
of ∆ such that B \ ∪α∈∆0

Vα ∈ H. Hence A \ ∪α∈∆0
Vα ∈ H. �

5 (γ, δ)-continuous functions

Definition 9 Let (X,m) and (Y, n) be minimal spaces and γ (resp. δ) be an
operation on m (resp. n). Then a function f : (X,m) → (Y, n) is said to be
(γ, δ)-continuous if for each x ∈ X and each V ∈ n containing f(x), there
exists U ∈ m containing x such that f(γ(U)) ⊆ δ(V).

Lemma 7 Let f : X→ Y be a function.

1. If H is a hereditary class on X, then f(H) is a hereditary class on Y.

2. If H is a hereditary class on Y, then f−1(H) is a hereditary class on X.

Proof. (1): This is due to Lemma 3.8 of [5].
(2): Let A ⊆ f−1(H), where H ∈ H. Then f(A) ⊆ f(f−1(H)) ⊆ H. Hence

f(A) ∈ H and A ⊆ f−1(f(A)) ∈ f−1(H) and hence A ∈ f−1(H). �
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Theorem 8 Let (X,m) and (Y, n) be minimal spaces and γ (resp. δ) be an
operation on m (resp. n) and H be a hereditary class on X. If (X,m,H) is
γH-Lindelöf and f : (X,m,H) → (Y, n) is a (γ, δ)-continuous surjection, then
(Y, n, f(H)) is δf(H)-Lindelöf.

Proof. Let {Vα : α ∈ ∆} be any cover of Y by n-open sets. For each x ∈ X, there
exists α(x) ∈ ∆ such that f(x) ∈ Vα(x). Since f is (γ, δ)-continuous, there exists
Uα(x) ∈ m containing x such that f(γ(Uα(x))) ⊆ δ(Vα(x)). Since {Uα(x) : x ∈ X}
is a cover of X by m-open sets and (X,m,H) is γH-Lindelöf, there exist a
countable points x1, x2, x3, · · · ∈ X such that X \ ∪∞i=1γ(Uα(xi)) = H0 , where
H0 ∈ H. Therefore, we have Y ⊆ f(∪∞i=1γ(Uα(xi))) ∪ f(H0) ⊆ ∪∞i=1δ(Vα(xi)) ∪
f(H0). Hence (Y, n, f(H)) is δf(H)-Lindelöf. �

Definition 10 [11] A function f : (X,m) → (Y, n) is said to be M-closed if
for each m-closed set F of X, f(F) is n-closed in Y.

Theorem 9 Let f : (X,m) → (Y, n,H) be an M-closed surjective function.
If for every y ∈ Y, f−1(y) is Strongly f−1(H)-Lindelöf in X, then f−1(A) is
Strongly f−1(H)-Lindelöf relative to X whenever A is Strongly H-Lindelöf rel-
ative to Y and A \U ∈ H for every U ∈ n.

Proof. Let {Vα : α ∈ ∆} be a family of m-open subsets of X such that f−1(A)\
∪{Vα : α ∈ ∆} ∈ f−1(H). For each y ∈ A there exists a countable subset ∆0(y)
of ∆ such that f−1(y) \ ∪{Vα : α ∈ ∆0(y)} ∈ f−1(H). Let Vy = ∪{Vα : α ∈
∆0(y)}. Each Vy is an m-open set in (X,m) and f−1(y) \ Vy ∈ f−1(H).

Now each set f(X − Vy) is n-closed in Y and hence, U(y) = Y − f(X − Vy)
is n-open in Y. Note that f−1(U(y)) ⊆ Vy. Thus, {U(y) : y ∈ A} is a family of
n-open subsets of Y such that A \ ∪{U(y) : y ∈ A} ∈ H. Since A is Strongly
H-Lindelöf relative to Y, there exists a countable subset {U(yi) : i ∈ N} such
that A \ ∪{U(yi) : i ∈ N} ∈ H and hence f−1[A \ ∪{U(yi) : i ∈ N}] = f−1(A) \
∪{f−1(U(yi)) : i ∈ N} ∈ f−1(H). Since f−1(A) \ ∪{Vyi : i ∈ N} ⊆ f−1(A) \
∪{f−1(U(yi)) : i ∈ N}, then f−1(A) \ ∪{Vyi : i ∈ N} = f−1(A) \ ∪{Vα : α ∈
∆0(yi), i ∈ N} ∈ f−1(H). Hence, f−1(A) is Strongly f−1(H)-Lindelöf relative to
X. �

A subset K of an m-space is said to be m-compact [14] if every cover of K
by m-open sets of X has a finite subcover.

Theorem 10 Let f : (X,m) → (Y, n,H) be an M-closed surjective function.
If for every y ∈ Y, f−1(y) is m-compact in X, then f−1(A) is f−1(H)-Lindelöf
relative to X whenever A is H-Lindelöf relative to Y.
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Proof. Let {Vα : α ∈ ∆} be a cover of f−1(A) by m-open sets of X. For
each y ∈ A there exists a finite subset ∆0(y) of ∆ such that f−1(y) ⊆ ∪{Vα :
α ∈ ∆0(y)}. Let Vy = ∪{Vα : α ∈ ∆0(y)}. Each Vy is an m-open set in
(X,m) and f−1(y) ⊆ Vy. Since f is M-closed, by Theorem 3.1 of [11] there
exists an n-open set Uy containing y such that f−1(Uy) ⊆ Vy. The collection
{Uy : y ∈ A} is a cover of A by n-open sets of Y. Hence, there exists a
countable subcollection {Uy(i) : i ∈ N} such that A \ ∪{Uy(i) : i ∈ N} ∈ H.

Then f−1(A \∪{Uy(i) : i ∈ N}) = f−1(A) \∪{f−1(Uy(i)) : i ∈ N} ∈ f−1(H). Since

f−1(A)\∪{Vy(i) : i ∈ N} ⊆ f−1(A)\∪{f−1(Uy(i)) : i ∈ N}), then f−1(A)\∪{Vy(i) :
i ∈ N} ∈ f−1(H). Thus, f−1(A) is f−1(H)-Lindelöf relative to X. �
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